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Abstract 
Motivation: Millions of protein sequences have been generated by numerous genome and transcriptome 
sequencing projects. However, experimentally determining the function of the proteins is still a time consuming, low-
throughput, and expensive process, leading to a large protein sequence-function gap. Therefore, it is important to 
develop computational methods to accurately predict protein function to fill the gap. Even though many methods 
have been developed to use protein sequences as input to predict function, much fewer methods leverage protein 
structures in protein function prediction because there was lack of accurate protein structures for most proteins until 
recently. 
Results: We developed TransFun - a method using a transformer-based protein language model and 3D-
equivariant graph neural networks to distill information from both protein sequences and structures to predict protein 
function. It extracts feature embeddings from protein sequences using a pre-trained protein language model (ESM) 
via transfer learning and combines them with 3D structures of proteins predicted by AlphaFold2 through equivariant 
graph neural networks. Benchmarked on the CAFA3 test dataset and a new test dataset, TransFun outperforms 
several state-of-the-art methods, indicating the language model and 3D-equivariant graph neural networks are 
effective methods to leverage protein sequences and structures to improve protein function prediction. Combining 
TransFun predictions and sequence similarity-based predictions can further increase prediction accuracy.  
Availability: The source code of TransFun is available at https://github.com/jianlin-cheng/TransFun 
Contact: chengji@missouri.edu 
 

1 Introduction 
Proteins are essential macromolecules that carry out critical 

functions such as catalyzing chemical reactions, regulating gene 
expression, and passing molecular signals in living systems. It is critical 
to elucidate the function of proteins. However, even though various next-
generation genome and transcriptome sequencing projects have generated 
millions of protein sequences, the experimental determination of protein 
function is still a low-throughput, expensive and time-consuming process. 
Thus, there is a huge gap between the number of proteins with known 
sequence and the number of proteins with known function, and this gap 
keeps increasing. As a result, it is important to develop computational 
methods to accurately predict the function of proteins. 

Given the sequence of a protein and/or other information as input, 
protein function prediction methods aim to assign the protein to one or 
more function terms defined by Gene Ontology (GO)(Huntley et al., 
2015). GO organizes function terms into three ontology categories: 
Biological Process (BP), Molecular Function (MF) and Cellular 
Component (CC). The terms in each of these ontology categories can be 
represented as a directed acyclic graph, in which parent nodes denoting 
broader (more general) function terms point to child nodes denoting more 
specific function terms. 
Many protein function prediction methods use sequence or structure 
similarity to predict function, assuming proteins with similar sequences 
and structures likely have similar function. For example, GOtcha, 
Blast2GO (Conesa & Götz, 2008; Martin et al., 2004), PDCN (Wang et 
al., 2013) and DIAMONDScore use sequence alignment methods such as 
BLAST(Altschul et al., 1997) to search for homologous sequences with 
known function for a target protein and then transfer their known function 
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to the target. COFACTOR and ProFunc (Laskowski et al., 2005; Zhang et 
al., 2017) use structure alignment to search for function-annotated proteins 
whose structures are similar to the target protein to transfer the function 
annotation. There are also some methods leveraging interactions between 
proteins or co-expression between genes to predict function, assuming that 
the proteins that interact or whose genes have similar expression patterns 
may have similar function.  For instance, NetGO (You et al., 2019) 
transfers to a target protein the known function of the proteins that interact 
with it. All these nearest neighbor-based methods depend on finding 
related function-annotated proteins (or called templates) according to 
sequence similarity, structure similarity, gene expression similarity, or 
protein-protein interaction, which are often not available. Therefore, they 
cannot generally achieve high-accuracy protein function prediction for 
most proteins.  

