
Combining Production Systems and Ontologies

Martı́n Rezk and Werner Nutt

KRDB Research Centre, Faculty of Computer Science
Free University of Bozen-Bolzano, Italy
{rezk,nutt}@inf.unibz.it

Abstract. Production systems are an established paradigm in knowledge repre-
sentation, while ontologies are widely used to model and reason about the domain
of an application. Description logics, underlying for instance the Web ontology
language OWL, are a well-studied formalism to express ontologies. In this work
we combine production systems (PS) and Description Logics (DL) in such a way
that allows one to express both, facts and rules, using an ontology language.

We explore the space of design options for combining the traditional closed
world semantics of PS with the open world semantics of DL and propose a generic
semantics for such combination. We show how to encode our semantics in a fix-
point extension of first-order logic. We show that in special cases (monotonic and
light PS) checking properties of the system such as termination is decidable.

1 Introduction

Production systems (PS) are one of the oldest knowledge representation paradigms in
Artificial Intelligence, and are still widely used today.

We consider PSs that consist of (i) a set of rules r of the form
if φr then ψr (1)

(ii) a set of ground facts, called working memory, which contains the current state of
knowledge, and (iii) a rule interpreter, which executes the rules and makes changes in
the working memory, based on the actions in the rules. The condition φr is a FOL for-
mula, and the action ψr = +a1, . . . ,+ak,∼b1, . . . ,∼bl where each +ai and ∼bj stand
for asserting and retracting an atomic fact (atom) to/from the working memory. These
rules syntactically correspond to the fragment of the RIF Production Rule Dialect1 that
does not include the forall construct, modify actions, external functions, etc. Semanti-
cally it deviates from RIF on the fact that we assume that all the actions are applied
simultaneously. Given a working memory, the rule interpreter applies the rules in three
steps: (1) pattern matching—typically using the RETE algorithm [5]—(2) conflict res-
olution–the interpreter chooses zero or one pair among the rules whose condition is
satisfied according to its strategy—and (3) rule execution. The formal semantics for a
PS can be found in [3].

PSs do not provide a way to express knowledge about the domain, and the relations
among terms in the PS vocabulary. Moreover, they cannot handle incomplete informa-
tion. Description Logic (DL) ontologies [1] are a standard way to achieve that. In this
work we consider standard DLs without nominals. For concreteness, we will work with

1 http://www.w3.org/TR/rif-prd/

S. Rudolph and C. Gutierrez (Eds.): RR 2011, LNCS 6902, pp. 287–293, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



288 M. Rezk and W. Nutt

ALC. Observe that such combination is particularly relevant when different PSs, with
different policies and vocabularies need to work as one. This can happen, for instance,
when two or more companies fuse together.

The integration of two knowledge representation languages with such different se-
mantics requires a solid theoretical foundation in order to understand the implications
of the combination—both semantical and operational—on a deep level. In this paper
we bridge the gap between the semantics of production rules and ontologies.

Example 1 (Running Example). A research institute has staff members (Staff), and
visitors (Visitor). This institute has a system that enforces a set of regulations over
the database (the working memory WM0 shown below) through a set of rules:

1. If a user of the system (Usr) quits (Qt) his/her position in the institute, then he/she
is removed from the database:

r1 : if Usr(x) ∧ Qt(x) then ∼ Staff(x)

2. If a user is banned (Bnd) or is not allowed (Allowed) to use the system, then s/he
should no longer be a user:

r2 : if Staff(x) ∧ (Bnd(x) ∨ ¬Allowed(x)) then ∼ Usr(x)

Our institute is going to join a network of research institutes. To set up a common
vocabulary, and to agree on the definitions of the shared terms and some basic regula-
tion, they need to incorporate the following ontology (ALC TBox) into their system:

(a) Staff � Visitor ≡ Usr (b) Staff � Visitor ≡⊥ (c) Allowed 	 Usr

Observe that the new ontology does not cover the whole vocabulary of the system, but
only part of it. The portion of the working memory whose vocabulary is covered by the
ontology is physically distributed over different institutions, the rest remains in our lo-
cal database. Our initial working memory is WM0 = {Staff(Kim), Qt(Kim)}. Before
being able to run this system, we need to solve the following issues

– How do we check if a rule condition holds in WM0? In traditional PS semantics,
WM0 is viewed as a unique model in which we can check the satisfaction of for-
mulas. However, under ALC semantics, WM0 would be seen as theory (ABox) that
together with the TBox has a possibly infinite set of models, and thus entailment is
needed.

