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Abstract 

 

 

Understanding the genetic basis of adaptive traits is one of the central goals of modern plant 

biology. Deciphering how phenotype maps to the genotype is a complex problem that requires 

answering multiple questions: Is the phenotype environmentally induced, or is it genetically 

controlled? What gene(s) underlie the phenotype? Are the gene(s) associated with other 

phenotypes which might impact its evolutionary potential? These questions can be answered 

using a combination of quantitative and population genetic approaches. In this thesis, I apply 

these approaches to two complex adaptive phenotypes -- leaf shape in Ipomoea batatas 

(sweetpotato) and herbicide resistance in Ipomoea purpurea (common morning glory) -- to 

identify putative genes and mechanisms contributing to phenotype. Further, I synthesize a 

framework for analyzing genetic correlations that underlie most complex traits. I show that leaf 

shape variation is extensive and largely under genetic control in sweetpotato, and likewise, 

identify genes putatively associated with leaf shape variation. I also show that although simple 

leaf shape descriptors are not environmentally controlled when considered together these can be 

influenced to a great extent by the environment. Next, using genome-wide resequencing, RNA-

Seq and functional tests I show that the detoxification mechanism underlies the polygenic 

herbicide resistance in the common morning glory. Using linkage analysis, I identify a role of 

intrerchromosomal linkage disequilibrium in maintaining the resistance alleles over generations. 

Moreover, I identify loci associated with the cost of resistance and show the potential role of 

genetic-hitchhiking in maintaining the cost. Lastly, I review the current methods available for 

studying the genetic basis of trait correlations, and highlight the pitfalls associated with such 

methods. I thus synthesize an analytical framework which can more precisely identify the genes 

and mechanisms underlying trait correlations. Together, my thesis identifies the genetic basis of 

adaptive phenotypes in the genus Ipomoea and thus narrows the gap between genotype and 

adaptive phenotypes.  



 
1 

Chapter 1 

 

Introduction 

 

 

Problem Statement 

One of the major goals of ecology and evolutionary biology is to understand how the genome 

shapes phenotype in natural populations. Phenotypes can be seen to be a result of a combination 

of evolutionary processes in some sense and can provide insights into the evolutionary dynamics 

that shape natural population. Thus, there is an increasing need to understand the mechanistic 

basis of phenotypes, especially for potentially adaptive phenotypes. Although we are starting to 

map the genes for crucial phenotypes in model species, much less is known about the 

mechanistic basis of complex phenotypes, especially in non-model species. In regard to this, 

questions that still need to be answered are -- Is the phenotype environmentally induced, or is it 

genetically controlled? What gene(s) underlie the phenotype? Are the gene(s) associated with 

other phenotypes which might impact its evolutionary potential? In my thesis, I answer these 

questions for two adaptive traits, leaf shape and herbicide resistance, in members of the genus 

Ipomoea using a combination of quantitative and population genetic approaches.  

 

Understanding the complexity of mapping phenotype to genotype 

Understanding how genotype maps to the phenotype is one of the most important challenges in 

modern plant biology. Expression of a phenotype in natural populations occurs due to a 

combination of neutral evolutionary processes (genetic drift, gene flow), natural selection, and 

environmentally induced plasticity (Endler, 1986). Plants display exceptional phenotypic 
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diversity, not just across species but also within species. This variability is very closely linked to 

the sessile nature of the plants, which requires the plants to quickly adapt to any changes in their 

biotic and abiotic environment. Thus, phenotypic diversity reflects the plants’ ability to adapt to 

environmental changes and is an important driver of ecological and evolutionary processes (Via 

& Lande, 1985; Hahn et al., 2019). As such, there is an increasing need for understanding the 

genetic basis and the molecular mechanism underlying the naturally occurring plant adaptive 

phenotypic traits.  

 

Phenotype is a result of both the genotype and the environment. Genotype has been shown to 

have a considerable influence on the phenotype (Mousseau & Roff, 1987; Lande & Shannon, 

1996; Anderson, 2012; van Boheemen & Hodgins, 2020). For instance, multiple plant traits like 

root and canopy architecture, floral morphology, and even susceptibility to various biotic and 

abiotic factors have been shown to be genetically controlled, and that these phenotypes have 

evolved via natural selection (Carvalho & Qualset, 1978; Baucom & Mauricio, 2004; Mertens et 

al., 2018; Colom & Baucom, 2020). Environment similarly has been shown to alter the 

phenotype, either directly or by imposing a selection pressure (Smith et al., 2011; Gratani, 2014; 

Couture et al., 2015; Henn et al., 2018; Arnold et al., 2019). For example, multiple invasive 

species have been shown to display extensive phenotypic variations in new environments, which 

allows the species to establish themselves in new heterogeneous environments (Pohlman et al., 

2005; Davidson et al., 2011; Colautti & Lau, 2015). Additionally, once an invasive species 

establishes itself successfully in a new environment, selection on phenotypes favoring higher 

fitness can occur, given genetic diversity exists in the population (Murren et al., 2005; Lavergne 

& Molofsky, 2007; Barrett, 2015). Notably, genotype and the environment do not exclusively 

influence the phenotype but work in concert.  

 

Disentangling the proportion of phenotypic variance that is attributable to the environment vs 

genetic factors helps in predicting the evolvability of the phenotype (Via & Lande, 1985), which 

is of special interest to breeders to determine whether a phenotype of interest can be selected 

upon, and even to conservation biologists to understand how plants will react to changing 

environments. To understand the importance of a phenotype and its response to selection 

pressures, we must understand how the genotype and the environment independently, and 
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interactively impact the phenotype. Moreover, identifying genes and gene networks associated 

with phenotypes is also equally important since it provides insights into the genetic and 

molecular basis of the phenotypic variations. Furthermore, understanding the genetic basis of 

trait variation can give us insights into the functional importance of the trait and the 

physiological processes responsible for the species’ growth in a range of environmental 

conditions. This can further help us understand the limits to which a population can respond to a 

novel condition via evolutionary shifts (Ackerly et al., 2000) and help us predict its distribution 

patterns under future conditions (Aitken et al., 2008; Hancock et al., 2011).  

 

Importantly, identifying the genetic underpinnings of a phenotype can shed light on potential 

evolutionary constraints associated with the phenotype. Most adaptive plant traits are complex 

and are controlled by multiple genes, one or more of which might be pleiotropic and/or in 

linkage with neighboring genes. This has important evolutionary consequences -- the presence of 

either pleiotropy or linkage can influence an unrelated phenotype and thus can limit the evolution 

of the phenotype of interest. For example, negative genetic interactions (like the traits involved 

in allocation trade-offs) can impose a constraint on trait evolution (Via & Lande, 1985; Barton & 

Turelli, 1989). Understanding the genetic architecture of a phenotype is particularly important 

for breeding practices since negative interactions between traits can impose a constraint in 

achieving the maximum potential of each trait, and thus limit the genetic improvement of the 

trait (Falconer, 1996), (Bandillo et al., 2015). In contrast, positive genetic interactions among 

traits related to adaptations might increase evolvability by reducing the dimensionality of genetic 

variation (Wagner, 1988; Orr, 2000). Differentiating between pleiotropy and linkage is crucial 

since these have different evolutionary fates -- a constraint due to pleiotropy is expected to 

persist over multiple generations whereas one caused by linkage is expected to be more transient 

due to recombination breaking down linkage.  

 

We thus see that mapping a phenotype to its genotype is a complex problem that requires 

answering multiple questions -- Is the phenotype genetically controlled? What are the gene(s) 

influencing the phenotype? Are one or more of these genes associated with other phenotypic 

traits either through linkage or pleiotropy? 
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Mapping phenotype to genotype: Quantitative and Population Genetics Approaches 

The first step towards understanding the mechanistic basis of a phenotype is to estimate the 

relative contribution of genotype and environment in controlling the phenotype. In other words, 

we need to estimate the extent to which a phenotype is genetically determined, commonly 

referred to as the broad-sense heritability of the trait. 

 

Classically, this involves estimating the degree of resemblance between relatives in a particular 

environment (Nyquist & Baker, 1991; Falconer & Mackay, 2009). Thus, the choice of family 

design is very important. For selfing plants, clonal and inbred crops, a large number of 

genetically identical individuals allows for true replication of a genotype in and across multiple 

environments, allowing for a more accurate estimation of heritability. For other species wherein 

cloning or inbreeding are not possible, multiple choice of family designs exists -- parent-

offspring, half-sib, full-sib, mixed family design, etc. (Rice & Borecki, 2001)for comprehensive 

reviews, see (Rice & Borecki, 2001; Visscher & Goddard, 2015). For example, multiple studies 

have employed parent-offspring regression to estimate the contribution of genetics in 

determining the phenotype (Vogel et al., 1980; Åkesson et al., 2008; Sanogo et al., 2019). 

Alternatively, family means or variance component methods (which partition the phenotypic 

variance into genetic and environmental variance) can be used for other family designs (Ågren & 

Schemske, 1992; Ritland & Ritland, 1996; Campbell, 1996). Thus, multiple choice of family 

designs and methods exists for estimating the extent to which a phenotype is genetically 

determined. An important consideration for designing experiments though must be the choice of 

the environment -- these should almost always be conducted in the field since these represent the 

true environment the plants or crops are exposed to. Multiple studies have shown that heritability 

is overestimated when performed in a controlled environment (eg. greenhouse) as compared to 

the field (Conner et al., 2003; Winn, 2004). Additionally, heritability should be estimated in 

multiple environments for adaptive traits to capture its robustness and potential for selection. 

 

Understanding the genetic basis of an adaptive phenotype is a complex process. Studies have 

heavily relied on gene expression levels and genetic markers to find an association with the 

phenotype of interest. For easy to breed/cross species and/or species with genomic resources, the 
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most commonly used method for identifying genes underlying an adaptive phenotype is QTL 

(Quantitative Trait Loci) mapping. QTL mapping is based on the intuition that the loci 

controlling the phenotype will be in linkage to markers nearby, which can be identified by a 

statistical association test. The earliest studies of QTL in plants date back to the 1980s (Stuber et 

al., 1987; Paterson et al., 1988). More and more studies have employed QTL mapping to study 

loci underlying important plant phenotypic traits (reviewed (Nguyen et al., 2019). Some 

examples include fruit characteristics in tomato (Paterson et al., 1988), flowering time rice (Hori 

et al., 2016), grain yield and root characteristics in maize (Edwards et al., 1992; Aslam et al., 

2015), and disease resistance traits in multiple crop species (Young, 1996). The success of a 

QTL study is determined by the number of segregating individual and polymorphic markers -- a 

higher number of markers lead to higher accuracy. The cost and time required for a sufficient 

number of individuals and markers might thus be a limitation to this method (Jamann et al., 

2015). Additionally, QTL has limitations with respect to species wherein a segregating 

population cannot be created via crossing, and even in the case of polyploid species with 

genomic resources unavailable. In such cases, a way of gaining insights into the genes related to 

the phenotype is to use a transcriptomics survey. Essentially, this involves identifying transcripts 

showing variable expression patterns in individuals representing the two ends of the spectrum of 

phenotypes (reviewed in (Wang et al., 2009). Multiple studies, using this method, have identified 

genes related to important agronomic traits like stress response genes (Chen & Zhu, 2004), plant 

height (Hu et al., 2018; Howlader et al., 2020), and various leaf phenotypic traits (Kim et al., 

2002, 2020; Kimura et al., 2008; Chitwood & Sinha, 2016). Thus, depending on the species, 

either of these commonly used quantitative and population genetic methods can be used to 

identify genes related to the phenotype. 

 

With the advent of sequencing technologies and the lower costs of sequencing, studies have 

moved to deep whole-genome scans to identify genes associated with complex phenotypes. 

These broadly fall into two categories -- a selection scan and a genome-wide association scan 

(GWAS). Over the last decade alone, more than 1000 studies have employed GWAS in crops to 

decode the phenotype-genotype associations (Liu & Yan, 2019). Like QTL mapping, GWAS 

also utilizes linkage between genes to identify the genes associated with the phenotype, but 

unlike QTL, GWAS does not require the individuals to be related. GWAS has been applied to a 



 
6 

plethora of plant traits like various agronomic, morphological traits, response to biotic and 

abiotic stress, and biochemical/nutritional traits (for comprehensive reviews, see (Liu & Yan, 

2019; Gupta et al., 2019). Although GWAS has a high potential for identifying genes associated 

with complex phenotypes, it has significant limitations, especially issues related to population 

structure correlation and low-frequency alleles causing false-positives (reviewed in (Liu & Yan, 

2019; Tam et al., 2019). In comparison, a selection scan aims to detect selection signatures that 

are left behind in the nucleotide sequences after a selection sweep has occurred. This method 

thus is more applicable and useful for detecting loci leading to adaptations. Multiple studies have 

used a variety of selection statistics that have been developed to identify signatures of selection 

and adaptation (Chapman et al., 2008; Beissinger et al., 2014; Gould & Stinchcombe, 2017; He 

et al., 2017; Van Etten et al., 2020; Derbyshire, 2020). In some cases though, some selection 

statistics might be compounded by the presence of background noises and/or neutral processes, 

and thus to sieve out false-positives, studies have suggested the use of multiple selection 

statistics together. To this effect, composite measures have been developed (Lotterhos et al., 

2017). Thus, a choice of methods exists for decoding phenotype to genotype.  

 

Study System 

Ipomoea is one of the largest genera in the flowering plant family Convolvulaceae, as it contains 

more than 600-700 species that are found throughout the tropical and subtropical regions of the 

world. In my dissertation, I examined questions using Ipomoea batatas (cultivated sweetpotato), 

and Ipomoea purpurea (common morning glory).  

 

Sweetpotato is one of the most widely cultivated staple crops worldwide (Khoury et al., 2015). It 

is thought to have been domesticated at least 5000 years ago in Central America or South 

America. Like many crops, sweetpotato is a polyploid- specifically a hexaploid with 90 

chromosomes (2n=6X=90) with an estimated genome size of 4.4 Gb (Ozias-akins & Jarret, 

1994). Sweetpotato displays striking morphological variation in leaf shape across its ~6000 

documented varieties (Huaman, 1988), but very few studies have examined the extensive leaf 

shape diversity in this species (Huaman, 1988; Hue et al., 2012; Rosero et al., 2019). Few studies 

have examined leaf shape phenotypes in sweetpotato, but these are limited to a few cultivars 
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and/or present traditional measures of leaf shape traits. Additionally, the genetic or 

transcriptomic basis of leaf shape variation in this species has yet to be considered. 

 

Ipomoea purpurea is a common agricultural weed in the Southeast and Midwest United States. 

Populations of this species, which have consistently been exposed to glyphosate-based herbicides 

since the late 1990s (Kuester et al., 2015, 2016), exhibit varying levels of herbicide resistance, 

both within- and among-population -- while some populations of this species across its range in 

the southeastern and Midwest United States exhibit high survival following herbicide application 

(high resistance), other populations exhibit low survival (high susceptibility) (Kuester et al., 

2015). Additionally, there is a fitness cost associated with this resistance: resistant populations 

show lower germination and deteriorated seed quality compared to susceptible populations (Van 

Etten et al., 2016). Although previous work in this species has indicated the potential role of 

detoxification underlying this resistance (Van Etten et al., 2020), this work relied on low-

coverage sequencing, and so we don't have a full picture of the loci involved in the resistance, 

and especially in the cost associated with the resistance. 

 

Thus, the Ipomoea genus offers a unique opportunity to study phenotype to genotype in diverse 

species -- a crop that is hexaploid and an invasive diploid species.  

 

Thesis overview 

In chapter 2, I perform a multi-level analysis of leaf shape using diverse accessions of 

sweetpotato (Ipomoea batatas) to uncover the role of genetics, environment, and GxE on this 

important trait. For this, I use a suite of different methods -- morphometric analyses to identify 

the extent of variation, transcriptomic survey to identify gene expression changes associated with 

leaf shape, and a field study in two geographically separate common gardens to examine the role 

of genetics and environment on leaf shape. I show that extensive leaf shape variation exists 

within I. batatas and identify promising candidate genes underlying this variation. Interestingly, 

when considering traditional measures, I find that genetic factors are largely responsible for most 

of the leaf shape variation, but that the environment is highly influential when using more 

quantitative measures via leaf outlines. 
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In chapter 3, I focus on another important adaptive trait -- herbicide resistance in the weed 

common morning glory (Ipomoea purpurea). I perform a multi-level analysis to uncover putative 

loci involved in nontarget herbicide resistance (NTSR) and cost associated with NTSR, and to 

examine evolutionary forces underlying the maintenance of resistance in natural populations. I 

find loci involved in herbicide detoxification, and stress sensing to be under selection, and 

confirm that detoxification is responsible for glyphosate resistance using a functional assay. 

Furthermore, I find the role of interchromosomal linkage disequilibrium (ILD) in potentially 

mediating resistance through generations. Additionally, by combining the selection screen, 

differential expression, and LD analysis, I identify putative fitness cost loci that are strongly 

linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost in 

this species. 

 

In chapter 4, inspired by the finding of potential fitness cost loci in linkage with resistance loci, I 

synthesize a conceptual review, focusing on understanding the mechanistic basis of trait 

correlations required to predict the long-term evolutionary trajectory of the correlated traits. I 

review the phenotypic and marker-assisted methods available in the literature to assess genetic 

correlation and outline the analytical strategies that have been implemented for teasing apart the 

underlying mechanistic basis (pleiotropy vs linkage) of genetic trait correlations. I then discuss 

the pitfalls associated with the currently available methods and suggest strategies that can avoid 

and address some of these issues. Next, I outline a path for integrating knowledge from 

phenotypic family-level data, genetic marker data (like GWAS, omics-QTL), and molecular 

validation tools, to shed light on the genetic architecture of trait correlations. 

 

Finally, in Chapter 5, I synthesize the outcomes of my three chapters and discuss how future 

work should be directed to address the remaining gaps and expand our current knowledge in the 

field of ecology and evolutionary genetics. Additionally, in the appendices, I include a series of 

supplemental figures and tables accompanying each chapter.  
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Chapter 2 

 

Assessing the Remarkable Morphological Diversity and Transcriptomic Basis of Leaf 

Shape in Ipomoea batatas (sweetpotato)1 

 

 

Abstract 

Leaf shape, a spectacularly diverse plant trait, varies across taxonomic levels, geography, and in 

response to environmental differences. However, comprehensive intraspecific analyses of leaf 

shape variation across variable environments is surprisingly absent. Here, we performed a multi-

level analysis of leaf shape using diverse accessions of sweetpotato (Ipomoea batatas), and 

uncovered the role of genetics, environment, and GxE on this important trait. We examined leaf 

shape using a variety of morphometric analyses and complement this with a transcriptomic 

survey to identify gene expression changes associated with shape variation. Additionally, we 

examined the role of genetics and environment on leaf shape by performing field studies in two 

geographically separate common gardens. We showed that extensive leaf shape variation exists 

within I. batatas and identified promising candidate genes underlying this variation. 

Interestingly, when considering traditional measures, we found that genetic factors are largely 

responsible for most of leaf shape variation, but that the environment is highly influential when 

using more quantitative measures via leaf outlines. This extensive and multi-level examination of 

leaf shape shows an important role of genetics underlying a potentially important agronomic 

 
1 This chapter has been published as Gupta S, Rosenthal DM, Stinchcombe JR, Baucom RS. 2019. The remarkable 

morphological diversity of leaf shape in sweetpotato (Ipomoea batatas): the influence of genetics, environment, and G×E. The 
New phytologist. 
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trait, and highlights that the environment can be a strong influence when using more quantitative 

measures of leaf shape.  

 

Introduction 

Leaf shape varies spectacularly among plant species at multiple taxonomic levels (Klein et al., 

2017; Shi et al., 2019), across geography (Wyatt & Antonovics, 1981; Gurevitch, 1988), and in 

response to environmental differences (Andersson, 1991; Jones, 1995; McDonald et al., 2003). 

Leaves can vary with respect to their degree of dissection, length-to-width ratio, venation 

patterning, prominence of tips and petiolar sinus, or any combinations of the above, meaning that 

leaf shape variation across species is multifaceted and complex. Leaf shape diversity is also 

present within species (Hilu, 1983). For example, accessions of grapevine and cotton vary with 

respect to leaf complexity whereas lineages within tomato and apple show ample variation in the 

length-to-width ratio of leaves (Chitwood et al., 2013; Andres et al., 2016; Klein et al., 2017; 

Migicovsky et al., 2017). Although a large number of species exhibit variation in leaf shape, 

examinations within species are often limited to only a few accessions, with a few notable 

exceptions (Conesa et al., 2012; Chitwood et al., 2014a, b). Moreover, these studies often focus 

on circularity and length-to-width ratio, which are the most common leaf shape descriptors. 

Thus, for most species, truly quantitative analyses of the diversity of leaf shape variation within 

species remains largely unexamined. 

 

Leaf shape variation is regulated by genetics, the environment, and the interaction of genes and 

environment (GxE). Although the genetic and trancriptomic basis underlying leaf shape diversity 

has been uncovered in only a small number of species (i.e., tomato, Arabidopsis, cotton, and a 

few others; Kim et al., 2002; Kimura et al., 2008; Vlad et al., 2014; Ichihashi et al., 2014; 

Andres et al., 2016; Chitwood & Sinha, 2016), there are many examples showing the influence 

of different environments on leaf shape (McDonald et al., 2003; Zwieniecki et al., 2004; 

Hopkins et al., 2008; Royer et al., 2009; Nicotra et al., 2011; Royer, 2012; Campitelli & 

Stinchcombe, 2013; Glennon & Cron, 2015). For example, submerged leaves of aquatic plants 

are often highly dissected as compared to their aerial counterparts (Arber, 2010) and leaves 
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growing in colder environments tend to be more complex than similar ones growing in warmer 

environments (Huff et al., 2003; Royer et al., 2005). Moreover, the environment can interact 

with genes to further modulate leaf shape. For instance, Nakayama and colleagues (2014) found 

that changes in temperature leads to abrupt changes in KNOX1 (KNOTTED1-LIKE 

HOMOEOBOX1) activity, a key regulator of circularity in multiple species, thus altering leaf 

complexity. Although we are beginning to understand how genetics, environment, and GxE 

separately influence aspects of leaf shape, few studies have partitioned the effect of genetics 

versus the environment on leaf shape variation, and most examinations are limited to only one 

environment, such that the role of GxE on leaf shape is often not considered within species. 