To improve the generalization capability of protein function 
prediction, advanced machine learning-based methods such as FFPred and 
labeler (Cozzetto et al., 2016; You et al., 2018) have been developed to 
directly predict the function of a protein from its sequence. However, most 
of these methods use hand-crafted features extracted from protein 
sequences to make prediction. Recently, several deep learning methods 
such as DeepGO (Kulmanov & Hoehndorf, 2020), DeepGOCNN (You et 
al., 2021), TALE(Cao & Shen, 2021), and DeepFRI (Gligorijević et al., 
2021) were developed to predict protein function, leveraging deep 
learning’s capability to automatically extract features from input data. For 
instance, DeepFRI (Gligorijević et al., 2021) predicts the functions of 
proteins with a graph convolutional network by leveraging sequence 
features extracted by a long, short-term memory-based protein language 
model and structural features extracted from protein structures. However, 
DeepFRI uses either true protein structures from the Protein Data 
Bank(Berman et al., 2000) or homology-based structural models built by 
SWISS-MODEL as structure input. Because only a small portion of 
proteins have true structures or high-quality homology-based structural 
models, the method cannot be applied to most proteins. As 
AlphaFold2(Jumper et al., 2021; Varadi et al., 2022) can predict high-
accuracy structures for most proteins, it is time to leverage AlphaFold2 
predicted protein structures to advance protein function prediction. 

In this work, we develop a method to use a pre-trained protein 
language transformer model to create embeddings from protein sequences 
and combine them with a graph representation constructed from 
AlphaFold predicted 3𝐷𝐷 structures through equivariant graph neural 
networks (EGNN) to predict protein function. We leverage the ESM 
language model(Elnaggar et al., 2021; Rao et al., 2021; Rives et al., 2019, 
2021) trained on millions of protein sequences to generate good feature 
representations for protein sequences. The equivariant graph neural 
networks can capture the essential features of protein structures that are 
invariant to the rotation and translation of 3D protein structures to improve 
protein function. Our experiment shows that combining protein sequences 
and structures via the language transformer model and EGNN outperforms 
several state-of-the-art methods.  

2 Methods 

2.1 Datasets 
We collected protein sequences with function annotations from the 

UniProt/Swiss-Prot database, released by February 23, 2022, amounting 
to a total of 566,996 proteins. We gathered their functional annotations 
from UniProt and the ontology graph data from the Open Biological and 
Biomedical Ontology (OBO) Foundry data repository. We also collected 
predicted structures of 542,380 proteins from the AlphaFold Protein 

Structure Database (AlphaFoldDB) published on January 12, 2022. To 
ensure consistency between the predicted structures from AlphaFoldDB 
and the corresponding proteins from UniProt, we compare their sequences 
and UniProt ID. All but 301 proteins have the same sequence. For the ones 
with different sequences, they usually only differ in a few residues. To 
make them consistent, we use the sequences extracted from the predicted 
structures as the final sequences.   

The protein function annotations are described in the Gene Ontology 
(GO) terms. GO uses directed acyclic graphs (DAGs) to model the 
relationship between GO terms. The nodes represent the GO terms, and 
the links represent the relationship between the terms. GO provides three 
separate directed acyclic graphs (DAG) for each of the three ontologies 
(Biological Process (BP), Cellular Component (CC) and Molecular 
Function (MF)). For each protein, the specific GO terms provided in the 
UniProt function annotation file were first gathered. Then, their parent and 
ancestor terms in the GO DAG were also collected. The terms with the 
evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC, HTP, HDA, 
HMP, HGI, HEP) were used as the function label for the protein according 
to the standard used in the Critical Assessment of Protein Function 
Annotation (CAFA)(Zhou et al., 2019). 

The entire dataset above was filtered to retain only proteins with 
sequence length between 100 and 1022. We use a maximum length of 
1022, because the pre-trained ESM model used in generating sequence 
embeddings can accept a protein sequence with the maximum length of 
1022 residues. To avoid rare GO terms, we use only GO terms that have 
at least 60 proteins for training and test.  

To compare our method with existing methods, we use the CAFA3 
(Zhou et al., 2019) dataset as the independent test dataset because many 
methods have been tested on it. We removed all 3328 CAFA3 test proteins 
from our curated dataset and removed any protein in the dataset that has 
>=50% sequence identity with any protein in the CAFA3 test dataset. 
After the filtering, the curated dataset was used to train and validate 
TransFun. The trained method was then blindly tested on the test datasets.  

We collected the predicted structures for the proteins in the CAFA3 
test dataset (CAFA3_test_dataset) from AlphaFoldDB in the same way as 
for our curated dataset. If no predicted structure was found for a protein, 
we used AlphaFold2 to predict its structure. During the input feature 
generation, for a protein sequence with length > 1022 in the CAFA3 
benchmark dataset, we divided it into smaller chunks of 1022 residues 
except for the last chunk for the language model to generate sequence 
embeddings that were concatenated together as the sequence embeddings 
for the entire protein sequence.  