– How do we interpret the retraction of an atom as stated in rules 1 and 2? In tra-
ditional PS semantics, to retract an atom is equivalent to changing the truth value
of a fact from true to false since there is a unique model. It is a simple operation
that is achieved by removing the fact from the working memory. In ALC (as in
other DLs) to retract a fact that is entailed by the knowledge base or to enforce the
knowledge base to entail a fact to be false, is a complex problem that cannot always
be solved [6,4].

– When do we execute a rule? Traditionally, rules are fired only if they change the
working memory. However, now two syntactically different working memories can
be semantically equivalent, for instance, the working memory WM0 in our running
example and WM′

0 = {Staff(Kim), Usr(Kim), Qt(Kim)}.



Combining Production Systems and Ontologies 289

We solve the issues highlighted above by presenting a semantics, named POS, that
takes an hybrid approach to checking satisfaction of rule conditions, and a traditional
approach to rule application and execution.

Our contribution with this work is three-fold: (i) we discuss the design options of
combining production systems and DL ontologies, together with the problems and ad-
vantages that arise from the different options; (ii) we define a syntax for PSs augmented
with DL ontologies and an operational semantics, called POS; (iii) we embed POS into
Fixed-Point Logic (FPL), giving in this way a model-theoretic semantics to the combi-
nation and study how, in some restricted cases, the static analysis of production rules,
and the FPL embedding can be used to check properties (like termination).

2 Design Space

In this section we discuss the design options for the semantics through our running
example. Due to the lack of space, we will not go over all the options, but just the most
relevant ones. Details can be found in [7].

Rule Conditions: Traditional PSs evaluate rule conditions over the unique model rep-
resented by the working memory. In our running example, this would mean that Kim
is not allowed to use the system, since Allowed(Kim) is not in WM0. Thus, we could
fire Rule 2 removing Kim from the users list. On the contrary, in DL semantics, the
absence of knowledge does not imply any conclusion. In fact, in our example, this is
desirable for the portion of the working memory that is distributed. We do not want
that if a server goes down, part of our working memory becomes false and the engine
starts firing rules indiscriminately based on that. However, for the portion of the work-
ing memory that is locally stored in our server, it is perfectly fine to assume that we
have complete information about it, and take the traditional approach.

Rule Effects: Rule application in traditional PSs is straightforward. For our combina-
tion, we focus on how to interpret the retraction of facts, since we assume that in any
case insertion amounts to adding facts. Consider Rule 2 in our running example instan-
tiated with x = Kim, and suppose that the working memory resulting from applying
that rule is WM. In the context of DLs we could expect that applying ∼Usr(x) changes
the truth value of Usr(Kim) from true to false. This means that the resulting working
memory WM entails ¬Usr(Kim). This is a difficult problem and moreover, such up-
dates are not always expressible in a standard DL like ALC [6,4]. A second option is
to give ∼ the traditional PS meaning, that is, just remove the atom from the working
memory. In our view, the latter approach has four important advantages: (i) the result
of applying an action is always expressible, independently of the language of the on-
tology, (ii) we do not need to deal with inconsistencies, (iii) the semantics remains the
same as in traditional PS semantics, and (iv) to compute the resulting working memory
is almost trivial. We opt for this last option. Note that removal produces a syntactic
change, but not always a semantic change. For instance, applying ∼Usr(Kim) to WM0

in our running example, does not change the truth value of Usr(Kim). That is because



290 M. Rezk and W. Nutt

removal cannot retract consequences of a knowledge base. It is worth noticing that this
interpretation of negation is compliant with the current version of DELETE in SPARQL
1.1.2

Executability: Traditionally, rules are fired only if they change the working mem-
ory. However, now two syntactically different working memories can be semantically
equivalent, for instance, the working memory WM0 in our running example and WM′

0

introduced above. Therefore, we have two options: (i) keep the traditional semantics,
and fire a rule if it syntactically changes the working memory, or (ii) fire the rule only
if it changes the semantics of the working memory. If the ontology does not cover the
vocabulary of the PS, and therefore has no complete information about the relation be-
tween the concepts and rules in the PS (like in our running example), then semantically
equivalent working memories might not represent the same information. Consider the
working memories WM0 and WM′

0 above. If we remove Staff(Kim) from WM0, Kim
is no longer a user. On the contrary, Kim is still a user after removing Staff(Kim) from
WM′

0. This shows that having Usr(Kim) in the working memory should be interpreted
as Usr(Kim) is “independent” (with respect to removal actions) from the taxonomical
information in the ontology. This independency is desirable if there is some relation
(neither stated by the ontology nor shared by all the institutions) between a concept in
the ontology and some local concept. This last observation led us to choose to keep the
traditional semantics. Section 3 will provide further details.