 

Leaf shape is most commonly quantified using the ‘traditional’ leaf shape traits -- circularity (a 

measure of leaf dissection, or ‘lobedness’), aspect ratio (the length-to-width ratio of a leaf) and 

solidity (the relation of the area and convex hull). These traditional morphometric parameters 

have previously been used to quantity leaf shape in diverse species, such as grapes (Chitwood et 

al., 2014b), tomato (Chitwood et al., 2015) and sweetpotato (Rosero et al., 2019), among others. 

Although these traits are linked to important yield traits in crops (Chitwood et al., 2013; Vuolo et 

al., 2016; Chitwood & Otoni, 2017; Klein et al., 2017; Rowland et al., 2019), and are important 

for understanding the broader aspects of plant adaptation to environment, they capture only a few 

components of leaf shape variation. A more comprehensive quantification of leaf shape can be 

captured with Elliptical Fourier Descriptor (EFD) analyses, which converts leaf outlines to 

harmonic coefficients allowing for Fourier analyses (Chitwood & Sinha, 2016). This approach 

captures extensive leaf shape variation due to both symmetry and asymmetry of the leaf; some 

examples include shape differences associated with the depth of the petiolar sinus, the 

prominence of the leaf tip, and the positioning of the lobes. This approach has been applied to a 

handful of species like tomatoes, passiflora, and grape (Chitwood et al., 2013; Chitwood & 

Otoni, 2017; Klein et al., 2017), where it was shown that leaf shape based on EFD analysis is 

highly heritable. Thus, traditional measures along with consideration of leaf outlines holds 

greater power to comprehensively measure and characterize leaf shape, which may yield 

important insights about the genetic basis of leaf shape variation. Interestingly, while leaf shape 

based on EFD analysis is heritable, no studies have yet examined the genetic or transcriptomic 

basis of leaf shape based on leaf outlines. 
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Ipomoea batatas, the sweetpotato, is an important staple root crop worldwide (Khoury et al., 

2015), as it produces the highest amount of edible energy per hectare (Khoury et al., 2015) and 

also provides an important source of nutrients in the form of vitamin A, calcium, and iron (Kays 

& Kays, 1998). Sweetpotato displays striking morphological variation in leaf shape across its 

~6000 documented varieties (Huaman, 1987), but very few studies have examined the extensive 

leaf shape diversity in this species (Huaman, 1987; Hue et al., 2012; Rosero et al., 2019). Studies 

that have examined leaf shape phenotypes in sweetpotato are limited to a few cultivars and/or 

present traditional measures of leaf shape traits. Additionally, the genetic or transcriptomic basis 

of leaf shape variation in this species has yet to be considered. The vast unexamined diversity of 

leaf shape in this species, along with its role as a staple food crop worldwide makes I. batatas an 

ideal study system to investigate leaf shape diversity at the species level and how this diversity is 

influenced by the interplay between genetics and environment. 

 

Here, we examine the extensive leaf shape variation within accessions of I. batatas, and uncover 

the role of genetics, environment and GxE in influencing leaf shape traits. We specifically ask: 

(1) How diverse is leaf shape at a species-wide level? (2) what are the candidate genes associated 

with leaf shape (extending beyond the traditional shape descriptors)? and (3) to what degree does 

the environment and GxE influence leaf shape traits? We show that extensive natural variation 

exists in leaf shape within this species and that most of this variation is largely controlled by 

genetic factors, with a low proportion of variance in leaf shape attributable to environmental 

differences. We also identified promising candidate genes that underlie broad differences in 

multiple leaf shape traits. The results of our work fill critical gaps in current knowledge of leaf 

shape evolution by expanding analysis beyond that of the traditional measures of leaf shape and 

by using many distinct lineages of the species. We unite this with the transcriptomic basis of 

these traits along with a multiple-environment assessment of leaf shape variation in the field. 

Thus, this work allows us to comprehensively assess leaf shape in this agronomically important 

species and partition the role of genetics, environment, and GxE on leaf shape within this 

species. 
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Materials and Methods 

Leaf shape variation within I. batatas 

We ordered vegetative slips for 68 publicly available accessions of sweetpotato from USDA and 

online resources. The location of origin of 68 accessions is represented in Figure 2-1 (Appendix 

A, Table S2-1). The accessions represent the majority of the genetic variation in the species; we 

identified three of the four population structure clusters among our chosen accessions as per a 

recent study (Wadl et al., 2018). We grew slips at the UM Matthaei Botanical Garden under 

standardized growth conditions (16 hrs light/8 hrs night cycle) for approximately six months, at 

which time we sampled 4-6 mature leaves (third-sixth mature leaves from the beginning of the 

vine to control for age and exposure to light) of 57 randomly chosen accessions and scanned 

them for leaf shape analyses.  

 

We used the scanned images to extract leaf shape trait values using custom macros in ImageJ 

(Abràmoff et al., 2004). Briefly, we converted leaves into binary images and then used outlines 

from these binary images to measure circularity, aspect ratio and solidity, each capturing a 

distinct aspect of leaf shape (Li et al., 2018). Circularity, measured as 4𝜋 !"#!
$#"%&#'#"!

, is 

influenced by serrations and lobing. Aspect ratio, in comparison, is measured as the ratio of the 

major axis to the minor axis of the best fitted ellipse, and is influenced by leaf length and width. 

Lastly, solidity measured as	 !"#!
()*+#,	./00

, is sensitive to leaves with deep lobes, or with a distinct 

petiole, and can be used to distinguish leaves lacking such structures. Solidity, unlike circularity, 

is not very sensitive to serrations and minor lobings, since the convex hull remains largely 

unaffected. 

 

For a more global analysis of leaf shape via Elliptical Fourier Descriptor (EFDs), we used the 

program SHAPE (Iwata & Ukai, 2002) as described in (Chitwood et al., 2014b). EFDs capture 

variation in shape represented by the outline which is difficult to categorize via traditional shape 

descriptors. From the EFD coefficients obtained, we used coefficients a and d only, thus 

analyzing symmetric variation in leaf shape. Principal component analysis (PCA) was performed 

on the EFD coefficients to identify shape features contributing to leaf morphological variation 

(referred to as EFD symPCs below). We calculated the correlation matrices using the rcorr() 
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function of the Hmisc package version 4.0-3 (Harrell et al., 2017) with multiple test adjustments 

using the p.adjust() function in R.  

 

RNA-Seq library construction and sequencing 

We sequenced and analyzed transcriptomes of 19 individuals of I. batatas to examine gene 

expression differences associated with leaf shape variation associated with circularity, aspect 

ratio, and EFD symPCs to obtain an initial set of candidate genes underlying these traits. We 

selected greenhouse-grown accessions with differing leaf shape trait values (Appendix A, Figure 

S2-1). Since high aspect ratio represents both longitudinally longer or latitudinally broader leaf 

shape phenotypes, we chose to only examine individuals that had high aspect ratio due to 

latitudinal elongation. We chose multiple accessions to assess each leaf shape trait; eleven for 

circularity (six entire, five lobed), eight for aspect ratio (four high and low AR, each), 6 

individuals for EFD symPC1 (three high and three low) and four accessions each for EFD 

symPC2 and EFD symPC3 (two high and two low) (Appendix A, Figure S2-1); EFD symPC4 

was not considered for differential expression analysis. 

 

We used three to five leaves that were in P4-P6 stage of growth (fourth to sixth youngest 

primordium), from multiple branches of each individual accession for RNA extractions, and 

combined replicate leaves per individual to increase the depth of the transcriptome. We sampled 

all individuals on the same day within 1 hour to reduce variation due to developmental stage 

and/or time of collection. We froze samples in liquid nitrogen prior to preserving them at -80o for 

further processing. We performed RNA extraction using Qiagen RNeasy Plant mini kit with the 

optional DNase digestion step, and constructed libraries using the TruSeq Stranded mRNA 

Sample Preparation protocol (LS protocol). After barcoding, we bulked all libraries and 

performed one lane of Illumina HiSeq2500 sequencing. 

 

RNA-Seq data processing and transcriptome analysis 

An overview of our RNA-Seq data processing and transcriptome analysis is given in Figure 2-2, 

with detailed information presented in Method S2-1 (Appendix A). 

Differential gene expression--We mapped reads from all 19 individuals to the de novo assembled 

transcriptome using BWA-MEM v0.7.15 (Li, 2013) and estimated read counts for uniquely 
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mapped reads using samtools v1.9 (Li et al., 2009). We then used read counts to filter out lowly 

expressed transcripts using the Bioconductor package edgeR version 3.18.1 (Robinson et al., 

2010) such that transcripts were retained only if they had greater than 0.5 counts-per-million in at 

least two samples. We then normalized libraries in edgeR (using the trimmed mean of M-values 

method) followed by differential gene expression analysis using classic pairwise comparison of 

edgeR version 3.18.1. We extracted the significance of differentially expressed transcripts 

(DETs) with FDR <= 0.05. 

 

Field experiment 

We performed a field experiment to determine the extent to which genetics, the environment, and 

GxE interactions influence leaf shape traits. We generated replicate individuals by planting 5 cm 

cuttings of the stem of each accession in 4-inch pots, randomly positioned on a mist bench at the 

Matthaei Botanical Gardens. During the first week of June, we planted three to seven replicates 

of each of the 68 accessions in two common gardens--one located at the Matthaei Botanical 

Gardens in Ann Arbor, MI (42.18° N, 83.39° W), and the other at the Ohio University Student 

Farm, West State Street Research Site in Athens, OH (40.46° N, 81.55° W). Replicates were 

planted in either three (MI) or seven (OH) blocks in a completely randomized block design with 

14-inch spacing between individuals. Blocks were kept relatively weed free but were otherwise 

allowed to grow undisturbed. We randomly sampled 2-5 mature leaves from each individual in 

the first week of October, prior to the first frost, and scanned them for leaf shape analyses as 

explained before. 

 

Data analysis--We first examined the potential for variation in leaf shape due to environmental 

differences (i.e. variation due to being grown in MI or OH) by performing an ANOVA. To 

normalize leaf shape traits, we used the function TransformTukey from rcompanion version 

2.0.0 (Mangiafico, 2018). TransformTukey is a power transformation based on Tukey’s ladder of 

Powers, which loops through multiple powers and selects the one that normalizes the data most. 

These normalized leaf shape traits were then used as dependent variables and accession, garden, 

block effects and an interaction term of accession and garden as independent variables in the 

following fixed-effects model: 
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 (Trait ~ Accession + garden + block + Accession:garden). 

The term accession represents the genetic component, garden represents variation due to 

environment (plasticity), Accession:garden represents the GxE component and the block effect 

captures microenvironmental variation (and was nested within each garden). To quantify the 

relative effects of each of these variables on leaf shape, we calculated eta squared (η2) as a 

measure of the magnitude of effect size using the Bioconductor package lsr version 0.5 (Navarro, 

2013). Eta squared for an effect is measured as SSeffect/SStotal, where SSeffect is the sum of squares 

of the effect of interest and SStotal is the total sum of squares of all the effects, including 

interactions. In other words, it is a measure of the proportion of variance in the dependent 

variable associated with independent variable and is one of the most commonly reported 

estimates of effect size for ANOVA (Levine & Hullett, 2002; Ialongo, 2016). Further, we 

calculated broad sense heritabilities of leaf shape traits to determine the extent to which traits are 

genetically controlled within each environment. Broad sense heritability was calculated using 

linear mixed modeling with the Bioconductor package sommer version 3.4 (Covarrubias-

Pazaran, 2016) based on the phenotypic data collected from the two fields. The model used was 

Trait~1, random=~Accession + block + Accession:block, rcov= ~units 

Variance components from the model were used to calculate the broad-sense heritability (H2) 

using the formula: 

𝐻1 =
𝑉2 +	𝑉# +	𝑉2,# +	𝑉"

𝑉2
 

where Vg is the genotype variance, Ve is the environmental variance due to the blocks, Vgxe is the 

variance associated with Vgxe (accession:block), and Vr is the residual variance. 

 

Results 

Leaf shape variation among accessions 

We found wide variation in leaf traits across 57 I. batatas accessions (Table 2-1). Among the 

three traditional traits examined, circularity is most variable with a phenotypic coefficient of 

variation (PCV; (standard deviation(x)/mean(x))*100; where x is the trait of interest) of 22.61% 
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while aspect ratio is least variable with a narrow distribution and PCV of 4.76%. Figure 2-3 

shows the phenotypic diversity with respect to two leaf traits, circularity and aspect ratio (AR). 

Of our 57 accessions, 10 exhibit low circularity (defined as circularity < 0.50). PI 599387, for 

example, exhibited leaves that are very deeply lobed and thus has a low circularity (0.09) value. 

In contrast, PI 566647 has no serrations or lobing (entire margins) and thus exhibits high 

circularity (0.71; Figure 2-3). Additionally, we found 22 of 57 accessions to exhibit high aspect 

ratio (AR > 1.11). For example, PI 531134 (AR = 1.03) has almost equal values of major and 

minor axis and thus a low aspect ratio value. In contrast, the leaves of PI 208886 (AR = 1.268) 

are much wider, i.e., a larger major to minor axis, and thus has high aspect ratio value. Most 

often this increase in AR in sweetpotato manifests itself with increase leaf width (eg. PI 566646, 

PI 208886) relative to length (eg. PI 634379). Further, although solidity values range from 0.44-

0.95, only 5 accessions had solidity values less than 0.7 (PCV = 11.85%). The lack of low 

solidity values indicates that only a few accessions have deeply lobed leaves (eg. PI 599387, 

solidity = 0.44), in contrast to accessions with slightly lobed leaved (eg. PI 566630, solidity = 

0.76). 

 

We performed an EFD analysis on leaf outlines to get a more global estimation of leaf shape 

variation (Figure 2-4). In total, we processed 292 leaves from 57 accessions to identify leaf shape 

traits that explain symmetrical shape variation in sweetpotato. Low symPC1 values describe 

leaves with deep lobing, prominent tip and shallow petiolar sinus (PI 573318) whereas high 

symPC1 values explain non-lobed leaves with flattened leaf tips and enclosed petiolar sinus (PI 

566646). symPC2 explains variation in leaf shape due to differences in breadth and lobing of the 

leaf (low symPC2 values describe broad leaves with two lobes whereas high symPC2 values 

depicts narrow leaves with no lobes). symPC3 primarily captures leaf shape variation due to the 

depth of petiolar sinus (low symPC3 values describe leaves with highly enclosed petiolar sinus 

as compared to high symPC3 eigenleaves which have flattened sinus). Lastly, symPC4 

represents variation in leaf shape attributed to the angle of lobe tips -- low symPC4 eigenleaves 

have lobes with a high obtuse angle (almost 160º) whereas high symPC4 eigenleaves have lobes 

with a lower obtuse angle (almost 125º). The four symPC components together explain 87.79% 

of total variance relating to symmetrical leaf shape variance in sweetpotato. 
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Further, we calculated correlation matrices for traditional shape descriptors and EFD symPCs to 

determine if they capture different aspects of leaf shape (Appendix A, Figure S2-2). We found 

that symPC1 is correlated with circularity (r = 0.20; P = 0.03) and solidity (r = 0.20; P = 0.02), 

which is expected as symPC1 partially captures shape differences due to lobing. Additionally, 

circularity was highly correlated with solidity (r = 0.96; P < 0.001). This is not surprising as 

circularity is a measure of serrations and lobing whereas solidity is a measure of deep lobing; 

leaves having deep lobes (and lacking serrations) will thus have similar values of circularity and 

solidity. 

 

Sequencing and de novo assembly of I. batatas transcriptome 

We performed a transcriptomic survey to identify gene expression changes associated with the 

leaf shape traits described above. For our analyses of the transcriptome, Illumina HiSeq2500 

returned a total of 266 million (125bp) paired-end sequence reads; on average, each individual 

had 14 million (M) reads (GEO Submission ID-GSE128065) which was used to construct a de-

novo transcriptome assembly (sequence statistics are presented in Table 2-2). The results from 

BUSCO (Simão et al., 2015) indicate that the de novo transcriptome assembly is of high quality 

with 91.32% (1315/1440) complete genes found (single copy genes ~87%) of which only 4.51% 

were duplicates. Additionally, only 6.32% of genes were missing from the assembled 

transcriptome. Thus, our sequencing and assembly strategy produced a relatively complete 

transcriptome. Using blastx, 24,565 transcripts were annotated by the functional description of 

their top 20 hits. The transcriptome is available at Transcriptome Shotgun Assembly Database 

hosted by NCBI (TSA accession # GHHM01000000). 

 

Identification and functional annotation of differentially expressed transcripts (DETs) 

As a first step towards understanding the genetic control of leaf shape, we identified gene 

expression changes associated with multiple leaf shape traits -- circularity, aspect ratio 

(latitudinal expansion) and the symPCs obtained from the EFD analysis. We did not consider 

solidity and symPC4 due to their high correlation to circularity and low level of variation 

captured, respectively. On average, we found that 11 million unique paired-end reads per 

individual (range 7.66M - 14.23M) mapped back to the reference transcriptome (net mapping 

efficiency of 89.65% with the paired-end high-quality reads). This indicates that we had 
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sufficient read depth (>10M) to continue with our differential expression analysis (as shown by 

Wang et al., 2011). 

 

We uncovered 530 DETs associated with our leaf shape traits (Figure 2-5; Appendix A, Table S2-

2). Specifically, we found 47 DETs associated with circularity, and 158 DETs associated with 

aspect ratio. For the symPCs examined, we found 121 DETs associated with symPC1, 148 DETs 

with symPC2 and 56 DETs with symPC3. Functional annotation of these DETs uncovered 

putative leaf shape genes (Table 2-3). As an example, for circularity, FAR1-related sequence 5 

(or FRS5), a putative transcription factor involved in regulating light control of development, is 

differentially regulated with log fold-change of 5.77. Among other DETs for circularity, we 

found genes that are involved in regulating cell proliferation and organ morphogenesis 

(EXO70A1-like and extra-large guanine nucleotide-binding protein) and could be involved in 

regulating leaf dissection.  

 

Among the 158 transcripts differentially expressed for AR (broad leaves vs rounder leaves), two 

genes have been shown in literature to alter the longitudinal vs latitudinal expansion of the 

leaves. These are CHS (chalcone synthase), an enzyme involved in the production of chalcones 

involved in flavonoid biosynthesis, and feruloyl CoA 6′-hydroxylase which is involved in 

scopoletin biosynthesis and causes post-harvest physiological deterioration in cassava (Liu et al., 

2017). Finally, we also found LIGHT-DEPENDENT SHORT HYPOCOTYL 10 (LSH10), to be 

significantly downregulated (log-fold change of -1.85; P-value < 0.001). 

 

Individuals with extreme values of symPC1, a trait differentiating leaf shape based on lobing and 

prominence of tips and petiolar sinus, were also analyzed for DETs. Of the 121 transcripts 

showing differential expression, two genes had interesting functional annotations. We found a 

homeobox gene (HAT22) to be upregulated in individuals with high symPC1 (leaves lacking 

lobes with flattened leaf tips and enclosed petiolar sinus), with a log-fold change of 1.56. We 

also found another member of the FRF1 family -- FAR1-related sequence 7 (or FRS7) -- to be 

upregulated in the high symPC1 individuals, like in the case of circularity. 
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We found a total of 148 DETs for symPC2, which explains variation in leaf shape due to the 

differences in the broadness and lobing of the leaf. Again, we found two copies of chalcone 

synthase (CHS) were negatively regulated in high symPC2 individuals. We also found Sporamin 

B transcript, a tuberous root protein (Yeh et al., 1997), to be significantly downregulated (with 

log-fold change of -2.76; P-value < 0.001). Finally, we identified 56 transcripts that were 

differentially expressed with respect to symPC3; however, functional annotation revealed that 

most genes belonged to chloroplastic or mitochondrial genes.  

 

Field experiment 

We performed a field experiment to examine leaf shape in different environments, with the 

specific goal to determine the extent to which genotype, environment, and GxE altered leaf 

shape. We found significant variation among accessions (indicating genotypic or genetic 

variation) for circularity, aspect ratio and solidity (F73 = 18.06, F73 = 4.22, F73 = 21.09; P < 

0.001), with accession explaining 73.23%, 38.40% and 77.18% of the total variation, 

respectively (Table 2-4). This high variance explained for circularity and solidity is reflected in 

high heritability values (Table 2-5; H2MI_cir= 0.79, H2OH_cir= 0.73; H2MI_solidity= 0.82, H2OH_solidity= 

0.76). We also found evidence of significant block effect (F8 = 3.01, P = 0.002; η2 = 1.33%) for 

circularity, whereas aspect ratio and solidity were not significantly influenced by block effects. 

Garden differences between OH and MI contributed 1.93% (F1=15.55, P <0.001) of the 

variability in AR while the accession by garden interaction contributed 12.95% (a significant 

GxE effect: F69 = 5.01, P = 0.009). AR also had lower heritability within each garden (Table 2-5; 

H2MI_AR= 0.39, H2OH_AR= 0.26). Circularity and solidity were not significantly altered by 

environment and had no significant differences due to GxE. 