To investigate how sequence identity influence the accuracy of 
protein function prediction, we used mm2seq(Steinegger & Söding, 2017) 
to cluster the proteins in our curated dataset at the sequence identity 
thresholds of 30%, 50%, 90%. Table 1 reports the total number of 
proteins in each function category, the total number of GO terms, and the 
number of protein clusters at each identity threshold.  

Our final curated dataset was divided into training and validation 
sets. We randomly selected 5000 proteins with GO terms in all three 
ontology categories for validation.  

We also collected new proteins released between March 2022 and 
November 2022 in UniProt as our second test dataset (new_test_dataset). 
This dataset has 702, 705 and 1084 proteins in CC, MF and BP 
respectively. 

Given a set of proteins 𝐷𝐷𝑙𝑙 = {(𝑝𝑝1,𝑂𝑂1), (𝑝𝑝1,𝑂𝑂2), … (𝑝𝑝𝑛𝑛 ,𝑂𝑂𝑛𝑛)}, where 
𝑝𝑝𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ protein and 𝑂𝑂𝑖𝑖 is its true function annotation labels (i.e., a set 
of GO terms). Our task is to predict 𝑂𝑂𝑖𝑖 as accurately as possible. The 
function annotations are represented hierarchically with a general root 
term at the top. If a GO term 𝑥𝑥 is associated with protein 𝑝𝑝𝑖𝑖, then all the 
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ancestor terms of 𝑥𝑥 in the GO graph are also associated with protein 𝑝𝑝𝑖𝑖. 
Therefore, the goal is to predict the sub-graph 𝑔𝑔 in the GO graph 𝐺𝐺 
consisting of all the GO terms associated with the protein (Clark & 
Radivojac, 2013). 
 
Table 1. The statistics of the curated protein function prediction dataset. The first 3 
columns are the GO ontology category, the total number of proteins in each category 
and the number of GO terms in each category. The remaining 4 columns list the 
number of protein clusters at each sequence identity threshold (0.3, 0.5, 0.9, 0.95). 

 Sequence Identity Threshold 
Ontology  # 

Protein 
# GO 
Terms 

0.3 0.5 0.9 0.95 

MF 35,507 600 14,667 19,512 26,876 28,067 
CC 50,340 547 20,679 26,808 36,721 38,509 
BP 50,320 3774 20,180 26,647 37,536 39,348 

 

2.2 Protein Function Prediction Pipeline 
We formulate the protein function task as a multi-label classification 

problem, where each protein may be assigned to one or more labels (GO 
terms). TransFun takes as input the sequence and predicted 3D structure 
of a protein and predicts the probability of GO terms for it in each GO 
category (Figure 1).  TransFun consists of three main stages: (1) 
extracting a protein graph from a predicted structure (PDB), (2) generating 
the embeddings from a protein sequence, and (3) using a deep learning 
model to predict protein functions from the input data, which are described 
in Sections 2.3, 2.4, and 2.5.   

2.3 Protein Graph Extraction from predicted structure 
 
We construct a graph from the structure of a protein under 

consideration, represented as a n x n adjacency matrix, where 𝑛𝑛 is the 
number of residues in the protein (Figure 2). The nodes in the graph 
represent residues of the protein. Two types of edges are constructed 
between residues, using a distance threshold and K-nearest neighbor 
(KNN) approach.  Given a protein graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝑋𝑋), where 𝑉𝑉 =
{𝑣𝑣1,𝑣𝑣2, … 𝑣𝑣𝑛𝑛} represents the vertex set and 𝐸𝐸 is the set of edges. The first 
condition for adding an edge to connect two nodes (𝑢𝑢, 𝑣𝑣) is the Euclidean 
distance between their carbon alpha atoms |𝑢𝑢 − 𝑣𝑣| <  𝜙𝜙, where 𝜙𝜙 is the 
distance threshold. In this work, we tested 5 distance thresholds, 4Å, 6Å,
8Å, 10Å &  12Å and chose 10Å as our final distance threshold as it 
yielded the best result.  The second condition is 𝑣𝑣 ∈ 𝑁𝑁𝑘𝑘, where 𝑁𝑁𝑘𝑘 is the 
K nearest neighbors of node 𝑢𝑢. We set K to √𝑛𝑛  & √𝑛𝑛 3 , where n is the 
number of residues. Since both thresholds produce similar results, we use 
the latter to reduce computational cost. The graph constructed from a 
protein structure is stored in a binary adjacency matrix, where 0 means no 
edge and a 1 means there is an edge between two nodes. Self-loops (edges 
from a node to itself) are not allowed.   