3 Production Systems and Ontologies Semantics

In this section we introduce POS (Production system and Ontologies Semantics). The
design decisions we took when defining POS can be summarized in three main con-
cepts. Consistency: POS is consistent with both, the traditional PS semantics, and the
DL semantics. We require consistency with the traditional semantics of PS to be able to
build up the combination with ontologies over the existing PS technologies. The con-
sistency with the DL semantics is required not only to be able to exploit the existing
DL reasoners but because we assume that we may not have complete knowledge about
the data, thus, if some fact is not known to be true should not be assumed to be false.
DL Independence: rule execution and rule effect are independent of the ontology lan-
guage. Although in this paper we are working with ALC for concreteness, we want the
semantics to be as general as possible. Recall that, for instance, an update that is possi-
ble in ALCO might not be possible in ALC [6]. Partial Coverage: the vocabulary of
the ontology need not fully cover the vocabulary of the PS.

A Production System is a tuple PS = (Σ, T , L,R), where Σ = (P,C) is a first-
order signature where the set P of predicate symbols is split into a set of DL predicates
PDL and a set of PS predicates PPS and where C is a countably infinite set of constant
symbols; T is a ALC TBox whose predicates belong to PDL; L is a set of rule labels;
andR is a set of rules, which are statements of the form (1) as shown in the introduction.
A concrete PS (CPS) is a pair (PS,WM0), where WM0 is a working memory.

2 http://www.w3.org/TR/sparql11-update/

http://www.w3.org/TR/sparql11-update/


Combining Production Systems and Ontologies 291

Next, we define when a rule’s condition is satisfied in a working memory given an
ontology (i.e., a TBox) and a valuation. Let WM be a working memory. An interpretation
I is a model of WM iff for every atom p(c) ∈ WM, we have that c ∈ pI .

Definition 1 (Satisfaction). A model I of a working memory WM satisfies an atom
p(x) with a valuation σ, relative to WM, denoted I, σ |=WM p(x), iff

– p ∈ PPS, and p(σ(x)) ∈ WM, i.e., we take WM as a model for PPS atoms, or
– p ∈ PDL, and I |= p(σ(x)), i.e., we take WM as a theory for PDL atoms.

For formulas φ = ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2, ∃x : φ1, or ∀x : φ1 we define I, σ |=WM φ
recursively as usual. A formula φ holds in a working memory WM with a valuation σ,
relative to a theory T , denoted WM, σ |=T φ, iff I, σ |=WM φ for every model I of
T ∪ WM. �

Observe that in the absence of PS predicates, this definition coincides with the def-
inition of satisfaction in DL. Analogously, in the absence of DL predicates, the pre-
vious definition coincides with the definition of satisfaction in the traditional seman-
tics as stated in [3]. A rule r ∈ R of the form (1) is fireable in a working memory
WM with a valuation σ iff φr holds in WM, the resulting working memory WM′ =
(WM\ {σ(b1, . . . , bl)})∪{σ(a1, . . . , ak)} is consistent and distinct from WM. Observe
that the definition of rule application coincides with the one in traditional PS, focussing
only on the syntactic changes of the working memory. We say that there is an (r,σ)-

transition from WM to WM′, denoted WM
r(σ(x))� WM′, iff the rule r is fireable in WM

with valuation σ, and WM′ is the working memory resulting from firing r in WM as de-
fined above. To formalize the runs, we use transition graphs. The definition is as usual:
the nodes of the graph are working memories, and the edges are transitions. Since we
apply all actions simultaneously, rule applications are represented by single edges. A
run for a concrete production system (PS,WM0) is a maximal path in such graph.