 

We also examined symmetrical leaf shape variation in both field sites by performing an EFD 

analysis (Figure 2-6). EFDs from MI captured variation in leaf shape homologous to the symPCs 

estimated from greenhouse grown individuals. There was general congruence in symPCs 

between greenhouse and field grown leaves in MI (i.e., MIsymPC1 (field) ≈symPC1 

(greenhouse)), but leaf shape variation captured by EFDs from OH differed significantly in their 

order of variation explained (Figure S2-3). OHsymPC1 explained leaf shape variation due to 

differences in the broadness and lobing of the leaf (similar to MIsymPC2), whereas OHsymPC2 
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explained variation due to lobing, tip and petiolar sinus differences (similar to MIsymPC1). This 

indicates that in OH the majority of leaf shape diversity is primarily due to the broadness of the 

leaf and secondly due to leaf lobing, while in MI, it is the opposite-- the majority of leaf shape 

diversity is due to the leaf dissection rather than leaf width. Thus, although traditional shape 

descriptors are only slightly influenced by the environment, leaf shape as a whole can be altered 

significantly by the environment. 

 

We also calculated broad sense heritability values for the symPCs in their respective 

environments and found that H2 values ranged from 0.47-0.80 across the symPCs (Figure 2-6). 

Heritability values in the OH garden were consistently lower than in the MI garden due to 

reduced genetic variance and increased environmental variance. Overall, the high heritability 

values indicate that leaf morphology is controlled to a great extent by genetic factors. 

 

Discussion 

In this study, we examined the extent of leaf shape variation within an agronomically important 

species, determined the role of genetics, the environment and GxE in altering leaf shape traits, 

and identified potential candidate genes associated with multiple leaf shape traits. We found 

evidence of extensive intraspecific morphological variation, with shape differences due to 

lobing, length-to-width ratio of leaves and the prominence of tip and petiolar sinuses explaining 

the majority of the variation. We also found that leaf shape has a strong genetic basis with most 

phenotypic variation attributed to accessional variation, with low or limited influence of GxE. 

Strikingly, we show that although traditional shape descriptors are only slightly influenced by the 

environment in this species, when measured comprehensively, leaf shape can be significantly 

altered by the environment (evident by the change in symPC1 across the MI and OH gardens). 

Below, we expand on each of our findings, and place them in the context of current knowledge 

about leaf shape diversity at a species-level as well as what is known about the environmental 

influence on leaf shape in other species. 
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High morphological diversity of leaf shape in I. batatas  

A recurring question among plant morphologists is the extent to which leaf shape varies among 

genotypes in a species. This study quantified leaf shape variation among multiple replicated 

accessions of sweetpotato and identified traits contributing most to leaf shape variation. We 

focused our morphometric study on three traditional shape descriptors (circularity, aspect ratio 

and solidity) and then expanded into the more comprehensive Elliptical Fourier Descriptor 

(EFD) measures. 

 

In our analysis of traditional measures, circularity was found to be the most variable whereas 

aspect ratio was found to be least variable. Further, the first two principal components of the 

EFD analysis together accounted for 77.46% of the total variation in leaf shape, and described 

variation associated with petiolar sinus, tips, and positioning of lobes. Additionally, lack of 

correlation between symPCs and traditional leaf shape metrics suggests that they capture 

different features of shape. Only symPC1 was slightly correlated with circularity and solidity. 

This is not surprising since symPC1 captures variation in leaf shape due to lobing, tip and sinus. 

No other traits were found to be correlated. Thus, variation captured by the EFD symPCs would 

have been missed by simply quantifying traditional shape descriptors, suggesting that the use of 

comprehensive morphometric techniques can help quantify the full extent of shape variation 

across species. Further, combining the results from traditional morphometric approaches with 

EFDs revealed that variation in leaf dissection (circularity and symPC1) contributes most to the 

morphological variation in leaf shape in sweetpotato (Figure 2-3 and Figure 2-4), similar to that 

seen in grape (Chitwood et al., 2014b). In addition, aspect ratio explains a significant proportion 

of the remaining variation, unlike in tomato and apple where aspect ratio is the primary trait of 

variation in leaf shape (Chitwood et al., 2013; Migicovsky et al., 2017). This indicates that leaf 

shape variation does not follow a trend across species which is likely due to multiple 

independent evolution of leaf shape across phylogenetic taxas (Nicotra et al., 2011). 

 

Gene transcripts underlying leaf shape variation 

To further our understanding of gene expression changes underlying leaf shape diversity, we 

sequenced transcriptomes of 19 accessions and assembled a high-quality gene expression 

database for performing a differential expression analysis in I. batatas. We found 47 genes that 
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were differentially expressed for circularity and 121 DETs for symPC1 -- a trait that accounts for 

leaf shape differences due to leaf dissection, prominence of the tip and petiolar sinus. Functional 

annotations of these genes identified potential candidates that could contribute to leaf shape 

dissection in I. batatas (Table 2-3). The most promising candidate is FRS gene; we found FRS5 

and FRS7 to be upregulated in non-dissected individuals in the differential analysis for 

circularity and symPC1, respectively. FRS is a putative transcription factor and contains the 

DNA binding domain needed to bind the RB-box promoter region of STM (SHOOT 

MERISTEMLESS) (Aguilar-Martínez et al., 2015), a protein required for leaf serrations 

(Kawamura et al., 2010). FRS might bind to STM thus regulating its expression. However, we 

did not find STM to be differentially expressed in our datasets. This might be due to no real 

expression differences or it might indicate that the expression differences is really small and thus 

the gene is not detected to be differentially expressed.  

 

Furthermore, genes containing homeobox domains have been shown to be associated with leaf 

dissection in multiple species --e.g., PTS in tomato (Kimura et al., 2008), STM in Arabidopsis 

(Piazza et al., 2010), RCO in C. hirsuta and other Brassicaceae (Vlad et al., 2014; Sicard et al., 

2014) and LMI1 in cotton (Andres et al., 2016). Most of these genes are differentially regulated 

in the SAM (shoot apical meristem) and P0 (the youngest primordium) to determine the extent of 

leaf dissection and complexity for the genotype. However, we did not find any homeobox 

domain containing genes to be differentially expressed in sweetpotato accessions that varied for 

circularity (i.e. lobed vs entire) (Appendix A, Table S2-3) but found a homeobox leucine-zipper 

protein (HAT22) to be upregulated for high symPC1 individuals. This mismatch could represent 

a caveat to our transcriptomic sampling stage (P4-P6), which is past the leaf dissection 

morphogenic stage of development. Thus, although preliminary, our data indicate that the degree 

of lobing in I. batatas might be maintained in later stages of leaf development (P4-P6) by the 

action of a gene containing a homeobox domain and that the difference in expression required 

might be very small.  

 

Further, we found a total of 158 differentially expressed genes associated with aspect ratio and 

148 DETs associated with symPC2 (leaf shape due to the differences in the broadness and 

lobing). Based on the function of the homologs of these genes, we identified promising putative 
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candidate genes responsible for broad leaved phenotypes (Table 2-3). In apples, a transgenic 

CHS silenced individual developed longer leaves when supplied with naringenin, thus altering 

leaf AR. This indicates that higher expression of CHS (and thus naringenin) is responsible for the 

longitudinal expansion of the leaves and thus downregulation of CHS could lead to broader 

leaves due to the lack of longitudinal expansion. Another gene of interest that we found 

differentially expressed for aspect ratio, feruloyl CoA 6′-hydroxylase, produces broader leaved 

phenotypes of cassava when silenced (Liu et al., 2017). Interestingly, however, we found higher 

expression of feruloyl CoA 6′-hydroxylase2 in broader-leaved, compared to the rounder-leaved 

individuals. Finally, the differentially expressed LSH10 belongs to the family of LSH genes, 

which have been shown to interact with BOP (BLADE-ON-PETIOLE) and regulate PTS 

(PETROSELINUM) expression, a gene that regulates KNOX genes, and thus leaf complexity 

(Ichihashi et al. 2014). This indicates the potential role of LSH gene in regulating both leaf 

broadness and complexity in this species.  

 

Factors influencing leaf shape traits in multiple environments 

While studies often examine the potential for plasticity in leaf shape traits (McLellan, 2000; 

Royer et al., 2009; Viscosi, 2015), the relative influence of genetic background, environment and 

gene by environment interactions are less commonly examined. We show that leaf shape traits 

(circularity, aspect ratio and solidity) in sweetpotato are influenced by multiple effects. Variation 

in circularity and solidity were mostly attributed to accession (or genotype) and showed little to 

no effect due to environment or gene by environment interaction. Circularity and solidity have 

exceptionally high broad-sense heritability values in I. batatas (0.76 and 0.79 respectively, 

averaged between gardens). These traits have likewise been shown to be highly heritable in 

tomato with heritability values being 0.65 and 0.67, respectively (Chitwood et al., 2013). The 

high PCV for circularity and solidity in I. batatas (22.61% and 11.85%) along with high broad-

sense heritability indicates that there is a lot of standing variation for these traits that can be 

actively selected for (or against) by breeders. Furthermore, the lack of plasticity and GxE 

demonstrate the stability of these simple leaf shape descriptor traits, at least in the environments 

tested. 
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Contrary to our results, multiple studies have found that leaf dissection--captured here by our 

measure of circularity--is a plastic trait that responds to changes in temperature. For example, 

Royer and colleagues (2009, 2012) found that leaves of Acer rubrum were more dissected when 

grown in cooler environments as compared to warmer environments. A similar trend was 

observed in grapevine (Vitis spp.) (Chitwood et al., 2016). However, we found that leaf 

dissection in sweetpotato is not influenced by the environment. This could reflect that our 

gardens were not different enough to lead to plastic responses in these two measures of leaf 

shape. The Ohio garden was consistently warmer (by 2°C on average) and experienced less 

precipitation than the Michigan garden--the difference between the two gardens was 662.43 

mm/month on average throughout the growing season. Although there were environmental 

differences between gardens, before we conclude that circularity in I. batatas is not strongly 

environmentally responsive, multiple studies in environments that range more widely for 

temperature will need to be performed. 

 

Comparatively, we found significant variation in aspect ratio due to environment and GxE, 

explaining 1.93% and 12.95% of the total observed variation in this measure of leaf shape, 

respectively. This is reflected in the significant alteration of trait values between environments. 

There was small yet significant differences observed (P < 0.001; 95% CI = 0.009-0.03) between 

gardens, with clones grown in Michigan consistently showing less round, more elliptical leaves 

than clones grown in the Ohio garden. However, we still found that 38.40% of the variation in 

the trait was due to accessional variation which was also indicated in the estimated heritability 

value of the trait (h2 = 0.24). Aspect ratio has been found to be a major source of leaf shape 

variation in apples and tomatoes with high heritabilities of 0.75 and 0.63, respectively (Chitwood 

et al., 2013; Migicovsky et al., 2017). In contrast, we found that this important leaf shape trait is 

globally not as variable in sweetpotato (4.76% PCV), but it still presents a selection potential. 

The considerable effect of GxE on aspect ratio indicates that this trait has a genetic component 

that interacts with the environment leading to varied values between environment. 

 

Further, comparing leaf outlines between two environments, we found that although the traits 

explaining leaf shape variation are homologous between the two environments, these traits vary 

in the percent of variation they explain. The heritability of EFD symPCs measured in MI and OH 
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were found to be very high, yet the changes in the amount of variation they explain in their 

respective environments indicates a strong environmental (and/or GxE) influence on EFD 

symPCs measured. Although traditional shape descriptors were only slightly controlled by the 

environment (aspect ratio), we found that the more comprehensive measure of leaf shape can be 

altered significantly by the environment. This further signifies the importance of measuring leaf 

shape using methods apart from traditional shape descriptors in multi-environment conditions.  

 

Overall, this work highlights the extensive natural variation in leaf shape within the globally 

important domesticate I. batatas. More broadly, and considering leaf shape analyses from other, 

mostly domesticated species, leaf shape variation appears to be species specific -- there is no 

evidence of a shared trait between species that explains the majority of within-species variation. 

Additionally, we found that most of the variation in the traditional measures of leaf shape 

appears to be largely controlled by genetic factors in sweetpotato, with a low proportion of 

variance in leaf shape attributable to environmental differences between gardens. However, 

when leaf shape was considered more comprehensively and by the use of leaf outlines, we 

identified a significant influence of the environment, suggesting that studies relying solely on 

circularity or aspect ratio to describe leaf shape may not capture the extent to which 

environmental factors can impact leaf development. This multilevel examination highlights the 

importance of examining morphological variation at the species-level in multiple environments, 

and using a range of leaf shape phenotypes to comprehensively understand the mechanistic basis 

(morphological, molecular and environmental) of leaf shape. 
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Figures 

 

 

 

Figure 2-1 Geographic diversity of the 68 chosen sweet potato, Ipomoea batatas, accessions.  
Black dots represent the origin of the chosen samples. 
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Figure 2-2 Methodology for RNA-seq data processing for differential gene expression. 
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Figure 2-3 Leaf shape variation in 57 diverse, glasshouse-grown, accessions of sweet potato, 
Ipomoea batatas, highlighting exceptionally high morphological variation. 
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Figure 2-4 Elliptical Fourier Descriptor (EFDs) of symmetrical shape variation in sweet potato, 
Ipomoea batatas.  
Contours represent eigenleaves resulting from principal component analysis (PCA) on 
symmetrical shape (symPC) on EFDs. Shown are the first four symPCs with the per cent 
variation explained by each; 87.79% of the total variation is explained. _2 SD (red) and +2 SD 
(blue) represent two units of SD from the mean along the symPC. Representative leaves of 
accessions with extreme symPC values are shown. 
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Figure 2-5 Plot of log fold change against log CPM (counts per million) with differentially 
expressed transcripts highlighted (red and blue dots) for leaf shape in Ipomoea batatas.  
(a) Red and blue dots represent transcripts with higher expression in entire and lobed, 
respectively, (b) Red and blue dots represent higher expression in high aspect ratio and low 
aspect ratio individuals, respectively. 
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Figure 2-6 Elliptical Fourier Descriptor (EFDs) of symmetrical leaf shape variation among 68 
accessions of sweet potato, Ipomoea batatas, in the common gardens in Michigan (a) and Ohio 
(b), respectively.  
MIsymPC and OHsymPC represents the Michigan and Ohio symmetrical leaf shape variation, 
respectively; H2 represents broad-sense heritability. 
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Tables 

 

Trait Range Mean SD PCV (%) 

Circularity 0.09-0.71 0.50 0.12 22.61 

Aspect Ratio 1.03-1.26 1.10 0.05 4.76 

Solidity 0.44-0.95 0.84 0.10 11.85 

 

Table 2-1 Leaf shape trait values across the 57 chosen sweetpotato accessions.  
SD represents standard deviation while PCV represents phenotypic coefficient of variation. 
 
 
 
 

 

 

Number of 

transcripts 

Min 

Len 

(nt) 

Max 

Len 

(nt) 

Number of 

bases 

Mean 

Len 

(nt) 

ORF 

percent 

n50 

(nt) 

% reads 

mapped 

33,684 200 16,428 35,769,411 1,062 79.95% 1,608 77% 

 
 
Table 2-2 Sequence statistics of the reference transcriptome obtained from EvidentialGene 
pipeline. 
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Transcript ID LogFC FDR Gene Description 

Circularity 

trn22514 5.77 0.003 FAR1-RELATED SEQUENCE 

trn27202 2.08 0.021 Exocyst complex component EXO70A1 

trn24081 1.33 0.033 Extra-large guanine nucleotide-binding 

protein 

Aspect Ratio 

trn9778 -2.95 0.035 Chalcone Synthase (CHS) 

trn24267 2.55 0.00 Feruloyl CoA 6’-hydroxylase 2 

trn25053 -1.85 0.021 Protein LIGHT-DEPENDENT SHORT 

HYPOCOTYLS 10 

symPC1 

trn27227 1.56 0.018 Homeobox-leucine zipper HAT22 

trn23566 3.54 0.00 FAR1-RELATED SEQUENCE 7 

symPC2 

trn27049 -3.09 0.009 Chalcone Synthase 

trn28352 -3.52 0.00 Chalcone Synthase 

trn9093 -2.21 0.00 Sporamin B 

 
 
Table 2-3 Candidate genes maintaining variation in leaf traits (circularity, AR and symPCs) 
identified from the set of differentially expressed transcripts (DETs) in Ipomoea batatas.  
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Variable df 
Circularity Aspect Ratio Solidity 

F P 𝝶2 

(%) F P 𝝶2 

(%) F P 𝝶2 

(%) 

Accession 73 18.06 <0.001
*** 73.23 4.22 <0.001

*** 38.40 21.09 
<0.001 

*** 
77.18 

Garden 1 3.64 0.056 0.20 15.5 <0.001
*** 1.93 3.37 0.067 0.16 

Block 8 3.01 
0.002 

** 
1.33 1.38 0.020 1.38 1.94 0.052 0.70 

GxE 69 1.30 0.06 5.01 1.50 
0.009 

** 
12.95 1.30 0.065 0.40 

Residuals 364 NA NA 20.2 NA NA 45.31 NA NA 17.56 

 
 

Table 2-4 ANOVA table of the leaf shape traits model showing significant explanatory 
variables.  
df: degrees of freedom; F: value of F-statistic; P: p-value; η2: eta-squared value. 
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Env 

H2 

Circularity Aspect 

Ratio 

Solidity symPC1 symPC2 symPC3 symPC4 

MI 0.79 0.39 0.82 0.80 0.58 0.70 0.69 

OH 0.73  0.26 0.76 0.59 0.67 0.63 0.47 

 
 
Table 2-5 Broad-sense heritability values for leaf shape traits in differing environments.  
* Note: We can not compare heritability values for EFD symPCs between MI and OH because 
the expression of traits vary between environments, and hence what the symPCs capture differs 
between the two environments. 
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Chapter 3 

 

Inter-Chromosomal Linkage Disequilibrium and Linked Fitness Cost Loci Associated With 

Selection for Herbicide Resistance2 

 

 

Abstract 

The adaptation of weedy plants to herbicide is both a significant problem in agriculture and a 

model for the study of rapid adaptation under regimes of strong selection. Despite recent 

advances in our understanding of simple genetic changes that lead to resistance, a significant gap 

remains in our knowledge of resistance controlled by many loci and the evolutionary factors that 

influence the maintenance of resistance over time. Here, using herbicide resistant populations of 

the common morning glory (Ipomoea purpurea), we perform a multi-level analysis involving 

whole genome sequencing and assembly, resequencing, and gene expression analysis to both 

uncover putative loci involved in nontarget-site herbicide resistance (NTSR) and to examine 

evolutionary forces underlying the maintenance of resistance in natural populations. We found 

loci involved in herbicide detoxification, and stress sensing to be under selection and confirmed 

that detoxification is responsible for glyphosate resistance using a functional assay. Furthermore, 

we found interchromosomal linkage disequilibrium (ILD) to influence NTSR loci found on 

separate chromosomes thus potentially mediating resistance through generations. Additionally, 

by combining the selection screen, differential expression, and LD analysis, we identified fitness 

cost loci that are strongly linked to resistance alleles, indicating the role of genetic hitchhiking in 

 
2 This chapter is in revision at PNAS as Gupta S, Harkess A, Soble A, Van Etten M, Leebens-Mack J, Baucom RS. Inter-

chromosomal linkage disequilibrium and linked fitness cost loci associated with selection for herbicide resistance. 
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maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea 

is conferred by multiple genes which are potentially maintained through generations via ILD and 

that the fitness cost associated with resistance in this species is a by-product of genetic-

hitchhiking.  

 

Introduction 

Pesticide and herbicide use has reshaped ecological networks and induced strong selective 

pressures in the anthropogenic era. How species may adapt to strong selection is a fundamental 

question in evolution with great importance to the control of pesticide resistant organisms. A 

striking feature of pesticide resistance evolution is that there are a number of different genetic 

solutions that can lead to resistance (Liu, 2015; Hawkins et al., 2018). In herbicide resistant 

plants, for example, resistance can be due to single gene mutations, often found in the herbicide’s 

target protein (target-site resistance, TSR), or due to changes in multiple genes, often underlying 

nontarget herbicide resistance (NTSR) mechanisms (Powles & Yu, 2010; Mithila & Godar, 

2013). A growing body of work has produced a better understanding of resistance controlled by 

single genes across a variety of species (Jasieniuk et al., 1996; Powles & Yu, 2010; Murphy & 

Tranel, 2019). However, we currently lack a deep understanding of both the genetic basis and 

evolutionary potential of nontarget site resistance mechanisms genome wide (Délye, 2013; 

Baucom, 2019; Beckie, 2020; Leon et al., 2021).  

 

This is due in part to the broad nature of nontarget site herbicide resistance mechanisms more 

generally. NTSR can be caused by reduced herbicide uptake or penetration, altered translocation 

or sequestration, metabolism (Vemanna et al., 2017; Pan et al., 2019) and/or herbicide 

detoxification (Délye et al., 2013; Gaines et al., 2019, 2020) -- mechanisms that likely rely on a 

complex genetic basis (Busi et al., 2013; Scarabel et al., 2015; Kreiner et al., 2018; Baucom, 

2019). For example, detoxification is hypothesized to involve three steps -- uptake of the 

herbicide by phosphate transporters, chemical modification (i.e. the addition of an OH and sugar 

group by cytochrome P450s and glycosyltransferases, respectively), and transport to vacuoles by 

ABC transporters and other sugar transporters where the molecule is stored and/or inactivated 
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(Yuan et al., 2007; Gaines et al., 2020). Combinations of these gene families have been shown to 

be under selection for resistance to a suite of herbicides (Liu et al., 2018; Yanniccari et al., 2020; 

Dimaano & Iwakami, 2021; Huang et al., 2021; Pan et al., 2021; Amrhein & Martinoia, 2021). 