We also consider the situation when no protein structure is provided. In 
this case, a fully connected graph consisting of the edges between any two 
different nodes (residues) is constructed, which allows the deep model to 
infer appropriate edge weights during the training process, similar to the 
work (Kipf et al., 2018). However, this approach is computationally 
expensive, especially for large graphs.  

 
 

2.4 Sequence Feature Extraction Using Transformer 
Language Model 

We generate embeddings for the sequence of a protein using the ESM-
1b(Rives et al., 2019, 2021) pre-trained protein language model. Per-
residue embeddings are extracted for each residue (e.g., dimension: 21 x 
1022) and per-sequence embedding for each whole sequence (e.g., 
dimension: 1022). The ESM-1b transformer takes as input the sequence 
of a protein and generates feature embeddings at several layers. We collect 
per-residue and per-sequence embeddings from the 33rd layer.  The per-
residue embedding for all the residues of a protein is an 𝑅𝑅𝑙𝑙×𝑑𝑑 tensor, where 
𝑙𝑙 is the sequence length and 𝑑𝑑 is the embedding dimension. The per-
sequence embedding is an aggregation over the per-residue embeddings 
and represents the features for the entire protein. We use the mean 
aggregator to compute the per-sequence embedding.  

ESM-1b was trained with the 1024 residue limit including start and 
end tokens (i.e., 1022 real residues without counting the start/end tokens). 
For a protein sequence with length > 1022, we divide the sequence into 
𝑛𝑛/1022  chunks of length 1022 except for the last chunk that has a length 
of 𝑛𝑛 % 1022, where 𝑛𝑛 is the length of the sequence and generate an 
embedding for each chuck. The embeddings for all the chunks are 
concatenated as the embedding for the protein.  

 

2.5 Rotation- and Translation-Equivariant Graph 
Neural Network (EGNN) Model 

The deep graph neural network architecture of TransFun is composed 
of 4 blocks of rotation- and translation-equivariant graph neural networks 
(Satorras et al., 2021) (Figure 1), labeled as EGNN1, EGNN2, EGNN3, 
and EGNN4 respectively, each separated by a RELU activation function 
and Batch-normalization layer.  Each EGNN block is made up of 4 
equivariant graph neural network layers.  

Each EGNN layer accepts a graph as input to update its features. The 
initial node features include the per-residue embeddings, and the (x, y, z) 
coordinates of each residue.  We tested two optional features for the edges: 
(1) the distance between the two nodes of the edge; and (2) a binary 
number 0/1 indicating if the two residues are two adjacent residues 
connected by a peptide bond in the protein. However, the edge features do 
not improve the prediction accuracy on top of the node features and 
therefore are excluded in the final model of TransFun.  

 EGNN1 has an input dimension of 1022, equal to the feature 
embedding dimension for each node. It takes as input the protein graph 
with the per-residue embedding to generate a new embedding of 
dimension 𝐶𝐶 and the refined coordinates of the nodes in the graph. 𝐶𝐶 to set 
to the number of GO classes to be predicted. EGNN2 takes as input the 
protein graph with an output of dimension of 𝐶𝐶 from EGNN1 as node 
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embeddings and produces an output dimension of 𝐶𝐶/2. EGNN3 takes in 
as the initial per-sequence embedding of dimension 1022 for the protein 
to generate the new per-sequence embedding of dimension 𝐶𝐶/2. The last 
EGNN block (EGNN4) takes as input the output of dimension C/2 from 
EGNN3 to generate a per-sequence output of dimension of C/4.  

The output embeddings (features) from EGNN1 and EGNN2 are 
aggregated by using a global mean pooling on the node features of each 
EGNN to obtain representative features for each protein. This is then 
concatenated with the per-sequence outputs of EGNN3 and EGNN4, 
resulting in a 2 ∗  𝐶𝐶 +  𝐶𝐶/4 output features. The concatenated features 
are then passed through two fully connected (FC) linear layers, separated 
by batch normalization and RELU function to reduce the dimension to 𝐶𝐶.  
A sigmoid layer is used in the output layer to take the output of the last 
linear layer as input to predict the probability of each GO term.  
 