4 Declarative Semantics and Decidability Results

In this section we give an intuition of an embedding, ΦPOS, of POS into FPL, which
models the runs of a PS. We exploit the fix point operator in FPL to guarantee that there
is not an infinite backward chain from any state to the initial state in the model. This
property can not be expressed in FOL and without this we lose completeness of the
axiomatization, since we get runs with a transfinite number of states. In order to model
the sequence structure of the runs there is a set of foundational axioms, F . The whole
behavior of a CPS will be axiomatized in one formula ΦPOS, which has the form

ΦPOS = ∃y : InitialState(y) ∧ ∀x : x > y → (Intermediate(x) ∨ End(x))

Intuitively, ΦPOS states that there is an initial state y where no rule has been applied, it
is consistent with T , and either no rule is executable in y and there is no successor, or
at least one rule is executable in y, there is a successor, and all the successors are either
intermediate states (states with a successor), or final states (without successor). Inter-
mediate and final states are required to be the result of some rule application, respect



292 M. Rezk and W. Nutt

the inertia laws for the atoms in the working memory, and be consistent with the ontol-
ogy. In addition, intermediate states are supposed to have a successor resulting from the
application of a rule, whereas final states are not. Theorem 1 establishes the correspon-
dence between the models of our formalization and the runs of a production system.
Due to the space limitation, we give only an intuitive formulation of these theorems.
Details can be found in [7].

Theorem 1 (Soundness and Completeness). Let (PS,WM0) be a concrete PS, and
ΦPOS ∪ F the FPL embedding of (PS,WM0).

– ΦPOS ∪ F entails that a fact f holds in the initial state if and only if WM0 |=T f .
– ΦPOS ∪ F entails that a fact f holds after applying r1(c1) . . . rn(cn) if and only if

there is a run R of PS of the form WM0

r1(c1)� WM1 . . .WMn−1

rn(cn)� WMn such
that WMn |=T f

Now we turn to the problem of how to check properties of CPS. Typical properties
of (concrete) production systems one would like to check are termination (all the runs
are finite) and confluence (all the runs terminate with the same working memory). A
complete list of these properties, their formal definition and logic encoding can be found
in [3]. For concreteness and space limitation, we will only discuss termination, but
our results hold for other properties as well. In [7] we define two types of concrete
PS: regular and light. Intuitively, in a regular CPS, all rule conditions can be satisfied
only by constants in the working memory, and actions behave either monotonically
(never removing anything) or anti-monotonically (never adding anything). In light CPS,
the ontology is such that all its consequences—given the working memory—can be
finitely computed. An interesting class of such ontologies is the set of acyclic DL-lite
TBoxes[2].

Theorem 2. Checking termination of regular and of light concrete PS is decidable.

5 Conclusion

In this paper we discussed different design options for the combination of production
systems with DL ontologies, and presented a new syntax and a new semantics, named
POS, for such combination, and explained its advantages. We also presented an embed-
ding of POS into Fixed-Point Logic, giving in this way a model-theoretic semantics to
the combination. Finally, we studied how, in some restricted cases, the static analysis of
production rules, and the FPL embedding can be used to check properties (like termi-
nation) by means of logic entailment. These properties are not decidable in the general
case. In the future, we plan to extend this work to cover the whole RIF-PRD language
and to handle inconsistencies introduced by the rule applications.

Acknowledgments. We thank Jos de Bruijn for starting this work with us and the anony-
mous reviewers for useful comments and feedback. The work presented in this paper
was partially supported by the European Commission under the project ONTORULE
(IST-2009-231875).



Combining Production Systems and Ontologies 293

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook. Cambridge University Press, Cambridge (2003)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-lite family. J. of Automated Rea-
soning 39(3), 385–429 (2007)

3. de Bruijn, J., Rezk, M.: A logic based approach to the static analysis of production systems. In:
Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 254–268. Springer, Heidelberg
(2009)

4. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update and erasure in
description logic ontologies. J. Log. and Comput. 19, 745–770 (2009)

5. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match problem. Artif.
Intell. 19(1), 17–37 (1982)

6. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating Description Logic ABoxes. In: Proceed-
ings of the Tenth International Conference on Principles of Knowledge Representation and
Reasoning (KR 2006), pp. 46–56 (2006)

7. Rezk, M., de Bruijn, J., Nutt, W.: Combining production systems and ontologies. Technical
report, Free University of Bolzano (2011),
http://www.inf.unibz.it/˜mrezk/techreportPOS.pdf

http://www.inf.unibz.it/~mrezk/techreportPOS.pdf

	Combining Production Systems and Ontologies
	Introduction
	Design Space
	Production Systems and Ontologies Semantics
	Declarative Semantics and Decidability Results
	Conclusion
	References