While some investigations have pinpointed a single gene conferring NTSR (Cummins et al., 

2013; Pandian et al., 2021), gene expression surveys or whole-genome re-sequencing assays in a 

small handful of resistant weeds are beginning to shed light on the complexity of nontarget 

resistance mechanisms (Yuan et al., 2007; Van Etten et al., 2020; Kreiner et al., 2020). In both 

Amaranthus tuberculatus and Ipomoea purpurea, a number of different loci found across the 

genome -- whether structural, regulatory, or both -- exhibit signs of selection and are thus 

putatively involved in resistance (Yuan et al., 2007; Van Etten et al., 2020; Kreiner et al., 2020). 

Because we lack a deep understanding of the genetic basis of NTSR in most weeds, however, we 

lack a firm grasp on the underlying forces that influence the maintenance of resistance in natural 

populations, such as the prevalence of alleles that may contribute to fitness costs of resistance or 

the presence of interchromosomal linkage disequilibrium (ILD). The presence of ILD between 

unlinked regions of the genome would implicate the potential for correlational selection and/or 

coadaptation between alleles underlying either resistance or its cost.  

 

Ipomoea purpurea is a common agricultural weed in the Southeast and Midwest United States. 

Populations of this species, which have consistently been exposed to glyphosate based herbicides 

since the late 1990s (Kuester et al., 2015, 2016), exhibit varying levels of herbicide resistance, 

with some populations exhibiting low and others high survival post-herbicide application 

(Kuester et al., 2015, 2016)). There is a fitness cost associated with this resistance: resistant 

populations show lower germination and deteriorated seed quality compared to susceptible 

populations (Van Etten et al., 2016). Further, populations from the south and midwest show 

evidence of genetic admixture, with both microsatellite and SNP data showing low genetic 

differentiation for a mixed-mating plant species (FST = 0.11-0.14; (Alvarado-Serrano et al., 

2019)) and recent genetic connectivity (Alvarado-Serrano et al., 2019). RADseq and exome 

sequencing has identified regions of the genome under selection and thus associated with 

herbicide resistance. These regions are enriched for cytochrome P450s, glycosyltransferases, and 

ABC transporter genes, indicating a likely role of herbicide detoxification in conferring 

resistance (Van Etten et al., 2020). Despite evidence that detoxification underlies resistance in 
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this species and suggestions that loci found on different chromosomes contribute to resistance, 

previous work relied on low-coverage RADseq sequencing without the benefit of a contiguously 

assembled genome. Thus, loci that may contribute to NTSR or its cost were likely missed 

(Lowry et al., 2017), meaning that we lack a thorough understanding of NTSR, the genomic 

context of NTSR alleles, and the potential for relationships among NTSR alleles in this species -- 

all crucial to understanding the evolution of resistance more broadly. 

Here, we implemented a genome-wide selection screen using whole-genome resequencing of 

natural populations along with a gene expression survey to characterize the genetic architecture 

of glyphosate resistance and its cost in Ipomoea purpurea. We complemented our survey with a 

functional assay to test the potential that resistant I. purpurea individuals detoxify the herbicide 

more rapidly. Given previous evidence that multiple loci likely contribute to herbicide resistance 

in this species, and evidence of fitness cost of resistance, we made two main predictions 

regarding genome-wide patterns of selection associated with resistance in I. purpurea. First, we 

expected that regions of the genome showing high differentiation and marks of selection when 

comparing herbicide resistant and susceptible individuals would contain loci with strong 

functional links to either herbicide resistance or its cost. Second, we anticipated that linkage 

disequilibrium, the non-random association of alleles at different loci, should be evident among 

regions of the genome housing resistance loci. Although inter-chromosomal linkage 

disequilibrium has been identified in other systems assessing ecologically relevant traits such as 

mate choice and coloration (Petkov et al., 2005; Long et al., 2013; Hench et al., 2019) and 

recently has even been identified in target-site resistance (Kreiner et al., 2021) it is unknown if 

loci underlying herbicide resistance that are found across chromosomes exhibit long-distance or 

inter-chromosomal linkage disequilibrium, as would be expected if adaptation to herbicide is 

facilitated by multilocus genotypes favored by selection (i.e., coadapted gene complexes) 

(Wallace, 1953; Dobzhansky, 1971; Schluter, 2000). 

 

Results 

A chromosome-scale genome assembly for common morning glory 

We assembled a reference I. purpurea genome to test these hypotheses, generating the first 

genome sequence for this common and noxious weed. We generated a total of 48 gigabases of 
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PacBio Sequel whole genome shotgun data (Appendix B, Figure S3-1a). Based on a flow 

cytometry genome size (Benaroya Institute, Seattle, WA), this amounts to roughly 59X genome 

coverage for an estimated haploid genome size of 814 Mb. We used 34.79 gigabases of trimmed 

and self-corrected reads for assembly, scaffolding, and polishing, which produced a 602 Mb 

assembly in 402 scaffolds (434 contigs), with a scaffold N50 of 5.77 Mb.  

 

We performed pseudomolecule scaffolding with Phase Genomics Hi-C map, which collapsed the 

assembly into the expected 15 haploid chromosomes (Appendix B, Figure S3-1b). We renamed 

and oriented chromosomes according to a high degree of synteny with the related Ipomoea nil 

genome (Hoshino et al., 2016) (Appendix B, Figure S3-1c). No misjoins were identified and 

broken based on the Hi-C linkage data. BUSCO scores on the unannotated assembly show 97.5% 

completeness against the Viridiplantae odb10 gene set (Appendix B, Figure S3-1d).  

 

Approximately 63% of the assembly was masked as repetitive DNA, with a significant 

proportion of recently-expanded Long Terminal Repeat (LTR) retrotransposons (Appendix B, 

Figure S3-1e). Given the high degree of synteny with I. nil genome, the discrepancy between the 

flow cytometry genome size (814 Mb) and the assembled size (602 Mb) is likely due to young 

retrotransposon proliferation. We annotated 53,973 genes by combining ab initio gene 

predictions and RNA sequencing data from leaf tissue. The assembly shows a high degree of 

synteny with several genomes in the Convolvulaceae family, including I. nil, I. trifida, and I. 

triloba (Appendix B, Figure S3-2). 

 

Detecting loci under selection  

Whole-genome analysis of 69 individuals (from three resistant and four susceptible populations, 

Figure 3-1a) identified genes under selection for herbicide resistance. We did this using a dual 

approach -- first, we used bayenv2 (Günther & Coop, 2013) followed by the Md-rank-P 

composite test of selection (Lotterhos et al., 2017), taking into account explicitly and implicitly 

the population structure, respectively. bayenv2 identified 2,016 SNP outliers (Appendix B, Table 

S3-1). Within 5kb flanking regions of these outliers, 1,908 genes were present, of which 1,485 

genes could be functionally annotated (Appendix B, Table S3-2). The Md-rank-P approach -- a 

composite test of selection that incorporates nucleotide diversity, Tajima’s D, Fay and Wu’s H, 
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and H12 -- identified fifteen regions (total 4.47Mb) that exhibited signs of selection (Appendix B, 

Table S3-3). The regions under selection housed 358 genes, 202 of which could be functionally 

annotated (Appendix B, Table S3-4). There were 128 genes (Appendix B, Table S3-5) found in 

common between the two selection scans, and these genes were located on six different 

chromosomes. These genes were broadly involved in the process of detoxification, 

environmental sensing, and stress signaling and response (Table 3-1).  

The strongest signal of selection we uncovered using both bayenv2 and the M-rank-P selection 

scans was found on chromosome 10 (Figure 3-2). Within this region, we identified 13 genes -- 6 

copies of cytochrome P450 genes (CYP) and 7 copies of glycosyltransferases -- both of which 

are gene families previously implicated in herbicide detoxification. The six cytochrome P450s 

belong to the 76A family (three CYP76A1 and three CYP76A2) and were present in tandem 

within 53kb, which interestingly also contained two additional copies of CYP76. Of the eight 

tandem CYPs, four copies of the cytochrome P450s exhibited multiple non-synonymous 

mutations that were almost fixed in the resistant individuals (resistant allele frequency = 0.95; 

susceptible allele frequency = 0.31; Appendix B, Table S3-6). Further, two of the eight 

cytochrome P450s (CYP76A2) in this block exhibited either a premature stop codon and/or a 

splice site donor variant (G->C) in the first intron (allele1 susceptible frequency = 0.68, resistant 

frequency = 0.05) in the majority of the susceptible individuals. The seven glycosyltransferases 

were also found in a tandem block; one glycosyltransferase copy showed the loss of a stop codon 

(susceptible frequency = 0.64, resistance frequency = 0.05), whereas the other 

glycosyltransferases exhibited multiple non-synonymous mutations close to fixation in the 

resistant individuals (resistant frequency = 0.05, susceptible frequency = 0.60; Appendix B, 

Figure S3-3; Table S3-6). Additionally, the block of glycosyltransferases in this region showed 

evidence of a hard sweep (glycosyltransferases H12 = 0.87).  

 

On chromosome 11, we found a 6.4-7.3Mb region to show signs of selection with 33 genes 

identified via both bayenv2 and Md-rank-P approaches. Among these genes, were five copies of 

a phosphate transporter gene (PHO1), all containing almost fixed non-synonymous mutations in 

resistant individuals (resistant frequency = 0.99; SI Dataset, S6). This region also contained a 

copy of a cytochrome P450 gene (CYP736A12 family, SI Dataset, S2). Interestingly, multiple 

stress response genes were also present in this region: NAC domain-containing protein 92 
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(NAC92) involved in salt stress signaling (Franzoni et al., 2019), LOB domain-containing 

protein 41 (LBD41) involved in hypoxia stress (Giuntoli et al., 2017), and five copies of leaf rust 

10 disease-resistance locus receptor-like protein kinase (LRK10L) which are involved in abiotic 

stress signaling (Lim et al., 2015). 

 

Another region of note showing strong signals of selection was found on chromosome 6 (average 

Md-rank-P = 6.55; average GST = 0.782, Figure 3-1b), with evidence of strong differentiation 

continuing further upstream and downstream (40.23Mb - 40.81Mb; mean GST = 0.727). Within 

the extended downstream region, we found ethylene responsive transcription factor (ERF4) and 

multiple copies of serine/threonine kinases, genes that are involved in the signal transduction in 

response to various biotic and abiotic stresses (Hardie, 1999; Lee & Kim, 2011; 

Thirugnanasambantham et al., 2015; Liu et al., 2017; Ma & Li, 2018). Within this region, we 

also identified loci that are likely related to the cost of resistance in this species, expanded upon 

further in ‘Signs of selection on potential cost loci’ below. 

 

Among other genes exhibiting signs of selection, we found multiple environmental stress 

response genes (SI Dataset, S5): copies of serine/threonine-protein kinases (CTR1, At5g23170), 

involved in environmental sensing and stress signaling, the GT-3B transcription factor which is 

responsible for inducing response to salt (Park et al., 2004), AP2-like ethylene-responsive 

transcription factor PLT1, AT-hook motif nuclear-localized protein 24 (AHL24) (Wang et al., 

2021), and two homologs of A20/AN1 zinc-finger containing stress associated protein (SAP), 

genes involved in response to environmental stress (Giri et al., 2011). 

 

Overall, our selection screens using a WGS resequencing approach identified highly 

differentiated regions under selection, with these regions containing genes involved in herbicide 

detoxification (cytochromeP450s, glycosyltransferases, and phosphate transporters), 

environmental sensing (serine/threonine kinases), and stress response genes (SAPs, PLT1, 

AHL24, GT-3B transcription factor). Thus, our study expands on our previous work which found 

detoxification genes to be under selection (Van Etten et al., 2020) by providing strong evidence 

that glyphosate resistance in I. purpurea is a polygenic NTSR mechanism likely involving 

herbicide detoxification, and response to environmental stimuli and stress. 
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Gene expression differences implicate herbicide detoxification 

We compared gene expression between herbicide treated resistant and susceptible plants and 

found support for the idea that herbicide detoxification, plant signaling, and stress response 

underlies resistance. Of the 250 differentially expressed genes (111 upregulated and 139 

downregulated; Appendix B, Table S3-7), we found cytochrome P450s, glycosyltransferases, 

ABC transporters, and glutathione S-transferase genes (Figure 3-3a) to be differentially regulated 

between resistant and susceptible plants. Two copies of the cytochrome P450 family CYP82D7 

were significantly upregulated in the resistant individuals (logFC: 2.05 and 1.35), along with two 

copies of UDP-glycosyltransferases (UGT87A2, logFC: 5.02 and UGT88B1, logFC: 1.65) and a 

glutathione S-transferase (GST, logFC:2.93). We additionally found a cytochrome P450 

(CYP82C4, logFC:-2.15), a glycosyltransferase (UGT89B2, logFC:-2.09), and an ABC 

transporter (ABCC3, logFC:-8.81) to be downregulated in the resistant individuals.  

 

We likewise uncovered differences in the expression of genes associated with environmental 

stress responses. Among notable genes were ethylene responsive transcription factors (ERF003, 

ERF107, TINY (Walper et al., 2016; Xie et al., 2019)), serine/threonine kinase BLUS1 

(Takemiya et al., 2013), E3 Ubiquitin protein ligase PUB23 (Lee & Kim, 2011), NAC domain-

containing protein 72 (Liu et al., 2016), and WRKY transcription factors (WRKY4, WRKY31, 

WRKY75 (Lai et al., 2008; Jiang et al., 2017; Zhao et al., 2019)) (Figure 3-3a). Homologs of 

these genes (ERF4, PLT1, CTR1, HT1, B120, NAC92, NAC25; Appendix B, Table S3-5) were 

also under selection when comparing herbicide resistant and susceptible populations. In 

comparison to the genes under selection, two genes were also differentially regulated in the 

treatment group -- an anionic peroxidase and NFD6 (discussed in the ‘Signs of selection on 

potential cost loci’ section). 

 

In the control (non-herbicide) environment, we found 623 differentially expressed genes when 

comparing resistant and susceptible individuals (319 upregulated and 304 downregulated; 

Appendix B, Table S3-8). We identified multiple copies of cytochrome P450s, 

glycosyltransferases, and ABC transporters that were differentially expressed, indicating that 

glyphosate resistance through detoxification could be is constitutive, and not induced, in this 

species. Interestingly, the specific cytochrome P450s and glycosyltransferase genes that 



 
57 

exhibited signs of selection from our whole-genome scan were not the same as those that 

exhibited differential expression, which could be due to the non-simultaneous nature of the gene 

transcription response to glyphosate; members of the same family have been shown to be 

differentially regulated at different time points after glyphosate exposure (Piasecki et al., 2019). 

Additionally, this lack of overlap could also be due to the detection of false positives or could 

represent a transcriptional sampling stage caveat.  

 

Functional assay supports herbicide detoxification as a mechanism of resistance 

We performed an assay to determine if the functional mechanism of resistance in I. purpurea 

was herbicide detoxification (following (Christopher et al., 1994; Preston et al., 1996; Yu & 

Powles, 2014; Yanniccari et al., 2020; Pandian et al., 2021)). We applied malathion, a pesticide 

that inhibits some cytochrome P450s, to multiple resistant and susceptible I. purpurea 

individuals from the same populations used in the WGS re-sequencing and gene expression 

studies. The expectation that malathion would act to inhibit I. purpurea cytochrome P450s was 

met; we found a significant overall treatment effect (F-value = 59.33, df = 3, p < 0.0001; Figure 

3-3b) with individuals treated with both glyphosate and malathion showing lower biomass 

compared to individuals treated with either malathion, glyphosate, or untreated controls (Figure 

3-3b; Appendix B, Table S3-9). 

 

As expected, resistant individuals showed significantly greater biomass compared to the 

susceptible individuals in the presence of glyphosate (F-value = 4.81, df = 1, P-value = 0.03; 

Figure 3-3c). However, the biomass of resistant individuals in the presence of both malathion 

and glyphosate was significantly lower than that of resistant individuals treated only with 

glyphosate (resistant plants, malathion+glyphosate vs glyphosate: t = 3.65, df = 78, p-value = 

0.001), indicating that the presence of malathion reduces the resistance response. In fact, the 

presence of both malathion and glyphosate led to similar (and low) remaining biomass of both 

resistant and susceptible individuals (malathion+glyphosate treatment: resistant vs susceptible 

plants: t = 0.15, df = 32, p-value = 0.88). This shows that the presence of a cytochrome P450 

inhibitor lowers the level of glyphosate resistance in I. purpurea plants, supporting the idea that 

modification to the detoxification pathway underlies glyphosate resistance in this species.  
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Role of long-distance and interchromosomal linkage disequilibrium in maintaining NTSR 

alleles 

Our whole-genome scan identified regions under selection containing genes involved in 

environmental sensing, stress responses, and herbicide detoxification. This broad scan implicates 

a polygenic basis of resistance in I. purpurea and shows that multiple regions of the genome 

likely contribute to resistance. We thus sought to determine if there was evidence of linkage 

disequilibrium between these regions, which would potentially suggest either epistatic 

interactions among alleles or the inheritance of coadapted gene complexes (Wallace, 1953; Nei 

& Li, 1973). We calculated a measure of linkage disequilibrium (r2) between long-distance and 

interchromosomal SNPs that showed the most extreme level of differentiation and selection 

(98th percentile, GST > 0.39) -- regions on Chromosome 6 (two regions, hereon referred to as 6.1 

and 6.2), 10, and 11, and compared it to the whole-genome measure. We found that the four 

highly differentiated regions also under selection showed islands of elevated interchromosomal 

linkage disequilibrium (Appendix B, Table S3-10) in a backdrop of nearly zero genome-wide 

ILD (background interchromosomal r2 mean = 0.00096; Figure 3-4). Additionally, the four 

regions with high differentiation between resistant and susceptible populations that also 

exhibited signs of selection showed higher linkage with one another (99th percentile ILD = 0.22 

± 0.0002 SE) compared to five randomly pulled, but highly differentiated regions between 

resistant and susceptible populations that are not under selection (99th percentile ILD = 0.11 ± 

0.0001 SE). The region under selection on Chr10 exhibited the strongest linkage to other 

chromosomal regions under selection (99% ILD Chr6.1-Chr10 = 0.257, Chr6.2-Chr10 = 0.22, 

Chr11-Chr10 = 0.17).  

 

Interestingly, the highest r2 values (within the top 1 percentile) within these regions was 

observed for putative resistance genes identified above. For instance, multiple 

glycosyltransferases and cytochrome P450s under selection on Chr10 showed high ILD with 

SNPs on Chr11 (Appendix B, Table S3-11). Multiple cytochrome P450 genes (CYP76A2) on 

Chr10 showed a high value of ILD with an uncharacterized protein and a region upstream of GT-

3B on Chr6.1 (range of r2 = 0.256-0.278, SI Dataset, S10) as well as the intergenic region 

between the transcription factors SPL1 and DOF1.4, both of which are responsible for plant 

growth and development, on Chr6.2 (range of r2 = 0.249-0.288), perhaps indicating the co-
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adaptation of these regions on Chr6 and on Chr10. Thus, the identified resistance alleles within 

these four highly differentiated regions show signs of linkage and perhaps evidence of co-

adaptation. 

 

Local regions of strong long-distance linkage disequilibrium and ILD within species might be 

aided by demographic processes like population structure (Nei & Li, 1973; Wilson & Goldstein, 

2000), genetic drift (Schaper et al., 2012), or could be due to other processes like selection 

(Hohenlohe et al., 2012; Hench et al., 2019). Furthermore, coadaptation among loci wherein 

adaptive alleles at two independent loci will be inherited together can generate linkage 

disequilibrium (Hohenlohe et al., 2012; Sohail et al., 2017; Behrouzi & Wit, 2017; Hench et al., 

2019). Given that our sampling design included multiple resistant and susceptible populations 

from varied locations, low population differentiation among populations, and evidence of recent 

migration between them (Appendix B, Figure S3-4), it is unlikely that the observed ILD is due 

entirely to demographic processes. Moreover, we observed the strongest ILD between regions 

under selection harboring resistance associated genes, indicating the potential role of selection in 

maintaining the observed ILD. Thus, our finding suggests that the highly differentiated regions 

under selection containing candidate loci for glyphosate resistance are functionally linked and 

inherited together. 

 

Signs of selection on potential cost loci 

Our scan of regions associated with herbicide resistance, paired with a transcriptome survey, 

identified potential alleles with strong functional connections to the previously identified fitness 

cost in resistant I. purpurea. Cost of resistance can either be due to the same loci conferring 

resistance and incurring cost, or could also arise from different loci due to the presence of local 

linkage disequilibrium and ILD (Bergelson & Purrington, 1996; Zhong et al., 2005). Here we 

tested the latter. We found alternate alleles close to fixation in each population type within the 

585kb highly differentiated region on chromosome 6 (40.23Mb - 40.81Mb; mean GST = 0.727, 

Figure 3-5a). This region contained the nuclear fission defective 6 (NFD6) and NAC 

transcription factor 25 (NAC25) genes, both of which function in seed development. NAC25, a 

gene that is required for normal seed development and morphology (Kunieda et al., 2008), 

exhibited two missense variants in the resistant individuals (mutant allele resistant frequency = 
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0.91, susceptible frequency = 0.23). Additionally, NFD6, a protein required for nuclear fusion in 

the embryo sac during the production of the female gametophyte (Portereiko et al., 2006), 

contained six missense variants in the resistant individuals (mutant allele resistant frequency = 

0.88, susceptible frequency = 0.21). The resistant haplotype of this gene also contained 10 SNPs 

in the promoter region which could potentially alter its expression. Indeed, we found this protein 

to be downregulated in the presence of the herbicide, with a log-fold change of -3.52 in resistant 

individuals as compared to the susceptible individuals (Figure 3-5b). Thus, our data suggest that 

these genes may be responsible for the lower and abnormal germination leading to the observed 

fitness cost in this species (Van Etten et al., 2016). 

  

Interestingly, this highly differentiated region containing these seed development genes is 

strongly linked to other regions under selection that harbor resistance alleles (99% ILD value = 

0.22; Figure 3-4), indicating the potential role of linkage disequilibrium in maintaining the cost. 