2.6 Addressing Class Imbalanced Problems 
The numbers of examples for different GO terms are very different. We 

use class weights to scale the training loss for GO terms appropriately to 
weigh less-represented GO terms (classes) more. The size of protein 
clusters in the training dataset is also imbalanced, where some clusters are 
very large, but some are very small. To reduce over the representation of 
proteins in a large cluster during training, we randomly sample one 
representative protein from each cluster for each training epoch.  Although 
the representative protein sampled is similar in sequence to all the other 
proteins in the same cluster, their functional annotation may differ, 

especially when the sequence similarity is low. Therefore, we recompute 
the class weights per training epoch so that classes represented in the 
epoch are weighed appropriately. 

2.7 Combining TransFun predictions with sequence 
similarity-based predictions 

Several previous works (Cao & Shen, 2021; Kulmanov & Hoehndorf, 
2020) combines an ab initio deep learning prediction method and a 
homology sequence similarity-based method such as DIAMONDScore 
(Buchfink et al., 2014, 2021) to improve protein function prediction.  
DIAMONDScore uses BLAST to search for homologous proteins and 
transfer their function annotations to a target protein under consideration. 

In this work, we also designed such a composite (or meta) method to 
combine the predictions from DIAMONDScore and the predictions of 
TransFun, which is called TransFun+. The score that TransFun+ predicts 
for a GO term is the weighted average of the score predicted by TransFun 
and the score predicted by DIAMONDScore. The weights were optimized 
on our curated validation dataset.  

2.8 Evaluation Metrics 
We use the two widely used metrics - Fmax and the Area Under the 

Precision-Recall curve (AUPR) - to evaluate the performance of our 
methods. The Fmax is the maximum F-measure computed over all the 
prediction thresholds. The F-measure for each threshold is computed as 
the harmonic mean of the precision (TP / (TP+FP)) and recall (TP / (TP 
+ FN)), where TP is the number of true positives, FP the number of false 
positives, and FN the number of false negatives. The AUPR is computed 
by using the trapezoidal rule to approximate the region under the 
precision-recall curve. 

 
 

3 Results and Discussions 

Figure 1. The protein function prediction pipeline of TransFun. The pipeline is divided into two main components, feature preprocessing(left) and neural network model 
(right). The input is a protein sequence. The output is the predicted probability of the GO terms for the protein.  

Figure 2. Constructing a graph from a protein structure. A graph is constructed 
from a protein structure using a distance threshold and K-nearest neighbor 
approach. The graph is stored in a binary adjacency matrix.  
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After training and optimizing TransFun on our curated training and 
validation datasets, we blindly evaluated it on the new test dataset 
(new_test_dataset) and the CAFA3 test dataset (CAFA3_test_dataset) 
together with other methods.  

3.1 Performance on CAFA3 test dataset 
We compare TransFun with a Naïve method based on the frequency 

of GO terms, a sequence similarity-based method DIAMONDScore 
(Buchfink et al., 2014, 2021), and three recent deep learning methods 
DeepGO (Kulmanov & Hoehndorf, 2020), DeepGOCNN(Kulmanov & 
Hoehndorf, 2020), and TALE (Cao & Shen, 2021) on the CAFA3 test 
dataset in three function prediction categories (MF: molecular function; 
CC: cellular component, BP: biological process) in terms Fmax score and 
AUPR  (Table 2). According to Fmax, TransFun performs best in MF and 
CC categories and second best in BP category. According to AUPR, 
TransFun performs best in MF and BP categories and second best in CC 
category. These results demonstrate that the sequence-based language 
transformer and 3D-equivariant graph neural network in TransFun can use 
protein sequence and structure together to improve function prediction 
over the existing methods. 
 
 
Table 2. The results of TransFun and several other methods on the CAFA3 test 
dataset. TransFun was pretrained on the curated dataset whose proteins were 
clustered at sequence identity threshold of 50%. Bold numbers denote the best 
results.  

Method 

Fmax AUPR  

MF CC BP MF CC BP 

Naive 0.295 0.539 0.315 0.138 0.373 0.197 

DIAMONDScore 0.532 0.523 0.382 0.461 0.5 0.304 

DeepGO 0.392 0.502 0.362 0.312 0.446 0.213 

DeepGOCNN 0.411 0.582 0.388 0.402 0.523 0.213 

TALE 0.548 0.654 0.398 0.485 0.649 0.258 

TransFun 0.551 0.659 0.395 0.489 0.634 0.333 
 

3.2 Impact of sequence identity on functional annotation 
We compare the performance of TransFun on our curated validation 

datasets created using sequence identity thresholds of 30%, 50%, 90% 
respectively. The results are reported in Table 3. There is a slight increase 
of Fmax and AUPR when the sequence identify threshold is increased 
from 30% to 50% for molecular function (MF) and cellular component 
(CC), while the Fmax and AUPR for BP slightly decreases. This change 
may be also partially due to the difference in the test datasets at the two 
different sequence identity thresholds. However, the largely consistent 
results show that TransFun can work well when the sequence identity 
between the test protein and the training proteins is <= 30%. When the 
sequence identity threshold is increased from 50% to 90%, the 
performance is very similar, indicating when the sequence identity is 
higher than 50%, further increase sequence identity may not have a 
significant impact on the prediction accuracy.   
 
 
 
Table 3. The results of TransFun on the test datasets having different identity 
thresholds with respect to the training data.   

 

3.3 Performance on the new test dataset 
Table 4 reports the results of TransFun, Naïve, DIAMONDScore, 

two recent deep learning methods - DeepGOCNN and TALE, and three 
composite (meta) methods - DIAMONDScore – DeepGOPlus, TALE+ 
and TransFun+ on the new test dataset in the three ontology categories 
(MF, BP & CC) in terms of the Fmax score and AUPR score.  Naïve, 
DIAMONDScore, DeepGOCNN, TALE, and TransFun are individual 
methods. DeepGOPlus, TALE+ and TransFun+ are composite (or meta) 
methods that combine the predictions of two individual methods (i.e., 
DeepGO + DIAMONDScore, TALE + DIAMONDScore, and TransFun 
+ DIAMONDScore).   

Among the four individual methods (Naïve, DIAMONDScore, 
DeepGOCNN, TALE, and TransFun), TrasnFun has the highest Fmax 
score of 0.628, 0.608, and 0.413 for CC, MF and BP, the highest AUPR 
score of 0.569 and 0.366 for MF and BP, and the second highest AUPR 
score of 0.603 for CC. TALE has the highest AUPR score of 0.621 for 
CC.  

The three composite methods (DeepGOPlus, TALE+ and 
TransFun+) generally performs better than their individual counterpart 
(DeepGo, TALE and TransFun) in all the function categories in terms of 
both Fmax and AUPR except that TransFun and TransFun+ has the same 
Fmax score (i.e., 0.628) for CC. This indicates that combining the deep 
learning methods and sequence-similarity based methods can improve 
prediction accuracy. Among the three composite methods, TransFun+ 
performs best for CC and MF in terms of Fmax and for MF and BP in 
terms of AUPR, while DeepGOPlus performs best for BP in terms of 
Fmax and TALE+ performs best for CC in terms of AUPR.  

The precision-recall curves of these methods on the new test dataset 
are plotted in Figure 3. It is worth noting that the deep learning methods 
such as TransFun, TALE and DeeoGOCNN perform much better than the 
sequence similarity-based method – DIAMONDScore, particularly in 
terms of AUPR. One reason is that DIAMONDScore has a much shorter 
precision-recall curve spanning a smaller range of recall values compared 
to the deep learning methods (see Figure 3 for details).  

 

Table 4. The results on the new test dataset.  Naïve, Diamond, DeepGOCNN, TALE 
and TransFun (green) are individual methods. DeepGOPlus, TALE+ and TransFun+ 
(blue) are composite methods. The best results of among the individual methods or 
among the composite methods are bold.  