More specifically, NFD6 is within 83 kb from, and thus physically linked to (r2 = 0.70), the 

potential regulatory region on Chr6.2 that exhibits interchromosomal long distance linkage 

disequilibrium with the CYP76A2 gene on Chr10 (ILD = 0.27). Further, the NAC25 gene is 

found in close proximity to serine/threonine kinases on Chr6.2 (i.e., 82 kb away), indicating 

another potential gene involved in the cost phenotype is in physical linkage (r2 = 0.67) with 

potential NTSR loci. 

 

In addition to the potential cost loci identified from the WGS screen, we also performed gene 

expression analyses comparing resistant and susceptible individuals. Cost loci are expected to be 

differentially expressed in the absence of herbicide (i.e. the environment in which fitness costs 

are assessed), but may or may not be differentially expressed in the presence of herbicide, 

depending on whether the gene expression is constitutive or herbicide dependent. We identified 

five differentially expressed genes, in the absence of herbicide, that play a role in fertilization 

and seed maturation and are thus potentially related to the cost (Appendix B, Table S3-8). Of 

special interest, the bud‐site selection protein 31 (BUD31) was found to be highly upregulated 

(logFC = 7.22) in resistant plants in the absence of herbicide, whereas its homologue BUD13 

was highly significantly downregulated in resistant individuals in the presence of herbicide 
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(logFC = -11.39). BUD13 is involved in pre-mRNA splicing in embryos and is critical for early 

embryo development (Xiong et al., 2019).  

 

In the control environment, two genes downregulated in the resistant individuals -- NFD4 (logFC 

= -3.61) and Agamous-like MADS-box protein AGL61 (AGL61; logFC = -4.98) -- are involved 

in megagametogenesis. The NFD4 gene, like NFD6, is responsible for ovule polar nuclei fusion 

during female karyogamy (Portereiko et al., 2006), whereas AGL61 is required for central cell 

development and differentiation (Steffen et al., 2008). A loss of function mutation in AGL61 has 

been shown to cause abnormal morphology and over 50% seed abortion upon fertilization in 

Arabidopsis (Steffen et al., 2008). We also identified a callose synthase 2 (CALS2) to be strongly 

downregulated in resistant individuals (logFC = -8.72); another member of the callose synthase 

family (CALS5) has been shown to be responsible for pollen viability (Dong et al., 2005). 

Finally, we also found that E3 ubiquitin-protein ligase BRE1 (HUB1), a protein involved in seed 

germination, was strongly downregulated among the resistant individuals (logFC = -8.27). HUB1 

has been shown to control chromatin remodeling during seed development and leads to 

alterations in seed dormancy (Liu et al., 2011).  

 

Interestingly, three of these five candidate genes (AGL61, CALS2, HUB1), and homologues of 

other two (BUD13 and NFD6) were also significantly downregulated in the resistant populations 

in the presence of herbicide (Appendix B, Table S3-7). These candidate cost genes are all 

essential for plant reproduction and are highly downregulated (except BUD31) in the resistant 

population in both the absence and presence of the herbicide, and thus could potentially explain 

the phenotypic costs of glyphosate resistance in I. purpurea seen by Van Etten and colleagues 

(Van Etten et al., 2016).  

 

Discussion 

While there is an increasing appreciation for the role of nontarget site mechanisms underlying 

herbicide resistance in agricultural weeds (Délye et al., 2011; Ghanizadeh & Harrington, 2017; 

Jugulam & Shyam, 2019; Gaines et al., 2020), there are strikingly few comprehensive whole-

genome assays of resistant weeds suggesting that the entirety of the NTSR response is rarely 
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captured. Our study using a sequenced and assembled genome, whole genome resequencing of 

natural populations, and a gene expression survey offers a unique opportunity to identify loci 

associated with NTSR and to further investigate the evolutionary forces that underlie the 

maintenance of resistance alleles in natural populations.  

 

Our results show detoxification underlies resistance in I. purpurea. Detoxification is 

hypothesized to be enriched in phosphate transporters (uptake), cytochrome P450s and 

glycosyltransferases (chemical modification), and ABC and sugar transporters (transport to 

vacuoles) (Yuan et al., 2007; Gaines et al., 2020). We found evidence of selection on genes 

involved in this pathway. We also found evidence of selection (and in some cases, differential 

expression) of genes involved in plant signaling and environmental stress (i.e., serine/threonine 

kinases, ERFs, SAPs, PLT1, AHL24, GT-3B). Our results thus expand what we currently know 

about the detoxification NTSR mechanism in this species to include plant signaling and stress 

responses, both of which are either hypothesized (Délye, 2013) or shown to be involved in 

herbicide resistance (Radwan, 2012; Duhoux & Délye, 2013; Dyer, 2018; Vega et al., 2020). 

While we do not currently have functional genomics resources for this species, our study using a 

cytochrome P450 inhibitor supports the hypothesis that resistant I. purpurea individuals have the 

ability to detoxify the herbicide. Accordingly, we think that the genes involved in detoxification 

might be the major effect genes, while stress signaling and response genes might contribute 

minor effects on the resistance phenotype in this species. The next step in understanding 

resistance in I. purpurea involves determining the contribution of each of the candidate loci 

under selection (and/or showing differential regulation) to both resistance and its associated cost. 

With future development of genome editing protocols for I. purpurea, we will be able to 

experimentally test the function of loci hypothesized to be contributing to herbicide resistance. 

 

Due to the involvement of multiple genes involved in the herbicide detoxification pathway, and 

evidence for selection on regions of the genome found on separate chromosomes, we 

hypothesized that multiple loci would show evidence of ILD, perhaps indicating co-inheritance. 

Our results support this hypothesis. Foremost, in contrast to low background ILD, long-distance 

linkage disequilibrium and ILD were high among intervals under selection, and consistently 

differentiated between the resistant and susceptible types across multiple populations. The 
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strongest linkage was observed between putative resistance genes that exhibited signs of 

selection. This linkage could quickly become very steep in the presence of co-adaptation among 

loci (Lewontin & Kojima, 1960), as would be the case if genes underlying NTSR worked in 

concert to produce the resistance phenotype. Indeed, we found high ILD values between 

regulatory regions and resistance alleles, and between intervals harboring genes involved in the 

same molecular pathways (e.g. detoxification, and stress signaling and response). 

  

Although linkage should become decoupled over time due to recombination and gene flow, the 

ongoing selection for herbicide resistance could slow down this decoupling between these 

functionally interacting genes (Nei, 1967). Even given gene flow between these populations 

(Alvarado-Serrano et al., 2019), co-adaptation could lead to the fixation of the resistance alleles 

given strong selection (Takahasi, 2007) or weaker recombination rate (Takahasi & Tajima, 

2005). Thus, long-distance linkage disequilibrium and ILD aided with co-adaptation could act to 

maintain resistance through generations in natural populations.  

 

One evolutionary force that should counteract the continued evolution of resistance is the 

potential for fitness costs of resistance, either due to the pleiotropic effects of resistance alleles 

themselves or due to negative fitness effects of loci that are linked to resistance loci. While costs 

are central to theories of resistance evolution (Simms & Rausher, 1987; Stahl et al., 1999; 

Baucom & Mauricio, 2004; Vila-Aiub et al., 2009), there are currently no examples, to our 

knowledge, in which the loci underlying fitness costs of nontarget site resistance have been 

identified. Our results suggest putative candidate loci associated with the previously identified 

cost of glyphosate resistance. Specifically, we found a highly differentiated region on Chr6 that 

exhibited alternate alleles in resistant and susceptible populations, and found this region to 

contain loci required for normal seed development and maturation (NAC25, NFD6). One of these 

genes, NFD6, was differentially regulated in the resistant individuals, further supporting its role 

in the low seed quality, and thus fitness cost, that we have previously described (Van Etten et al., 

2016). Further functional studies are needed to validate the role of these genes in incurring the 

fitness cost of resistance. 
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Additionally, our results strongly suggest genetic hitchhiking may act to maintain the cost in this 

species. Both NAC25 and NFD6 are physically linked on chromosome 6 to the regions under 

selection containing serine-threonine kinase genes and a regulatory region that is itself exhibiting 

ILD to the CYP76A2 gene on chromosome 10. Although recombination should decouple cost 

alleles that are physically linked to resistance alleles, these loci would not completely decouple if 

the recombination rate (c) is much lower than the selection coefficient(s) of the resistance locus 

(i.e., c<<s, (Stephan et al., 1992)). The requirement that c<<s is not improbable given the close 

proximity of cost and resistance loci (< 85kb) and the strong ongoing selection for herbicide 

resistance. Furthermore, if the ratio c/s < 10-4, the hitchhiking would almost be complete and the 

cost alleles could become fixed in the populations (Fay & Wu, 2000). Alternatively, it is possible 

that new compensatory mutations arising in the population could increase in frequency over time 

due to selection, decoupling the cost and resistance alleles and thus reducing fitness cost 

associated with glyphosate resistance (Vogwill et al., 2016; Lenormand et al., 2018). 

 

Overall, our work identified the potential genes associated with NTSR glyphosate resistance in I. 

purpurea -- our whole genome and transcriptome assays strongly support the role of 

detoxification conferring herbicide resistance in this species, and we additionally identified a role 

for plant sensing and stress. Interestingly, we show that NTSR glyphosate resistance in I. 

purpurea involves multiple loci which are maintained through generations via ILD. We also 

provide strong evidence to support the idea that fitness costs may be due to loci in strong linkage 

with resistance loci. Our work highlights the importance of multi-level, multi-population study in 

identifying the genetic mechanisms underlying polygenic defense traits, and for understanding 

the complex genetic-interplay between defense and cost. 

 

Materials and Methods 

Genome sequencing, assembly, and annotation 

We used an I. purpurea line originally sampled from an agricultural field in Orange County, NC, 

in 1985 by M. Rausher (i.e., prior to the widespread use of glyphosate) and selfed for >18 

generations in the lab for genome sequencing (seeds of this line ‘Fred/C’ are available upon 

request). High molecular weight DNA was isolated from flash-frozen leaf tissue using a 
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modified large-volume CTAB protocol (Doyle & Doyle, 1990) and sequenced on a PacBio 

Sequel at the University of Georgia. Raw PacBio subreads from 9 cells of Sequel chemistry were 

error-corrected with Canu (v1.7.1) (Koren et al., 2017) with default parameters for raw PacBio 

reads (--pacbio-raw). The corrected and trimmed reads from Canu were assembled with Flye 

(v2.4-release) (Kolmogorov et al., 2019) and anchored onto pseudomolecules by nearly 81 

million read pairs of Phase Genomics Hi-C (Seattle, WA) of leaf tissue using Sau3AI cutsites. 

Within-genome and across-genome synteny was visualized using the CoGE SynMap platform 

(Lyons, 2008), with DAGChainer options “-D20 -A 5”, as well as with jcvi with default 

parameters (https://github.com/tanghaibao/jcvi). Ipomoea purpurea pseudomolecules were 

numbered and oriented according to chromosome synteny against Ipomoea nil pseudomolecules 

(Appendix B, Figure S3-2).  

 

Raw 50nt single-end RNA-seq reads were aligned using STAR (v.2.7.0) (Dobin et al., 2013) 

with default single-pass parameters. Repetitive elements were first annotated with 

RepeatModeler (v1.0.11). Long Terminal Repeat (LTR) retrotransposons were annotated with 

LTRharvest (v1.6.1) with options -similar 85 -mindistltr 1000 -maxdistltr 15000 -mintsd 5 -

maxtsd 20”. RepeatModeler annotations were combined with all Viridiplantae repeats from 

Repbase and used as a species-specific repeat database built using RepeatModeler with default 

options.  

 

Genome annotation was performed using a diverse set of evidence. First, a set of 12 RNA-seq 

libraries from leaf tissue was aligned with STAR (v2.7.0), and transcripts assembled with 

Stringtie (v2.1.3). MAKER2 (Holt & Yandell, 2011) was initially run with evidence from the 

RNA-seq alignments, as well as peptides from I. trifida, I. triloba, and I. nil. The resulting gene 

set was used to train SNAP (v2013-11-29) (Korf, 2004) . AUGUSTUS (v3.3.2) (Stanke et al., 

2006) was trained with evidence from BUSCO (v4.1.0) (Simão et al., 2015) against the eudicot 

odb10 set. with default options. MAKER2 was re-run with the ab initio SNAP and AUGUSTUS 

training sets, in addition to the homologous protein and RNA-seq evidence, to build a final gene 

annotation set. 
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Sampling and sequencing 

We selected eight populations to investigate the genetic basis of glyphosate resistance and its 

cost following (Van Etten et al., 2020) -- 4 low resistance, from here on referred to as the 

susceptible population (S: <20% population survival at 1X the field dose of RoundUp) and 4 

high resistance populations (R: >70% population survival at 1X the field dose of RoundUp), 

from here on referred to as the resistant populations (Appendix B, Table S3-12). Seeds from 10 

maternal lines per population were germinated, except for one susceptible population (RB), 

wherein 9 maternal lines were used. We extracted DNA from leaf tissue using the Qiagen Plant 

DNeasy kit. 150 paired-end sequencing was performed using Illumina HiSeq4000 and 

NovaSeq6000 using three and two lanes, respectively. We sequenced two populations at high 

coverage (at least 25X) and the remaining six populations at low coverage (10X). Two 

populations (WG, resistant and RB, susceptible) were run on one lane of HiSeq6000 and 

NovaSeq6000 each whereas the other lane had the remaining six populations. This yielded a total 

of 3,300,397,148,700 bases with average coverage of 28.84X for WG and RB. Coverage of the 

other six populations has an average of 14.66X.  

 

Variant calling 

We aligned the reads to our draft genome using BWA mem v0.7.15 (Li & Durbin, 2009) with 

parameter -M. Since the same sample was sequenced using multiple platforms (HiSeq and 

NovaSeq), the alignment files were merged and duplicate reads were marked using the 

MarkDuplicate tool of Picard v2.8.1 (http://broadinstitute.github.io/picard). Next, we prepared a 

database of true known variants, required for base recalibration. This database was created using 

data from the top eighteen individuals with the highest read counts, upon which variant call was 

performed using the HaplotypeCaller tool of GATK v4.1 (McKenna et al., 2010). Low 

confidence variants were filtered out using the VariantFiltration tool of GATK v4.1 (McKenna et 

al., 2010) (15 < DP < 60; ReadPosRankSum < -8.0; QD < 2.0; FS > 60.0; SOR > 3.0; MQ < 

40.0; MQRankSum < -12.5) and only the high confidence variants were used in the dataset. This 

was used to recalibrate base qualities using GATK v4.1 tools BaseRecalibrator and ApplyBQSR 

(McKenna et al., 2010). Variants were called individually on all the individuals using the 

HaplotypeCaller tool of GATK v4.1 (McKenna et al., 2010) using parameters -ERC GVCF --

min-pruning 1 --min-dangling-branch-length 1. The variants from each individual were 
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combined to one variant file (a raw cohort variant file) using the tools GenomicsDBImport, 

GenotypeGVCFs, and GatherVcfs (McKenna et al., 2010), with invariants included. Next, 

multiple rounds of filtration were performed on this variant dataset to filter out potential false 

positives. First, using the GATK v4.1 tools VariantFiltration and SelectVariants we filtered the 

variants using the parameters QD<1.5, DP<10 and DP>2000, FS>80, SOR>5, MQ<40, 

MQRankSum< -6 and MQRankSum>6, and ReadPosRankSum< -4 and ReadPosRankSum> 4 

(McKenna et al., 2010). For the next round of filtration, we removed variants that had genotype 

depth more than twice the average and heterozygosity more than 0.8 using the het packages from 

VCFtools v0.1.15 (Danecek et al., 2011). In the third round of filtration, we filtered variants that 

had quality above 20, had no missing information, a minor allele frequency of 0.05, and a 

minimum mean depth of 10 (vcftools --minQ 20 --max-missing 1.0 --maf 0.05 --min-meanDP 

10) (Danecek et al., 2011). Finally, we filtered using BCFtools (v1.7) (Li, 2011) to keep only bi-

allelic SNPs (bcftools view -m2 -M2 -v snps). This gave us a total of 3,942,549 high confidence 

SNPs. These SNPs were used for downstream analyses. 

 

We performed a PCA analysis using the allele frequencies of all the SNPs to investigate the 

population structure using the package bigsnpr v.1.4.4 (Privé et al., 2018) in R and found that the 

populations did not segregate into two separate genetic clusters (Appendix B, Figure S3-4a-b). 

Further, we repeated this analysis for SNPs from regions under selection (see below) to test 

whether we observe the same population structure patterns. We observed that these separated 

into distinct resistant and susceptible groups, except for a resistant population, BI, which 

clustered between the susceptible and other resistant populations (Appendix B, Figure S3-4c). 

Thus, for the purposes of this study, we dropped the BI population from further analysis.  

 

Selection analysis  

To identify the regions associated with resistance, we used a two step approach. First, we used 

bayenv2 (Günther & Coop, 2013), which is designed to identify candidate outliers while taking 

population structure into account by incorporating a covariance matrix of population allele 

frequencies (Günther & Coop, 2013). bayenv2 was run on a pruned dataset that contained SNPs 

that were at least 5kb apart (vcftools --thin 5000), resulting in a total of 86,648 SNPs. Ten 

independent covariance matrices were constructed for sets of 5000 randomly selected SNPs from 
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the global dataset, by running bayenv2 for 100,000 iterations. The final covariance matrix was 

constructed by averaging across the 10 independent runs. Using this matrix, we ran bayenv2 with 

different random seeds for 5 independent runs with 100,000 iterations each on the pruned set of 

SNPs. We then used the test statistic averaged over the five runs to identify the loci under 

selection. We considered SNPs as robust candidates if they belonged in the top 5 % of Bayes 

factors (BFs) and Spearman’s ρ. To define genes under selection, we picked up genes in the 5kb 

up- and downstream spanning regions of the robust candidates. 

 

Secondly, we employed a Md-rank-P approach that integrates multiple selection statistics to 

identify the regions under selection. Recently, composite selection testing has been proposed as a 

way to confidently identify regions under selection and has been shown to considerably reduce 

false-positives (Lotterhos et al., 2017; Yurchenko et al., 2018; Brennan et al., 2018). We split the 

high confidence variant dataset obtained into ‘resistant’ and ‘susceptible’ variant datasets using 

vcf-subset of VCFtools v0.1.15 (Danecek et al., 2011). The ‘resistant’ and ‘susceptible’ variant 

datasets contained 30 and 39 individuals, respectively (Appendix B, Table S3-12). We then used 

these datasets to calculate diversity and selection statistics GST (Weir, 1996), pi, Tajima’s D (Tajima, 

1989), Fu and Way’s H (Fay & Wu, 2003) using a custom script from (Baduel et al., 2018) in a 

300SNP window, for both the dataset. Furthermore, to detect hard sweep we phased the variants 

using beagle version 5.1 (Browning & Browning, 2007) which was then used to calculate the 

haplotype homozygosity statistic (H12, a measure of haplotype homozygosity that detects both 

hard and soft sweeps) using the scripts provided (Garud et al., 2015). For regions above 95 

percentile GST, we calculated a composite rank-based statistic (Md-rank-P) which was computed 

as the Mahalanobis distance on the negative log10 transformation of raw statistics into rank P-

values (Lotterhos et al., 2017). This Md-rank-P was calculated using pi, Tajima’s D, Fu and 

Way’s H, and H12. To identify potential regions of selection we chose bins with greater than 95 

percentile Md-rank-P. Genes that were identified via both approaches were considered as the 

genes associated with herbicide resistance in I. purpurea. 

 

Linkage analysis  

We calculated linkage disequilibrium (r2) at three different levels. First, to estimate the 

background genome-wide long-distance (and interchromosomal) linkage disequilibrium (ILD), 
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we calculated r2 values for 5842 SNPs separated by at least 100kb using VCFtools v0.1.15 

(Danecek et al., 2011) (--thin 100000 --interchrom-hap-r2). Second, we estimated the r2 for 

SNPs separated by at least 1kb in and between broad regions (0.75Mb upstream and 

downstream) around the five focused regions (with GST > 0.39) under selection using VCFtools 

v0.1.15 (Danecek et al., 2011). For this, we used the range under selection obtained from the 

Md-rank-P approach since it uses bins of 300 SNPs, as compared to bayenv2 which only 

provides outlier SNPs. Lastly, since one would expect higher linkage between regions with high 

differentiation, we also randomly chose four regions with high differentiation (showing no signs 

of selection) of similar lengths as the five focused regions above and compared its linkage values 

to those regions.  

 

RNA-Seq  

To identify transcripts associated with glyphosate resistance and its potential cost, we sequenced 

transcriptomes of 17 individuals belonging to four different treatments; resistant control (Rc), 

susceptible control (Sc), resistant herbicide sprayed (Rh), and susceptible herbicide sprayed (Sh). 

Each treatment had multiple individuals (Rc-2, Sc-2, Rh-6, Sh-7; Appendix B, Table S3-13). 

These individuals were generated via selfing in the growth chamber and were grown in a 

controlled environment (growth chamber) to reduce variation due to environmental differences. 

20 days after planting, we sprayed glyphosate (concentration of 1.52 kg ai/ha) on the Rh and Sh 

treatment plants and collected the second and fourth leaf for RNA extractions 8 hours post-spray. 

These were flash frozen using liquid nitrogen and stored at -80℃. We extracted RNA using 

Qiagen RNeasy Plant mini kit with the optional DNase digestion step. This was then sequenced 

using Illumina NovaSeq 6000 at 150bp paired-end sequencing. A total of 132,551,535,000 bp 

were obtained.  

 

Differential gene expression -- We processed the raw reads obtained to remove adapters using 

cutadapt v1.18 (Martin, 2011) and then mapped them to the de-novo assembled genome (--

sjdbOverhang 149 --outSAMtype BAM SortedByCoordinate Unsorted) using STAR v2.7.5 

(Dobin et al., 2013). Next, using HTSeq v0.11.1(Anders et al., 2015), we counted read counts for 

each gene. These read counts were then used to filter out lowly expressed transcripts using the 

Bioconductor package edgeR version 3.18.1 (Robinson et al., 2010) such that transcripts were 
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retained only if they had greater than 0.5 counts-per-million in at least two samples (Rc vs Sc) 

and four samples (Rh vs Sh). The libraries were then normalized in edgeR (using the trimmed 

mean of M-values method) followed by differential gene expression analysis using the classic 

pairwise comparison of edgeR version 3.18.1 (Robinson et al., 2010). We extracted the 

significance of differentially expressed transcripts (DETs) with FDR <= 0.05. This was done for 

two contrasts, Rh vs Sh (total sample size = 13; Rh = 6, Sh = 7) and Rc vs Sc (total sample size 

4; Rc = 2, Sc = 2). The first contrast informs us of the genes that are regulated in response to the 

herbicide, and how this gene regulation differs between the resistant and the susceptible 

populations, whereas the latter informs us of the baseline expression difference due to glyphosate 

resistance between the two populations. 

 

Malathion Experiment  

On May 15th, 2019, we planted a total of 180 replicate seeds from multiple resistant and 

susceptible populations (Appendix B, Table S3-14) in Cone-Tainers (Stewe and Sons). These 

were allowed to grow for 30 days, after which we subjected them to one of the four treatment 

environments--malathion (7.81 ml/ 500 mL), glyphosate (3.4 kg ai/ha), glyphosate and 

malathion, and a control. Malathion was applied using a handheld sprayer, and glyphosate was 

applied 24 hours later using a hand-held CO2 sprayer (Spraying Systems Co., Wheaton, IL) 

calibrated to deliver 187 L/ha. Twenty-five days post treatment spray, we harvested the plants. 

These were dried for 3 days at 70C and weighed for an estimate of dry above ground-biomass.  

 

Using this data, we assessed whether biomass was significantly altered by the different 

treatments. First, we normalized the above-ground biomass using the transformTukey function 

from Rcompanion v.2.0.0 (Mangiafico, 2015). We then used a generalized linear model (lm 

function (Computing, 2013)) with normalized biomass as the dependent variable and population 

Type (R/S) and treatment as the independent variables. We assessed the significance of the 

variables using the Anova function of the car package v.3.0.10 (Fox & Weisberg, 2018), and 

performed a pairwise comparison between groups using the lsmeans function from package 

lsmeans v2.30.0 (Lenth, 2016), adjusted for multiple tests using tukey correction. Using the same 

general model, we also compared whether biomass was significantly different between 

treatments for each population type. To control for the differences in the plant size we 
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standardized the biomass of the individuals by the average biomass of the respective maternal 

line in the control treatment, and then normalized it as above. 
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Figure	3-1	Overview of populations examined in this work and the genomic context of 
selection.  
(a) Ten individuals were sampled from each population (except RB, wherein 9 individuals were 
sampled, with resistant populations (70-100% survival post-glyphosate) indicated in red and 
susceptible populations (< 20% survival post-glyphosate) indicated by blue markers (Appendix 
B, Table S3-12). (b) Circos plot depicting the regions of the genome that show signs of selection 
associated with herbicide resistance. The genome assembly resulted in 15 scaffolds which are 
represented here by grey bars. Significant values of Bayes Factor (BF) from bayenv2 (top 5% BF 
and top 5% Spearman’s Rho) indicating outlier SNPs for herbicide resistance are depicted by red 
dots, and the significant Md-rank-P values (top 5% Md-rank-P value) identifying signatures of 
selection are presented in green dots. Regions of the genome that were significant using both 
bayenv2 and Md-rank-P are identified by the blue arrows.  
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Figure 3-2 Region of Chromosome 10 showing signs of selection.  
Shown is the (a) GST (upper), BayesFactor (BF) (middle) and Md-rank-P (lower) for the resistant 
individuals, and statistics used to estimate Md-rank-P (b) clockwise starting from upper left, pi, 
Tajima’s D, H12 and Fay and Wu’s H. Red lines indicate respective values for the resistant 
populations. Khaki vertical lines represent copies of glycosyltransferases, green vertical lines are 
the cytochrome P450, and the grey vertical line represents CTR1 (see below). The black dashed 
line in (a) represents 95 percentile values. 
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Figure 3-3 Gene expression variation associated with herbicide resistance, and results of a 
functional assay supporting the idea that resistance in I. purpurea is due to detoxification.  
(a) Loci associated with glyphosate resistance identified by differential expression analysis with 
P-value < 0.0005. Color key represents log2 fold-change values. (b) Least square means of 
above-ground biomass according to treatment (malathion, glyphosate, glyphosate plus malathion, 
and a control (no treatment)) and (c) summarized according to resistance type (R/S), normalized 
over the control. Letters in (b) and (c) indicate significant differences between treatment 
environments. The addition of the cytochrome P450 inhibitor malathion reverses glyphosate 
resistance (glyphosate vs glyphosate+malathion, contrast estimate = 0.379, t-ratio = 2.946, p-
value = 0.019), with the resistant individuals showing the same phenotype as the susceptible 
individuals in the presence of glyphosate and malathion but not in the presence of glyphosate 
only. Error bars represent the one standard deviation from the least square means. 
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Figure 3-4 Long-distance linkage disequilibrium and ILD among the four highly differentiated 
(GST > 0.39) regions under selection associated with glyphosate resistance.  
The four intervals displayed islands of increased linkage disequilibrium as estimated by r2 for 
SNPs separated by at least 1 kb in and between broad regions under selection. The white lines 
represent the absence of SNPs (missing data) whereas the black boxes represent linkage between 
the five selection intervals. r2 values are averaged over two-dimensional bins of 10 x 10 kb.  
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Figure 3-5 Loci associated with the cost of glyphosate resistance identified by the (a) whole-
genome selection-scan and differential expression analysis in the (b) absence and (c) presence of 
herbicide.  
Top panel of (a) represents GST between the resistant and the susceptible populations, mid-panel 
is the Md-rank-P value, and the lower panel represents the allele frequency. Salmon vertical lines 
represent NFD6 and NAC25, in that order. Red and blue represent resistant and susceptible 
populations, respectively. Black horizontal dotted lines represent 95 percentile values while 
vertical lines represent regions with GST above 0.6. The differentially expressed cost genes 
shown here were chosen based on their functional annotation and had FDR < 0.005 and P-value 
< 0.00005. Color key represents log2 fold-change values.  
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Tables 
 

Chr Location 
(Mb) Genes of interest Functional annotations for genes 

of interest 
Process involved 

In 

Chr6 12.82-
12.84  XP_019190118.1 trihelix transcription factor GT-

3b-like Response to stress 

Chr6 40.40-
40.57  XP_019170142.1 MOR1-like 

Microtubules 
organization 

during mitosis 
and cytokinesis 

Chr7 16.78-
16.83  XP_019163643.1 

AP2-like ethylene-responsive 
transcription factor PLT1, zinc 
finger A20 and AN1 domain-
containing stress-associated 

protein 8 

Responses to 
environmental 

stimuli 

Chr10 0.43-
0.66  

XP_019187799.1, 
XP_019187801.1, 
XP_019187802.1, 
XP_019187803.1, 
XP_019187804.1, 
XP_019188107.1, 
XP_019186932.1, 
XP_019186934.1, 
XP_019186939.1, 
XP_019186942.1 

Glycosyltransferase (x7), 
CYP76A1 (x3), CYP76A2 (x3) Detoxification 

XP_019187692.1 serine/threonine-protein kinase 
CTR1 Stress signaling 

Chr11 6.45-
7.31  

XP_019154582.1 CYP736A12 Detoxification 

XP_019195164.1, 
XP_019195154.1, 
XP_019195155.1, 
XP_019195149.1 

phosphate transporter PHO1 
homolog 3-like (x5), 

Transport of 
glyphosate into 

the cell  

XP_019195564.1, 
XP_019154554.1, 
XP_019154738.1, 
XP_019154605.1, 
XP_019154740.1, 
XP_019154739.1, 
XP_019154737.1 

NAC domain-containing protein 
92, LOB domain-containing 

protein 41, Leaf Rust 10 Disease-
resistance locus Receptor-like 

Protein Kinase (x6) 

Stress response 

Chr13 16.45-
17.73  

XP_019171785.1, 
XP_019172641.1, 
XP_019172676.1 

serine/threonine-protein kinase-
like protein At5g23170, AT-hook 

motif nuclear-localized protein 
24-like, zinc finger A20 and AN1 

Stress sensing and 
response 
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domain-containing stress-
associated protein 1 

Chr13 20.91-
21.22  XP_019179507.1 CYP87A3 Detoxification 

 
 
Table 3-1 Overview of the genes under selection for glyphosate resistance that are involved in 
the process of detoxification, environmental sensing, and stress signaling and response. 
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Chapter 4 

 

One Hundred Years of Deciphering Genetic Correlations -- Lessons Learned and Future 

Perspectives 

 

 

Abstract 

Deciphering the genetic basis of trait correlations is crucial for understanding trait evolution and 

adaptation. Most of the effort towards understanding genetic correlations have made use of 

phenotypic data from a pedigree of individuals. With the advent of sequencing technologies, the 

focus is moving towards analytical methods to identify the specific genetic variants and thus the 

mechanisms underlying trait correlations. Here, we first review the phenotypic and molecular 

marker methods that are commonly used to estimate the strength of genetic correlations 

(magnitude and direction), and to deconstruct the underlying genetic mechanism (pleiotropy vs 

linkage). Next, we discuss the pitfalls associated with these methods and provide an outline of 

strategies that can address some of these pitfalls. We believe an integrative approach, combining 

phenotypic studies with genetic marker data and molecular validation tools, is required to shed 

light on the genetic architecture of trait correlations. A deeper understanding of genetic 

correlations will aid in understanding their evolutionary potential and further our understanding 

of how pervasive pleiotropy or linkage is in shaping the evolution of traits.  
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Introduction 

Trait correlations -- covariation between two or more phenotypic traits -- are pervasive in nature 

and may act to constrain the adaptive evolution of natural populations (Roff, 1996; Conner et al., 

2011). Genetic correlations between traits are also crucial to breeding programs attempting to 

improve crops (Falconer, 1996), play a central role in life-history theory (Via & Lande, 1985; 

Barton & Turelli, 1989), and may facilitate the adaptation of invasive species introduced into 

new or changing environments (Hämälä et al., 2020; Dutta et al., 2021). Trait correlations are 

one of the most commonly studied types of evolutionary constraints (Conner et al., 2011), with 

their magnitude, direction, and genetic basis all of primary interest given these factors are 

predicted to influence how correlated traits will evolve over time (Lande, 1979; Cheverud, 1982, 

1984; Falconer, 1996). Despite their theoretical importance, however, a rich literature shows that 

the influence of trait correlations on evolutionary dynamics is complex, with evidence that 

correlations can constrain, facilitate, or even have little effect on trait evolution (Agrawal & 

Stinchcombe, 2009). 

 

This apparent complexity is likely due, at least in part, to the stability of genetic correlations. The 

persistence of correlations between traits and their evolution is influenced by selection (Roff, 

2000; Jones et al., 2003; Revell, 2007; Arnold et al., 2008; Chantepie & Chevin, 2020; Svensson 

et al., 2021), and can also be altered due to mutations, genetic drift and founder effects (Jones et 

al., 2003; Steven et al., 2020) in addition to the genetic background and environment (Saltz et 

al., 2017b; Geiler-Samerotte et al., 2020; Mitchell & Houslay, 2021). Importantly, the genetic 

basis of trait correlations plays a major role in the persistence of the correlation. In the simplest 

scenario, correlations due to linkage disequilibrium (LD) can be expected to be transient since, 

assuming no correlated selection, recombination should remove the linked variants rather rapidly 

whereas genetic correlations due to pleiotropy are expected to persist over longer time scales 

(Lande & Arnold, 1983; Futuyma, 1986; Endler, 1986; Lynch et al., 1998; Falconer & Mackay, 

2009). A number of studies have successfully used crossing designs, artificial selection regimes, 

and QTL mapping to determine the causal mechanism underlying trait correlations (Fenster & 

Carr, 1997; Beldade et al., 2002; Conner, 2002; Conner et al., 2011; Delph et al., 2011). 
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However, as we show below, pleiotropy can arise from both direct and indirect effects of 

variants on traits, and can likewise be influenced by an intermediate genetic factor (Stearns, 

2010; Wagner & Zhang, 2011; Paaby & Rockman, 2013). The resolution achieved from crossing 

designs, artificial selection, and QTL studies cannot differentiate these possibilities. Further, in 

some scenarios (i.e. inversions), pleiotropy and linkage may effectively be one and the same, 

suggesting that our expectations for trait evolution in those situations should be modified (Saltz 

et al., 2017a). A more precise understanding of the mechanism of correlation--i.e., down to the 

particular genetic variants involved--would likely shed light on long term stability of association 

and perhaps help us understand how certain combinations of evolutionary forces and trait 

associations lead to constraints whereas others lead to facilitation. There are a number of 

analytical methods based on GWAS that we can employ to determine if pleiotropy or linkage 

may underlie a trait correlation, and, if the correlation is due to pleiotropy, further clarify the 

type of pleiotropy (i.e. biological vs mediated pleiotropy). These methods may be of interest to 

evolutionary biologists, but their use remains limited. 

 

Here, we first describe the genetic mechanisms hypothesized to underlie trait correlations -- 

pleiotropy and linkage -- and then review the phenotypic and genetic methods commonly used to 

estimate the magnitude and direction of genetic correlations. Next, we outline analytical 

strategies that have been implemented for teasing apart the underlying mechanistic basis of trait 

correlations. We then discuss the pitfalls associated with these methods and suggest strategies 

that can address some of these issues. We end this review with a path forward for integrating 

information from phenotypic family-level data, genetic marker data (GWAS, omics-QTL), and 

molecular validation tools to shed light on the genetic architecture of trait correlations. Increased 

precision in our understanding of the genetics of trait correlations will aid predictions on how 

traits may be expected to evolve, and more importantly will broaden our understanding of the 

pervasiveness of pleiotropy versus linkage in shaping current patterns of the phenotypic diversity 

that we see today.  
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I. How do correlations arise? 

Genetic correlations among quantitative traits can arise due to pleiotropy (biological or 

mediated) or linkage disequilibrium (LD) (Figure 4-1). Biological pleiotropy, also referred to as 

horizontal pleiotropy, is defined as a causal variant (or gene) that independently influences two 

traits, either directly or indirectly via an intermediate phenotype (Figure 4-1a-c). In contrast, 

mediated pleiotropy, also referred to as vertical pleiotropy, is when a genetic variant directly 

alters one trait which then causally influences the other trait, i.e. the genetic variant associated 

with the first trait is indirectly associated with the second (Figure 4-1d-e). Additionally, genetic 

correlations can also arise when the causal variant (or gene) for the two traits are physically 

linked and will thus be inherited together (linkage disequilibrium, Figure 4-1f). Although 

biological pleiotropy and LD have a rich literature, our understanding of mediated pleiotropy 

remains limited (Auge et al., 2019). Mediated pleiotropy can be invoked whenever a trait lies in 

the causal path of the other trait and as such traits within the same functional pathway diverging 

to two phenotypic traits, or a trait that regulates multiple pathways are more likely to be 

correlated via mediated pleiotropy.  

 

Delineating pleiotropy from linkage is important due to their inherently different evolutionary 

fates. A trait correlation arising from pleiotropy is expected to persist over generations -- it is 

likely that neutral evolutionary processes like drift will not break down the trait associations 

(Lande & Arnold, 1983; Conner, 2002) since a common functional mechanism generates the 

correlation. Moreover, natural selection has the potential to lead to the coevolution of the 

correlated pleiotropic traits, even when the traits are maladaptive (the case of antagonistic 

pleiotropy) (Lande & Arnold, 1983). In contrast, trait correlations arising from LD are expected 

to decay rapidly due to recombination and segregation, and thus are more transient (Futuyma, 

1986; Falconer & Mackay, 2009). Alternatively, the presence of strong correlational selection 

could balance out the recombination, especially if the genes are closely linked, making the trait 

correlations due to linkage less transient (Hartl et al., 1997; Lynch et al., 1998). Taken together, 

genetic correlation arising due to pleiotropy has a higher potential for impacting the course of 

evolution of genetically correlated traits. 
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II. Estimating genetic correlations and inferences on causality using phenotypic data 

In the simplest sense, estimation of the genetic correlation coefficient can be thought of as the 

analysis of variance and covariance for two traits, and ANOVA and REML are routinely utilized 

for this purpose (see examples in Table 4-1). In experimental and natural populations, genetic 

correlations have traditionally been estimated using family-level phenotypic data, focusing 

mainly on parent-offspring, half- or full-sib families (see examples in Table 4-1). The choice of 

experimental and family design is crucial in such cases since it directly affects the estimation of 

genetic correlations. For example, inbreeding (Rose, 1984) and the presence of a common 

stressful environment (Service, Philip M. & Rose, 1985; Kasule, 1991) might introduce biases. 

Additionally, it was shown that genetic correlation estimates using full-sib data lead to more 

positive estimates due to the presence of additive and dominance variances (Hill, 2013), and also 

the presence of maternal effects in such families (Falconer 1996; Hunt and Simmons 1998). To 

address this, an increasing number of studies have begun employing (Fox, 1998; Fox et al., 

2004; Hallsson & Björklund, 2012) mixed family designs like a nested paternal half-sib design. 

Each design and analysis method incurs its own set of benefits and drawbacks (see Table 4-2). 

For example, methods based on sampling variance of phenotypic data have been shown to be 

heavily biased for small sample sizes (Reeve, 1955; Robertson, 1959; Grossman, 1970). In 

contrast, methods like bootstrapping and jackknifing (Roff & Preziosi, 1994; Reale & Roff, 

2001) have been shown to provide a lower SE, and thus might be more favorable over other 

methods. This highlights the complexity involved in estimating a reliable genetic correlation 

estimate which is required to increase the predictability of the correlated response to selection. 

 

As discussed above, an important aspect of investigating the presence of genetic correlations is 

identifying its underlying genetic mechanism -- biological vs mediated pleiotropy vs linkage 

disequilibrium (LD). One way of teasing apart the causality of trait correlation using phenotypic 

data is to test for the consistency of the genetic correlation structure between traits -- if it is 

consistent among multiple populations of the species, it is indicative of pleiotropy. Fenster and 

Carr (1997) applied this logic to inter- and intra-specific crosses between multiple populations of 

Mimulus and concluded that linkage is responsible for the positive genetic correlation between 

pollen and ovule production. Using different populations for evaluating the differences between 
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genetic correlation structures is inherently problematic, however, as the differences in the 

environment can directly contribute to the differences in genetic correlation structure.  

 

Other studies have used multi-generation approaches for testing the presence of linkage between 

correlated traits (Conner, 1997; Beldade et al., 2002; Conner et al., 2003, 2011). In multi-

generational studies, one would expect the magnitude of genetic correlation to decline after 

multiple generations of recombination if the genetic correlation is solely due to linkage 

disequilibrium (recombination will weaken linkage), and for the genetic correlation to be the 

same in case of pleiotropy. Ideally, the study design should use a random-mating (to minimize 

LD being maintained by selection) and should be carried for a minimum of eight to ten 

generations, to confidently differentiate between pleiotropy and linkage (Conner, 1997; Conner 

et al., 2003, 2011). Beldade and colleagues (Beldade et al., 2002) similarly performed a ten-

generation artificial selection study and found that the correlation among wing spots quickly 

decoupled under selection in Bicyclus anynana butterflies, indicating LD as the underlying 

correlation mechanism. Interestingly, similar logic was recently applied to correlated behavioral 

traits in domesticated dogs (modern vs ancient) and found that the traits temporally decouple due 

to the varying selection pressures during the domestication process (Hansen Wheat et al., 2019). 

These methods are again incapable of differentiating biological vs mediated pleiotropy. 

Additionally, multi-generational studies have limited power to detect tight linkage, unless a very 

large segregating population is available, creating which can either be very time-intensive or not 

possible depending on the species.  

 

Using phenotypic data for deconstructing the mechanistic basis of the genetic correlation -- i.e., 

pleiotropy vs linkage -- is very challenging (Brooks, 2000). Although feasible, the caveats of 

differentiating between pleiotropy and linkage using phenotypic data are that these methods (1.) 

are very time-intensive, (2.) provide no insights into the identity of the causal genes underlying 

the traits, (3.) can only work for genes that are not tightly linked to each other, and (4.) are only 

possible when the loci under consideration are not located within a coldspot recombination 

region and/or within structurally rearranged regions (regions with inherent low recombination).  
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III. Assessing genetic correlations at the molecular level 

With the advent of sequencing technologies, estimation of genetic correlations lately has largely 

depended upon large-scale genetic data, like those available in GWAS datasets (see examples in 

Table 4-3). A major advantage of using GWAS for the estimation of genetic correlations is that it 

does not require the individuals to be related and the phenotypes of interest can be measured on 

different individuals. Together, these enable the inclusion of larger and more diverse samples. 

Although there is a rich human literature estimating genetic correlation coefficient using GWAS 

datasets (van Rheenen et al., 2019), this is limited in other species, especially in the plant 

literature (see Table 4-3). Broadly, the methods that employ GWAS data to estimate the genetic 

correlation can be classified into two categories -- one that makes use of the individual-level data 

and another that uses the GWAS summary statistic (see Box 4-1 for an overview of methods).  