Method Fmax AUPR 

CC MF BP CC MF BP 

Naïve 0.560 0.275 0.283 0.404 0.135 0.173 

Diamond 0.473 0.564 0.392 0.089 0.115 0.080 

DeepGOCNN 0.595 0.440 0.361 0.545 0.307 0.240 

TALE 0.607 0.512 0.344 0.613 0.480 0.257 

TransFun 0.628 0.608 0.413 0.603 0.569 0.366 

DeepGOPlus 0.623 0.635 0.460 0.562 0.549 0.339 

TALE+ 0.619 0.635 0.431 0.633 0.613 0.344 

TransFun+ 0.628 0.638 0.452 0.627 0.638 0.410 

Score 

30% 50% 90% 

MF CC BP MF CC BP MF CC BP 

Fmax 0.509 0.619 0.394 0.53 0.631 0.37 0.53 0.606 0.367 

AUPR 0.461 0.599 0.333 0.489 0.614 0.327 0.487 0.61 0.3 
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3.4 Performance on human and mouse proteins  
 

 
We compare the performance of TransFun, TransFun+ and the other 

methods on human proteins (Table 5) and mouse proteins (Table 6) in the 
new test dataset. In the dataset, there are 70, 35 and 34 human proteins in 
CC, MF and BP respectively, and there are 132, 87 and 158 mouse 
proteins for CC, MF and BP respectively.  

The similar results are observed on the human and mouse proteins. 
Among the individual methods, TransFun performs better than the other 
methods in almost all function categories in terms of Fmax and AUPR. 

The composite methods generally performs better than their 
corresponding individual methods. Among the three composite methods, 
TransFun+ performs best in most situations. These results are consistent 
with the results on all the proteins in the new test dataset (Table 4).  

 
Table 5. The results of the eight methods on human proteins in the new test dataset. 
Green denotes the individual methods and blue the composite methods. The best 
results in each type of methods are highlighted bold. 

Method Fmax AUPR 
CC MF BP CC MF BP 

Naïve 0.620 0.292 0.28 0.538 0.135 0.163 

Diamond 0.509 0.516 0.445 0.085 0.087 0.055 

DeepGOCNN 0.648 0.419 0.363 0.636 0.253 0.245 

TALE 0.675 0.406 0.367 0.714 0.324 0.279 

TransFun 0.686 0.538 0.468 0.694 0.471 0.445 

DeepGOPlus 0.657 0.554 0.523 0.631 0.417 0.366 

TALE+ 0.689 0.569 0.497 0.724 0.539 0.415 

TransFun+ 0.684 0.612 0.553 0.719 0.557 0.499 

 
Table 6. The results of the eight methods on mouse proteins in the new test dataset. 
Green denotes the individual methods and blue the composite methods. The best 
results in each type of methods are highlighted bold. 

Method Fmax AUPR 
CC MF BP CC MF BP 

Naive 0.503 0.235 0.280 0.333 0.100 0.163 

Diamond 0.471 0.569 0.379 0.087 0.119 0.082 

DeepGOCNN 0.522 0.430 0.333 0.434 0.272 0.195 

TALE 0.519 0.564 0.298 0.502 0.518 0.198 

TransFun 0.558 0.576 0.355 0.517 0.532 0.289 

DeepGOPlus 0.559 0.615 0.427 0.472 0.535 0.286 

TALE+ 0.533 0.625 0.408 0.516 0.596 0.293 

TransFun+ 0.557 0.624 0.403 0.529 0.618 0.352 

 

3.5 Performance on proteins longer than 1022 residues   
Because TransFun and TransFun+ have to cut proteins longer than 1022 
residues into pieces for the ESM-1b model to generate the sequence 
embedding features, we evaluated them and the other methods on the 
proteins longer than 1022 residues in the new test dataset. There are 49, 
41 and 80 such proteins in CC, MF and BP respectively in the dataset. The 
results in Table 7 show that TransFun yields the best performance in terms 
of AUPR for all three GO function categories among the individual 
methods and yields the best performance in terms of Fmax, for MF and BP. 
TransFun+ gives the best performance for CC and BP in terms of AUPR 
and the best performance for BP in terms of Fmax. DeepGOPlus gives the 
best results for CC in terms of Fmax, and TALE+ gives the best 
performance for MF in terms of Fmax. Compared with the results on all the 
proteins in Table 4, the performance of all the methods on the long 
proteins is generally lower than that on all the proteins with some 
exceptions, indicating that it is harder to predict the function of long 
proteins.  
 
Table 7. The results on proteins longer than 1022 residues in the new test dataset.   

Green denotes the individual methods and blue the composite methods. 

Figure 3.  The precision-recall curves of the 8 methods on the new test dataset.  
The dot on the curves indicates where the maximum F score is achieved. The 
coverage is the percent proteins that a method makes predictions for. 
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Method Fmax AUPR 
CC MF BP CC MF BP 

Naive 0.493 0.305 0.299 0.331 0.115 0.184 
Diamond 0.560 0.583 0.427 0.060 0.093 0.086 
DeepGOCNN 0.551 0.478 0.329 0.478 0.299 0.209 
TALE 0.500 0.435 0.297 0.456 0.349 0.185 
TransFun 0.550 0.556 0.399 0.525 0.492 0.353 
DeepGOPlus 0.602 0.622 0.436 0.544 0.558 0.333 
TALE+ 0.549 0.675 0.407 0.498 0.614 0.305 
TransFun+ 0.564 0.593 0.443 0.563 0.610 0.396 

 
 
3.6. A case study of protein function prediction 

Table 8 reports top 20 GO terms of biological process (BP) 
predicted for a protein (UniProt ID: A0A5S9MMK5) (length: 443; a 
putative transcription factor involved in morphogenesis) by four 
individual methods: Naïve, DeepGOCNN, TALE and TransFun. 
DIAMONDscore did not predict any result for this protein. All the top 20 
GO terms predicted by TranFun are correct, while other methods made 
some incorrect predictions (red ones).    

 
Table 8.  The GO terms for protein A0A5S9MMK5 by Naïve, 
DeepGOCNN, TALE, and TransFun. Black color denotes correct 
predictions, while red color denotes incorrect predictions.  

METHOD Predicted GO TERMS 
Naive GO:1901576,GO:0032502,GO:0048856,GO:0034641 

GO:0006807,GO:0032501,GO:0046483,GO:0043170 

GO:0044237,GO:0065007,GO:0019222,GO:0008152 

GO:0044238,GO:0009987,GO:0050789,GO:1901564 

GO:0071704,GO:0009058,GO:0050794,GO:1901360 
DeepGOCNN GO:0003674,GO:0016020,GO:0034641,GO:0008150 

GO:0006807,GO:0006139,GO:0110165,GO:0010467 

GO:0043227,GO:0046483,GO:0043170,GO:0090304 

GO:0043231,GO:0044237,GO:0005634,GO:0008152 

GO:0044238,GO:0043226,GO:0009987,GO:0005622 

GO:0005575,GO:0071704,GO:0043229,GO:1901360 

TALE GO:0051252,GO:1903506 ,GO:0009889,GO:0031323 

GO:0008150,GO:0051171,GO:0048522,GO:0006355 

GO:0019219,GO:0080090,GO:0010556,GO:0060255 

GO:0031326,GO:0048518,GO:0065007,GO:2001141 

GO:0019222,GO:0009987,GO:2000112,GO:0010468 

TransFun GO:1901576,GO:0051252,GO:0018130,GO:1903506 

GO:0006139,GO:0006355,GO:0010467,GO:0097659 

GO:0060255,GO:1901362,GO:0090304,GO:0006351 

GO:0065007,GO:0016070,GO:0008152,GO:0009987 

GO:0010468,GO:0050789,GO:0034654,GO:0032774 

 

4 Conclusion and Future Work 
In this work, we developed TransFun for protein function prediction, 

using both protein structure and sequence information. TransFun uses 
transfer learning with a protein language model to extract sequence 
features and a graph representation to store structural features generated 
from AlphaFold predicted structures. The features are used by 

rotation/translation-equivariant graph neural networks to predict GO 
function terms for any protein. The method performs better than the 
sequence similarity-based and other deep learning methods on the two 
benchmark datasets. Moreover, TransFun can be combined with sequence 
similarity-based method to further improve prediction accuracy. In the 
future, we plan to use the multiple sequence alignment (MSA) of a target 
protein for the MSA-based language model (e.g., ESM-MSA) to generate 
extra embedding features for TransFun to see if they can further improve 
prediction accuracy.  Another challenging issue facing protein function 
prediction is the lower prediction accuracy for more specific GO terms 
(the nodes at the lower levels of the gene ontology directed acyclic graph) 
because these terms have much fewer proteins associated with them than 
more general GO terms. More machine learning techniques and data 
preparation techniques are needed to address this imbalance problem 
because accurately predicting more specific GO terms is more useful for 
biological research than more general GO terms.  
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