 

Korte and colleagues (Korte et al., 2012) developed a multi-trait mixed model (MTMM), to 

estimate genetic correlation among traits using individual-level data. Using this method, they 

showed that the blood metabolites involved in cardiovascular diseases are significantly 

genetically correlated. This method has also been applied to Arabidopsis thaliana (Thoen et al., 

2017), where it was shown that stress responses are highly correlated -- stress response that 

induces the salicylic acid pathway (parasitic plants, aphids) is negatively correlated with the 

response that induces jasmonic acid pathways (necrotrophic fungi, thrips). Another routinely 

used method to estimate trait correlations using individual-level GWAS data is GREML 

(Genome-based Restricted Maximum Likelihood). This method has been widely applied to a 

suite of traits (Table 4-3). For instance, human height and body mass index between men and 

women have been shown to be highly positively correlated (Yang et al., 2015), and this has 

recently been shown to be consistent across different continental populations (Guo et al., 2021). 

Studies in cattle have found a positive genetic correlation between milk and protein yield (Calus 

et al., 2018) and more interestingly, have found that the resistance to different bovine pathogens 

are all strongly correlated (both positively and negatively) (Mahmoud et al., 2018). Although 

accurate and powerful, the individual-level approach can seldom be used due to the lack of 

availability of individual-level data (since not all studies publish the individual-level data) and a 

large computational power requirement. 



 96 

In contrast to individual-level methods, the GWAS summary statistic method for estimating 

genetic correlation is routinely applied, especially to human traits (Table 4-3). This is in part due 

to the wide availability of GWAS summary statistics, and the low computational requirements of 

the method. 

 

One of the most commonly used methods is Linkage Disequilibrium Scores Regression (LDSR) 

which has been applied to an array of human traits (Zheng et al., 2017; Watanabe et al., 2019; 

Zhang et al., 2021). Interestingly, using LDSR on 17 traits in humans has provided support for 

Chevrud’s conjecture (Cheverud, 1988) which states that phenotypic correlations are a good 

estimate of genetic correlations (Sodini et al., 2018). Recently, LDSR was also applied to cattle 

where it was found that milk, fat and protein yield are all significantly positively correlated, but 

these have a negative correlation with mastitis resistance (Cai et al., 2020). To date though, no 

studies in the plant literature have used LDSR to estimate the genetic correlations between traits, 

despite over 1000 crop GWAS studies published in the last decade (Liu & Yan, 2019). Although 

LDSR can be used readily, researchers should be aware of the limitations of this method given 

the high potential standard error associated with the estimation (see Box 4-1). 

 
 

Box 4-1: Brief overview of the available methods for estimating genetic correlation 

coefficient using GWAS data. 

Methods utilizing individual-level data: Multi-trait mixed model (MTMM), was developed by 

Korte and colleagues (Korte et al., 2012) which is an extension of the mixed models used for 

association mapping in GWAS and can be used to estimate genetic correlation among traits using 

individual-level data. Their model considers both within and between-trait variance components 

for multiple traits simultaneously, thus partitioning the genetic and environmental covariances 

influencing the traits. Briefly, it involves building a GRM (Genomic Relationship Matrix), that 

describes the variance-covariance structure of the SNPs which are then used to estimate the 

contribution of SNPs to phenotypic variance. For a comprehensive overview of, advantages and 

pitfalls of MTMM see Yang et al., (2014). Another method utilizing individual-level data is a 

bivariate GREML (Genome-based Restricted Maximum Likelihood) (Yang et al., 2011a; Lee et 

al., 2012). Briefly, this method also constructs a GRM but estimates genetic correlation via 
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LMM (Linear Mixed Model), in which GRM is used to model phenotypes as a function of the 

genotype of the individuals to estimate a statistic called SNP-based heritability. Caution must be 

taken when interpreting genetic correlations using this method since SNP-based heritability aims 

to capture only the causal variants that are in LD with the measured SNPs (van Rheenen et al., 

2019), and as such is always underestimated. Additionally, it is important to note that the genetic 

correlation estimate is associated with errors of three estimated parameters -- the two heritability 

values and the genetic correlation itself and thus the SE of estimated genetic correlation can thus 

be high, especially if the SNP density is low (<500k SNPs) (Ni et al., 2018).  

 

Methods utilizing summary statistics: Linkage disequilibrium scores regression (LDSR) was the 

first method developed that made use of GWAS summary statistics to estimate genetic 

correlation, and extensions have been made since (Bulik-Sullivan et al., 2015b,a). In the LDSR 

approach, the association test statistic of a SNP is regressed on their LD scores, which is the sum 

LD r2 measured with all other SNPs. The method is based on the observation that variants in LD 

with a causal variant show a higher association test statistic, which is proportional to the strength 

of the linkage (Pritchard & Przeworski, 2001; Yang et al., 2011b). Using this LD score for a 

SNP and the association statistic of the SNP for the two traits of interest, SNP-based 

heritabilities, and genetic correlation can be estimated. Since this method uses LD between 

SNPs, it also requires a reference panel with the same LD structure to adjust for linkage in the 

population, ideally from the same population (Bulik-Sullivan et al., 2015a). The further the 

reference panel’s LD structure is from those of the sample, the higher would be the standard 

error associated with the estimated genetic correlation (Ni et al., 2018). Additional sources like 

the inherent loss of information in the GWAS summary statistic, low SNP density, and genomic 

partitioning can further lead to increased standard errors. Another caveat of the LDSR 

methodology is the key assumption that the allele frequency differences between subpopulations 

used in GWAS are independent of the LD scores (Bulik-Sullivan et al., 2015a), but linked 

selection (like background selection) can lead to a correlation between them (Berg et al., 2019). 

Thus, although LDSR can be used readily, its reliability is still questionable.  
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IV. Inferences on causality using genetic data 

There is a rich literature of studies that have shown that pleiotropy is a pervasive underlying 

cause of genetic correlation among traits. For example, in a review of QTL for 238 trait 

correlations, (Gardner & Latta, 2007) found that correlated traits share on average two QTLs, 

and thus are interpreted as pleiotropic QTLs. Another meta-analysis of 558 GWAS (representing 

558 unique traits) (Watanabe et al., 2019), found that 90% of the identified loci were pleiotropic 

among two or more traits. A major caveat of these studies (and other studies examining causality 

of genetic correlations) is the definition of pleiotropy, which is defined as the loci that are 

significantly associated with more than one trait. This is problematic as it does not exclude the 

presence of linkage between the two trait SNPs -- when loci for two traits are closely linked, the 

loci would be identified as a statistically significant association for both traits. It has been 

proposed that multitrait analysis in GWAS can identify real pleiotropy, but Fernandes and 

colleagues (Fernandes et al., 2020) have recently shown using simulations that this is not true 

and LD often gets misclassified as pleiotropy using these methods. Since most QTL and GWAS 

studies do not have a high resolution, they cannot entirely differentiate between pleiotropy and 

linkage (Gardner & Latta, 2007). In some cases though, GWAS studies with high SNP density 

can distinguish between pleiotropy and loose linkage, but tight linkage vs pleiotropy can still not 

be teased apart. Thus, we still are lacking a clear picture of how often pleiotropy or linkage gives 

rise to genetic correlations.  

 

One of the most commonly used methods to detect mediated pleiotropy is Mendelian 

Randomization (MR). MR was initially developed to improve the inference of causality in 

epidemiology (Davey Smith & Ebrahim, 2003) but has been extended to identify the presence of 

mediated pleiotropy. Briefly, MR tests whether trait 1 causally affects trait 2 by testing whether 

the genetic variant of trait 1 is also the genetic variant for trait 2, in the absence of horizontal 

pleiotropy (see Box 4-2). This has been applied to multiple disease traits in humans (Hartwig et 

al., 2016; Sun et al., 2019; Choi et al., 2019; Qian et al., 2020; Wu et al., 2020). Interestingly, it 

was shown using MR that mediated pleiotropy exists between type 2 diabetes and hypertension -

- type 2 diabetes causally increases the risk of hypertension (Sun et al., 2019). Although MR has 

been applied in the plant literature, these have been limited to identifying whether the identified 
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variants causally influence the trait (Liu et al., 2020; Su et al., 2021), and not to test the presence 

of mediated pleiotropy between traits. A major caveat to applying MR is the a priori knowledge 

of the genetic variant of a trait, which in most cases is not known. Also, MR makes the 

assumption that the traits being tested do not have any direct causal variants in common, which 

is violated in the presence of horizontal pleiotropy. Further, it is important to note that MR 

methods cannot distinguish between tight linkage and pleiotropy. Thus, the use of MR remains 

limited at best.  

 

Bolormaa and colleagues (Bolormaa et al., 2014) used a novel approach to test between 

pleiotropy and linkage. First, using a multi-trait meta-analysis method on GWAS summary 

statistics they identified the SNPs associated with two or more traits (genetically correlated 

variants). Multi-trait analysis has previously been shown to increase power in marker detection 

(Korol et al., 2001; Turley et al., 2018). Then to test for pleiotropy vs linkage, they fit the most 

significant SNPs in a region associated with two traits in a regression model and reperformed 

GWAS. If other SNPs in the region were no longer significantly associated with the traits, 

pleiotropy is most likely the underlying genetic mechanism, whereas, if other SNPs in the region 

are still significantly associated with the traits, then linkage is at play. They applied this new 

method to identify groups of traits that are pleiotropic in Beef Cattle (Bolormaa et al., 2014). 

Although quite elegant, the usage of this method depends on the identification of the genetically 

correlated variants, which can have high error rates due to the loss of information associated with 

GWAS summary statistics usage. Additionally, this method cannot distinguish between 

biological vs mediated pleiotropy.  

 

 

Box 4-2: Mendelian Randomization to differentiate between biological and mediated 

pleiotropy. 

Mendelian randomization is based on the intuition that if trait 1 influences trait 2, then a genetic 

variant that influences trait 1 is also expected to influence trait 2. A genetic variant of trait1 can 

then be used to determine if trait 1 causally influences trait 2, thus testing whether the association 

between trait 1 and trait 2 is due to mediated pleiotropy. To perform MR, three assumptions 

regarding the genetic variant (causal variant of trait 1) must hold -- the variant causally 
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influences trait 1, the variant is not associated with confounding variables (like environmental 

variables, etc), and the variant influences trait 2 only through trait 1, and not through other traits 

or even directly (absence of true biological pleiotropy). The second assumption is easily violated 

in the presence of population stratification, assortative mating, and other indirect genetic effects 

(VanderWeele et al., 2014). The first and the third assumption implies a priori knowledge of a 

causal variant of trait1 and sufficient knowledge of the pathways trait 1 and trait 2 are involved 

in, respectively, which is not always available (Lawlor et al., 2008). Further, due to the 

widespread pleiotropy among complex traits, the assumption of the absence of biological 

pleiotropy is not always met, in which case MR is highly biased and cannot be relied upon. 

Although methods have been developed to correct for biological pleiotropy (Zhu et al., 2018; 

Verbanck et al., 2018), their effectiveness again depends upon extensive prior knowledge of the 

confounding pathways the traits are involved in and are very sensitive to confounding factors 

(Hemani et al., 2018; Koellinger & de Vlaming, 2019). 

 
 
 

V. Multi-faceted approach for the future 

As discussed above, the current methodologies available for inferring the causality of genetic 

correlations are limited in their scope -- just using either phenotypic or genetic data have proven 

to be insufficient for discerning the genetic basis of genetic correlations, and the role of 

pleiotropy (biological/mediated) and LD in quantitative traits. Here, we discuss some of the 

potential flaws that are inherent with these methods and suggest ways forward. 

 

Caution should be taken when using genetic data (GWAS) to deconstruct the genetic architecture 

of quantitative traits since GWAS studies have inherent pitfalls that can lead to false positives 

and/or overestimation of the importance of the significant loci (for comprehensive reviews, see 

Josephs et al., 2017; Young et al., 2019; Tam et al., 2019). GWAS studies are infamous for only 

identifying common variants with higher effect size -- rare causal variants are particularly 

difficult to identify. To address this, GWAS studies can be combined with other approaches like 

whole-exome GWAS or haplotype-based association mapping. Haplotype-based association 

mapping focuses on haplotype blocks rather than single SNPs like in GWAS, and thus can be 
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used to reveal the complex mechanism of causal haplotypes. Since common SNPs can combine 

to form rare haplotypic variants, this method offers a higher power of detecting rare causal 

variants. Depending on the size of the haplotype blocks though, association mapping of genome-

wide haplotypes can be very computationally intensive. A round-about way to do this might be 

first performing GWAS and then performing haplotype-based association mapping only for the 

significant regions identified via GWAS. Further GWAS studies are often biased due to the 

presence of either confounding factors (population structure, environment, etc.) and/or indirect 

effects (Young et al., 2019). Although methods have been developed to incorporate population 

structure as a covariate, the results can still be biased (Sul et al., 2018). To address confounding 

factors, especially environment, one should ideally use an experimental population that is 

artificially designed to control for allele frequency differences. This would also address any 

biases that may result from the choice of the control group. Importantly, a traditional GWAS 

study of unrelated individuals estimates the combined effects of direct (phenotype directly 

altered by genotype) and indirect genetic effects (phenotype altered due to the gene expression of 

parents and close relatives). To tease apart these effects, GWAS with family data can be 

performed, as the presence of family-level data will enable the estimation of any indirect effects 

that may be present which will allow us to identify unbiased causal marker regions associated 

with the trait(s) of interest.  

 

Identifying the underlying genetic architecture of the correlated traits has been particularly 

challenging in the past, but taking an integrative approach to identify the mechanistic basis of 

genetic correlation would be most insightful (Figure 4-2). There are multiple integrative 

approaches one can take depending on the species characteristics and the availability of data. For 

example, if the species under consideration has a short generation time and is easy to breed, it 

might be preferable to perform a multi-generational study (with random mating or a large 

segregating population) in a single environment (to reduce noise and confounding factors) to 

differentiate between the presence of linkage and pleiotropy (Figure 4-2a). Since this would still 

not be able to differentiate biological vs mediated pleiotropy, and even does not discount the 

presence of tight linkage, supplementing this with either molecular validation tool or genetic 

marker data (like GWAS) would provide a deeper understanding of the mechanisms underlying 

the trait correlation (Figure 4-2b-e).  
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For many species, creating crosses and/or controlling for the environment is not feasible, and 

thus one has to rely on the genetic markers data to disentangle the genetic architecture of trait 

correlations. For example, performing two single trait GWAS would help locate the causal loci 

for trait correlations and can further help disentangle between linkage and pleiotropy (Figure 4-

2b). One can use association studies to gain insight into the region underlying trait correlations, 

but often cannot identify the underlying causal variants due to the presence of linkage between 

SNPs (synthetic associations). Thus, an association study almost always has to be followed by 

fine-mapping which takes into account the LD structure of the SNPs and thus reduces the 

potential causal SNPs underlying trait correlation at the gene or variant level (Figure 4-2c). 

Additionally, fine mapping can also prevent misclassification of local LD as pleiotropy -- if two 

distinct causal variants are detected for the traits it would indicate the presence of linkage 

between the two traits, whereas if the same causal variant is detected it would be indicative of 

pleiotropy (Figure 4-2c). To note though, fine mapping rarely leads to the identification of one 

causal variant but rather gives a set of potential causal variants (which are a subset of that 

identified via association mapping). Thus, to distinguish between linkage vs pleiotropy, one can 

perform a colocalization test, which is a statistical test to determine whether the overlap between 

SNPs for the two traits is significant or not. Pleiotropy can be suggested if the SNPs for the two 

traits colocalize; if no colocalization is observed linkage is more likely (Figure 4-2c). 

 

Further, integrating this with functional validation methods like omic-QTL (eQTL, pQTL, 

meQTL, etc.) data, can help to differentiate between biological and mediated pleiotropy and to 

test the effect of the variant on the two traits. For example, eQTL which is used to test whether 

the variant changes the expression of the gene of interest can be employed. In a scenario of a 

correlation between two traits which exhibit the same GWAS variants, but different eQTLs, 

biological pleiotropy would be indicated (Figure 4-2d). In comparison, a correlation between 

two traits which exhibit the same GWAS and same eQTL variants, biological pleiotropy 

through the action of intermediate phenotype, or mediated pleiotropy would be indicated 

(Figure 4-2d). In this case if one has a priori knowledge, MR can be used to test for mediated 

pleiotropy. If no colocalization occurs though, other omics-QTL can be performed to understand 

the functional underpinning of the genetic correlations. For example, pQTL can be employed 
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wherein a colocalization of GWAS would indicate the variant influences the traits via changes in 

the protein levels. Lastly, in species with genome-editing tools available, various molecular 

validation methods like gene editing (CRISPR/Cas9), overexpression, knockout, and cloning can 

also be used to confirm the findings and understand the mechanistic basis of traits correlations 

(Figure 4-2e). 

 

Conclusions 

Knowledge of the genetic basis of trait correlations is important for understanding the stability of 

trait correlations, and their evolutionary potential -- will a trait correlation facilitate or constrain 

evolution? Although phenotypic pedigree data have made advancements towards understanding 

the genetic mechanisms underlying trait correlations, these have limitations. Over the last 

decade, great strides have been made towards identifying the causal gene of trait correlations by 

making use of marker-assisted data (mainly GWAS), but these studies lack a deconstruction of 

the underlying mechanism (biological vs mediated pleiotropy or linkage). By outlining an 

integrative approach to comprehensively study genetic correlations, we hope to foster a deeper 

analysis of genetic causes of trait correlations. These approaches can be applied depending on 

the species, a priori knowledge, and the availability of genome editing tools for the species. If 

followed serially, the suggested analysis approach not just be able to identify causal loci, but also 

identify the functional mechanism through which the variant alters the traits. This would further 

help us understand how pervasive pleiotropy and linkage may respectively be in shaping trait 

correlations and predict more precisely how these correlations will evolve over time. 

 

Glossary 

Traits: Phenotypes or measurements that can be either dichotomous (presence/absence) or 

quantitative (range of values). 

 

Pleiotropy: The phenomenon wherein a single variant or allele influences two or more 

phenotypic traits, either directly or indirectly. 
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Linkage: The physical state of loci, typically on the same chromosome, being linked. 

 

Linkage Disequilibrium: The phenomenon wherein loci that are physically close on the genome 

(typically on the same chromosome) are inherited together, thus creating a statistical non-random 

association of these loci.  

 

Causal variant: Genetic variants that are responsible for the trait, and in the context of association 

studies, the genetic variants that are responsible for the association signal at a locus.  

 

Genome-Wide Association Studies (GWAS): A statistical approach utilizing linkage 

disequilibrium to identify the genetic basis of a trait variation. Briefly, the method looks for an 

association between the genotype and the phenotypic value. 

 

Quantitative Trait Loci (QTL): A genomic region of DNA that is statistically significantly 

associated with a phenotype of interest. Many QTLs are typically associated with a single trait 

and consequently, each QTL varies in length and the degree to which it can explain the 

phenotypic variation (effect size).   

 

omic-QTL: Extension of QTL to other ‘omic variations’ like transcriptomics (eQTL), proteomics 

(pQTL), metabolomics (mQTL), epigenomics (histone modification QTL (hmQTL), methylation 

QTL (meQTL)), to characterize the underlying molecular and functional mechanism controlling 

the phenotype. 
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Figures  

 

 
 
 
Figure 4-1. Schematic representation of the mechanistic basis of genetic correlations.  
Genetic correlations can arise due to biological pleiotropy (a-c) where a genetic variant (a) or a 
gene (b) directly influences both traits (also referred to as horizontal pleiotropy), or indirectly (c) 
through an intermediate phenotype, Mediated pleiotropy (d-e), wherein a genetic variant directly 
alters Trait 1 or Trait 2 which then influences Trait 2 or Trait 1 (also referred to as vertical 
pleiotropy), or through Linkage disequilibrium (f) wherein the causal genes for the two traits are 
in linkage and thus inherited together. rG represents estimated genetic correlations between the 
traits.  
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Figure 4-2 Overview of analytical methods that can be integrated to identify the causal genetic 
mechanism underlying trait correlations.  
(a) Multigenerational phenotypic pedigree analysis can be conducted to identify whether the trait 
correlations are due to linkage disequilibrium (LD), or tight linkage or pleiotropy, (b) GWAS can 
be used to identify variants associated with the traits; different genomic loci for the two traits 
indicates linkage underlying trait correlation as compared to the same locus which could be due 
to either tight linkage or pleiotropy, (c) Fine mapping can enable prioritization of causal loci 
obtained from GWAS, which can be followed by colocalization tests to see if the set of causal 
loci colocalize, indicating tight linkage or pleiotropy; no colocalization indicates linkage, (d) 
omic-QTL can be performed to potentially characterize the effect of the causal variant and 
colocalizing results of omic-QTL with GWAS can help differentiate between biological and 
mediated pleiotropy; shown is an example of eQTL wherein the colocalized GWAS for trait 1 
and trait 2 is colocalized with eQTL -- in the first scenario GWAS for the two traits colocalizes 
with two distinct genes’ eQTL, indicating biological pleiotropy and in the second scenario 
GWAS for the two traits colocalizes with the same gene eQTL indicating either biological 
pleiotropy through an intermediate phenotype or mediated pleiotropy, (e) Molecular validation 
tools can then be employed to further tease these apart and to validate the findings.  
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Tables 

 
 

Species Family Design 
Correlation 
Method 

# of 
Traits Ref 

Mimulus guttatus and 
Mimulus micranthus Full-sib 

Pearson correlation 
of family means 6 

(Fenster & Carr, 
1997) 

Parent-offspring 
regression 3 

Lymantria dispar Full-sib 
Pearson correlation 
of family means 7 

(LazareviĆ et al., 
1998) 

Drosophila 
melanogaster Full-sib (RIL) 

Variance 
Component 
(ANOVA) 2 

(Vieira et al., 
2000) 

Gryllus firmus and 
Gryllus pennsylvanicus Full-sib 

Variance 
Component 
(ANOVA) 5 

(Bégin & Roff, 
2001) 

Raphanus raphanistrum Parent-offspring 

Variance 
Component 
(REML) 6 (Conner, 2002) 

Arabidopsis thaliana Full-sib (RIL) 

Variance 
Component 
(ANOVA) 13 

(Ungerer et al., 
2002) 

Silene latifolia 

paternal and 
maternal half-sibling 
full-sibling 

Variance 
Component 
(REML) 7 

(Steven et al., 
2007) 

Acrocephalus 
arundinaceus 

Parent-offspring 
Parent-offspring 
regression 

7 
(Åkesson et al., 
2008) Mixed family design 

Variance 
Component 
(REML) 

Silene latifolia 

paternal and 
maternal half-sibling 
full-sibling 

Variance 
Component 
(REML) 1* 

(Delph et al., 
2011) 

Pinus pinaster Half-sib 

Variance 
Component 
(REML) 3 

(Zas & 
Sampedro, 2015) 
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Anolis lizards (7 
species) Half-sib 

Variance 
Component 
(REML) 8 

(McGlothlin et 
al., 2018) 

Neolamprologus pulcher 
paternal half-sibling 
full-sibling 

Variance 
Component 
(MCMC) 8 

(Kasper et al., 
2019) 

Boechera stricta full-sibling 

Variance 
Component 
(MCMC) 7 

(Bemmels & 
Anderson, 2019) 

Gryllus integer 

paternal and 
maternal half-sibling 
full-sibling 

Variance 
Component 
(REML) 3 

(Royauté et al., 
2020) 

Australian Drosophila 
paternal half-sibling 
full-sibling 

Variance 
Component 
(REML) 4 

(Hangartner et al., 
2020) 

Salmo salar Mixed family design 

Variance 
Component 
(REML) 4 

(Debes et al., 
2021) 

 
 
Table 4-1: Example of studies reporting the genetic correlation estimates using family-level 
phenotypic data.  
RIL: Recombinant Inbred Line; ANOVA: Analysis of Variance; REML: Restricted Maximum 
Likelihood; MCMC: Markov Chain Monte Carlo;  
*One trait compared between sexes. 
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Variable Benefits Drawbacks 

Choice of Family Design 

Parent-Offspring Simple; time efficient; data 
relatively easy to obtain (Roff, 
2012) 

biased by maternal effects, 
selection, and shared environment 
(Lande & Price, 1989; Åkesson et 
al., 2007); standard errors are 
underestimated (Robertson, 1959) 

Full-sibling Low standard error (Klein et al., 
1973) 

 Confounded by dominance 
effects (Lynch et al., 1998); (Hill, 
2013), and the presence of 
maternal effects in such families 
(Falconer 1996; Hunt and 
Simmons 1998) 

Half-sibling No Dominance effect; maternal 
effects can be estimated (Lynch 
et al., 1998; Wilson et al., 2010) 

High standard error unless large 
sample size used (Roff, 2008) 

Mixed family designs Most accurate as they can 
account for dominance, maternal 
effects efficiently, common 
environment ((Fox, 1998; Hunt 
& Simmons, 2000; Fox et al., 
2004; Hallsson & Björklund, 
2012)) 

Complex design; data not easy to 
obtain 

Choice of Method 

Parent-Offspring 
Regression (offspring 
values of a trait are 
regressed on the 
parent values of other 
trait) 

Simple and easy to use High standard error (Åkesson et 
al., 2007) 

Line Means (Pearson 
product-moment 
correlation between 
family means) 

Relatively easy to use Large family size needed (Roff & 
Preziosi, 1994) 

Variance Component 
(phenotypic variance 
partitioned into into 

ANOVA- Simplest to use, 
especially when the family 
design is not complex. 

ANOVA- Higher standard error 
when data is unbalanced 
(Swallow & Monahan, 1984) 
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components of genetic 
variance) 

 
 
REML- Can handle unbalanced 
data (Swallow & Monahan, 
1984); individuals with unknown 
paternity can be included 
(Kruuk, 2004) 
 
MCMC- High accuracy even 
when the sample size is small 
(Gao et al., 2003) 

 
 
REML- Is not accurate when 
applied to non-Gaussian traits 
(Bolker et al., 2009) and high 
standard error for a small sample 
size (Gao et al., 2003) 
 
MCMC- Computationally very 
expensive (Browne & Draper, 
2006) 

 
 
Table 4-2 Benefits and drawbacks of the most commonly used family design and analyses 
method used for estimating genetic correlations from phenotypic data. ANOVA: Analysis of 
Variance; REML: Restricted Maximum Likelihood; MCMC: Markov Chain Monte Carlo. 

 

 

 

 

Species Correlation Method # of Traits Ref 

Arabidopsis thaliana MTMM 11 (Thoen et al., 2017) 

Pig GREML 32 (Zhang et al., 2019) 

Cattle GREML 23 (Mahmoud et al., 2018) 

Human GREML and LDSR 2 (Ni et al., 2018) 

Human LDSR 17 (Sodini et al., 2018) 

Human LDSR 25 (Zhang et al., 2018) 

Cattle LDSR 4 (Cai et al., 2020) 

 
Table 4-3 Example of studies reporting the genetic correlation estimates using genetic data. 
MTMM: Multi-trait Mixed Model; GREML: Genome-based Restricted Maximum Likelihood; 
LDSR: Linkage Disequilibrium Scores Regression. 
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Chapter 5 

 

Discussion and Future Directions 

 

 

The overarching goal of my thesis was to gain an understanding of the genetic basis of adaptive 

traits in the genus Ipomoea. I examined the highly diverse leaf shape trait in sweetpotato, a 

hexaploid crop with very limited genomic resources, and glyphosate resistance evolution in the 

common morning glory, a diploid invasive species. The characteristic differences in the traits 

examined and the species’ genomic architecture provided a unique opportunity to examine the 

underlying mechanisms controlling the traits. Specifically, I found that leaf shape in sweetpotato 

is largely genetically controlled and identified putative candidate genes associated with leaf 

shape. Further, I identified potential genes that underlie the polygenic glyphosate resistance, and 

its associated cost, in I. purpurea. I also showed the role of linkage disequilibrium in maintaining 

the resistance alleles over generations, and potentially also conferring cost. Moreover, I 

formulated a conceptual chapter wherein I suggest how one can potentially identify the 

molecular mechanisms that underlie cost-benefit relationships (like the resistance-cost 

relationship above). Altogether, this thesis provides novel insights into the genetic underpinnings 

of complex polygenic adaptive traits in the genus Ipomoea. Conclusions from each chapter 

compel multiple future directions. 

 

What does the leaf shape diversity in sweetpotato teach us? 

Leaf shape is a highly variable trait that varies across taxonomic levels, geography, and in 

response to environmental differences (Ashby, 1948; Hilu, 1983; Gurevitch, 1988; Harris et al., 

1998). However, comprehensive intraspecific analyses of leaf shape variation across variable 

environments, disentangling the role of genetics vs environment, is surprisingly absent. In 
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chapter two, I aimed to answer (1) how diverse is leaf shape at a species-wide level? (2) what are 

the candidate genes associated with leaf shape? and (3) to what degree does the environment and 

GxE influence leaf shape traits? I found evidence of extensive intraspecific morphological 

variation in leaf shape and showed that most of this variation is controlled by the genotype, with 

low or limited influence of GxE. Next, I also identified putative genes associated with leaf shape 

(extending beyond the simple shape descriptors). Unexpectedly, I found that although simple leaf 

shape traits are individually only slightly influenced by the environment, combinations of simple 

leaf shapes are significantly altered by the environment. 

 

An important question among plant morphologists is the extent to which leaf shape varies among 

genotypes in a species, and how much of this variation can be attributed to the genotype. Using 

three traditional leaf shape descriptors and more comprehensive EFD (Elliptical Fourier 

Descriptors), I showed that the commonly used shape descriptors are inefficient in capturing the 

entirety of leaf shape variation and that one should use comprehensive morphometric techniques. 

Importantly, my results showed that leaf shape variation does not follow a trend across species -- 

I found that leaf dissection contributes most to the morphological variation in leaf shape in 

sweetpotato, as compared to aspect ratio (ratio of length-to-width) in apple and tomato 

(Chitwood et al., 2013; Migicovsky et al., 2017). This is most likely due to multiple independent 

evolutions of leaf shape across phylogenetic taxa (Nicotra et al., 2011).  

 

I also showed that most of the traditional leaf shape descriptors are majorly genetically 

controlled (with little to no significant effect of the environment), and thus have high heritability 

values that can be actively selected for (or against) by breeders. Contrary to this result, multiple 

studies have found that leaf dissection is a plastic trait that responds to changes in temperature 

(Royer et al., 2009; Royer, 2012; Chitwood et al., 2016). This could reflect that the difference 

between the gardens used (MI and OH) was not sufficient to capture leaf shape variation in 

response to change in the environment. Thus, multiple studies in environments that range more 

widely for temperature will need to be performed in the future to confirm that leaf shape in 

sweetpotato does not vary significantly with change in the environment.  

To further the understanding of genes associated with leaf shape variation, due to the limited 

genomic resources available for this species, I performed a gene expression study to identify 
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genes showing expression changes in varying leaf shape types. Using functional annotations of 

the differentially expressed genes, I identified potential candidate genes that could contribute to 

leaf shape variation. For example, I identified the FRS genes to be upregulated in nondissected 

individuals as compared to the highly dissected ones. FRS is a transcription factor that 

potentially binds to the promoter region of STM gene which has been shown to alter leaf 

serrations in other species (Kawamura et al., 2010; Aguilar-Martínez et al., 2015). Similarly, we 

identified the CHS and feruloyl CoA 6′-hydroxylase genes to be differentially regulated for AR; 

these genes have been shown in the literature to alter the longitudinal vs latitudinal expansion of 

the leaves (Liu et al., 2017). Further studies along with the development of functional tools and 

genomic resources for this species would be needed to verify these candidate genes. 

 

What have we learned about the mechanistic basis of polygenic glyphosate resistance? 

The adaptation of weedy plants to herbicides forms an excellent model system to investigate the 

genetic basis of adaptation. Plants adapt to herbicides broadly by two mechanisms, commonly 

known as target-site resistance (TSR; resistance is conferred by changes in the target gene) and 

nontarget-site resistance (NTSR; resistance is conferred by changes in nontarget genes) (Powles 

& Yu, 2010; Mithila & Godar, 2013). Although multiple studies have identified genes associated 

with TSR, a comprehensive study examining the complex polygenic genetic basis and the 

evolutionary factors that maintain NTSR over generations remain limited (Délye, 2013; Baucom, 

2019; Beckie, 2020; Leon et al., 2021). In chapter 3, I performed a multi-level analysis to answer 

(1) what mechanism and genes underlie NTSR glyphosate resistance in the weed, Ipomoea 

purpurea? (2) how are these genes maintained together over evolutionary time? and (3) what are 

the putative genes that could explain the cost of resistance (lower germination rate) in this 

species? I found multiple detoxification and stress signaling genes associated with resistance, 

confirming the role of detoxification in conferring glyphosate resistance. Further, I found strong 

interchromosomal linkage disequilibrium (ILD) between detoxification genes present on separate 

chromosomes indicating the potential role of ILD in maintaining resistance through generations. 

Additionally, through the multi-layer analysis, I also suggest putative cost loci and the role of 

genetic hitchhiking in incurring the cost associated with herbicide resistance.  
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Using a comprehensive multi-layer approach involving whole-genome scan, gene expression 

study, and a functional assay, I showed that detoxification underlies the polygenic NTSR 

response to glyphosate in I. purpurea. I found multiple genes involved in the detoxification 

pathway (phosphate transporters, cytochrome P450s, glycosyltransferases) to be under selection, 

and differentially expressed in resistant individuals. Additionally, I identified almost fixed non-

synonymous mutations that could potentially underlie the detoxification functional mechanism. 

Uniquely, I also found evidence of selection and differential expression on genes related to stress 

response. Additionally, using a functional assay, I showed that inhibition of cytochrome P450 

leads to loss of resistance. Detoxification and stress response both have either been hypothesized 

or shown to be involved in herbicide resistance (Radwan, 2012; Duhoux & Délye, 2013; Dyer, 

2018; Vega et al., 2020). Based on my results, I think that detoxification genes might be the 

major effect genes, while stress signaling and response genes might contribute minor effects on 

the resistance phenotype in this species. Follow-up work will be needed to confirm this finding. 

 

Since the detoxification genes under selection were present on separate chromosomes, I tested 

for the presence of interchromosomal linkage disequilibrium in maintaining these alleles over 

generations. I indeed found that the regions under selection showed evidence of high ILD as 

compared to the background ILD and the other highly differentiated regions. Additionally, I 

found that within the regions under selection, the strongest ILD was present between the putative 

resistance genes. Although one could argue that linkage would decay in the presence of 

recombination and gene flow, it has been suggested that linkage in the presence of selection on 

genes involved in co-adaptation, could become very steep (Lewontin & Kojima, 1960; Nei, 

1967) and even could lead to the fixation of alleles (Takahasi, 2007). Thus, ILD along with co-

adaption could explain how the NTSR resistance alleles are maintained through generations in 

natural populations.  

 

While trade-offs are central to the theory of evolution, our understanding of the genetic loci 

associated with the cost of herbicide resistance remains limited -- currently, no studies in the 

resistance literature have identified fitness cost loci associated with NTSR. Here, through a 

combination of selection scan, linkage analysis, and differential expression I identified putative 

cost loci of glyphosate resistance. I. purpurea has been shown to incur resistance cost wherein 
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highly resistant individuals have lower germination rates (Van Etten et al., 2016). Through 

selection scan and linkage analysis, I found two genes (NFD6, NAC25) that were under strong 

selection in resistant individuals and were further tightly linked to the resistance loci. Both these 

genes are crucial for normal seed development and maturation. Further, by comparing expression 

profiles of genes in the resistant vs susceptible individuals both in the absence and presence of 

the herbicide, I showed that NFD6 is indeed differentially regulated. This indicates the potential 

role of genetic-hitchhiking in maintaining resistance cost, but further functional studies would 

need to be conducted to validate this.  

 

What have we learned about teasing apart the mechanistic basis of trait correlation? 

Trait correlations are pervasive in nature and are relevant to the field of ecology and evolutionary 

biology since they can facilitate or constraint adaptation (Roff, 1996; Conner et al., 2011). 

Understanding the genetic basis of trait correlations can help understand the causes and 

consequences of trait correlations. Genetic correlation between traits arises due to either 

pleiotropy (biological or mediated) or linkage and differentiating between them is of prime 

interest to evolutionary biologists since it primarily determines the stability and persistence of 

the association over evolutionary times. Importantly, we can also start to understand how 

prevalent one mechanism may be over the other in giving rise to the phenotypic diversity we see 

today. In chapter 4, I reviewed the current methods available to study genetic correlations, 

discussed the pitfalls of these methods, and outlined an integrative approach that can be used to 

overcome these limitations.  

 

Traditionally, estimating genetic correlations and their underlying causality has involved using 

family-level phenotypic data to deconstruct the genetic variance and covariance (Fenster & Carr, 

1997; Conner, 2002; Delph et al., 2011; Conner et al., 2011; Bemmels & Anderson, 2019). 

Multiple family designs exist for this with the simplest ones being parent-offspring, half-sibling, 

and full-sibling. Each of these has inherent issues in that they are compounded by one or more of 

the following -- environmental factors, maternal effects, dominance factors (Lande & Price, 

1989; Falconer, 1996; Hunt & Simmons, 1998; Åkesson et al., 2007). Additionally, unless large 

family data is used, the errors associated with the estimated genetic correlations can be really 
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high, making the estimation unreliable (Robertson, 1959; Roff & Preziosi, 1994). Alternatively, 

a mix of family designs, like nested full-sib half-sib, can be used which takes into account the 

compounding factors and also lowers the error. One major caveat with estimating genetic 

correlations with family phenotypic data is that these can only be applied to species that can be 

crossed and thus cannot be applied universally. Furthermore, differentiating between pleiotropy 

and linkage using phenotypic data is theoretically possible by following the genetic correlation 

through multi-generations (Fenster & Carr, 1997; Beldade et al., 2002; Conner et al., 2003; 

Hansen Wheat et al., 2019), but again the feasibility of this method remains limited to species 

with short life-spans and species which are easy to breed. Additionally, a multigenerational study 

can only differentiate between loose linkage and pleiotropy and cannot make distinctions 

between tight linkage and biological and mediated pleiotropy. Moreover, in the presence of 

selection on the correlated traits (correlational selection), even loose linkage might not be 

identified. Thus, the applicability of current family-level phenotypic methods to study genetic 

correlations remains questionable. 

 

With the advent of sequencing technologies, the focus has moved to utilizing molecular markers 

to study genetic correlations. This has mainly constituted of using GWAS data, either individual-

level or summary-statistic data to identify the extent of associations between loci associated with 

the two traits (Korte et al., 2012; Yang et al., 2015; Thoen et al., 2017; Calus et al., 2018; Guo et 

al., 2021). Although multiple methods exist, these have major limitations in that they require 

high computational power, and have a high standard error associated with them (Ni et al., 2018; 

van Rheenen et al., 2019). Importantly, methods estimating genetic correlation from summary 

statistics GWAS assume that the allele frequency differences due to subpopulations are 

independent of linkage structure, but this assumption does not hold true in the presence of 

correlational selection (Berg et al., 2019). Furthermore, although multiple studies have claimed 

the presence of pleiotropy in maintaining trait correlations using GWAS data, their definition of 

pleiotropy is problematic (Gardner & Latta, 2007; Watanabe et al., 2019). These studies define 

pleiotropic genetic correlations when the two traits have overlapping loci as identified by 

GWAS. But it is commonly known that GWAS hits can constitute multiple genes, and thus 

overlapping loci could be due to linkage as well. Recently, a couple of approaches have been 

developed for differentiating linkage and pleiotropy (Davey Smith & Ebrahim, 2003; Bolormaa 
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et al., 2014). For example, Mendelian Randomization (MR) can be used to test the presence of 

mediated pleiotropy. This technique requires however extensive a priori knowledge and 

additionally can be confounded by the presence of indirect genetic effects, population 

stratification, and assortative mating (VanderWeele et al., 2014). This highlights the caveats 

associated with studying genetic correlation by solely utilizing GWAS datasets.  

 

To enable a comprehensive dissection of genetic correlations, I outlined an integrative approach 

that can overcome some of the limitations mentioned above. I suggest using multiple analyses 

using a combination of family-level phenotypic data, GWAS, fine mapping and colocalization, 

omics-QTL and colocalization, and molecular tools to disentangle whether biological or 

mediated pleiotropy or linkage is the mechanism at play. These methods can be applied 

depending on the species, a priori knowledge, and the availability of genome editing tools for 

the species. If followed serially, the suggested analysis approach not just be able to identify 

causal loci, but also identify the functional mechanism through which the variant alters the traits. 

This though could be a potential caveat that if the variant does not alter the trait through 

commonly used omic-QTL, this might not be able to differentiate between pleiotropy and tight 

linkage unless molecular validation tools are used. By outlining an integrative approach to 

comprehensively study genetic correlations, I hope to foster a deeper analysis of genetic causes 

of trait correlations which would help us understand the stability of trait correlations and predict 

more precisely how trait correlations will evolve over time. 

 

Conclusion 

In this thesis, I performed a series of genetic analyses aimed at identifying the genetic basis of 

complex adaptive traits. The first two chapters focused on using quantitative and population 

genetic approaches of studying phenotype to genotype, and identified novel loci and mechanisms 

underlying the traits. The third chapter was focused on outlining how to comprehensively study 

genetic correlations, which underlie most adaptive traits. Together, my thesis identified novel 

loci and mechanisms that underlie complex adaptive traits in the genus Ipomoea and outlined 

approaches to better understand the genetic complexity of trait correlations which are central to 

complex traits. 
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Appendix A 

 

Supplementary Methods, Figures and Tables for Chapter 2 

 

 

Method S1: RNA-Seq data processing and transcriptomic analysis 

Briefly, we performed quality control for the obtained raw reads to trim the adaptors, discard 

low-quality reads and eliminate poor-quality bases. We used cutadapt v1.4 (Martin, 2011) to 

remove the adapters, and trimmomatic v0.36 (Bolger et al., 2014) to clean the reads based on 

length and quality score. Further, we performed error correction of the RNA-Seq data using 

rcorrecter (Song & Florea, 2015) to retain only high-quality data. 

Next, we used filtered reads separately from one entire and one lobed individual, randomly 

chosen, for de novo transcriptome assembly, which served as a reference transcriptome for 

differential analysis. To get a comprehensive assembly, we used both a single k-mer approach, 

using Trinity v2.2.0 (Grabherr et al., 2011), with k=25, and multi k-mer approach, using 

Velvet/Oases v1.2.10 (Zerbino & Birney, 2008; Schulz et al., 2012) with k-mer ranging from 23-

41 and 93-99 with a step-size of 2. Next, we used the EvidentialGene tr2aacds pipeline 

(http://arthropods.eugenes.org/EvidentialGene/trassembly.html) to merge all the assemblies to 

remove redundancy and to get biologically most useful set of transcripts. 

We then evaluated the obtained set of primary transcripts using TransRate v1.0.3 (Smith-Unna et 

al., 2016) and BUSCO v3- Benchmarking Universal Single-Copy Orthologs (Simão et al., 

2015), which reports basic summary statistics (like n50, % reads mapped, etc.) and checks for 

the completeness of the transcriptome respectively. For annotation of this de novo assembled 

transcriptome, we blasted the transcripts against the NR database with an e-value threshold of  

10-6 and other default parameters and used only the top 20 hits for annotation. Additionally, we 
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identified conserved protein domains by searching through the InterPro collection of databases. 

We used the results from these to functionally annotate using BLAST2GO v4.1.9 (Conesa et al., 

2005) by identification of Gene Ontology (GO) Slim terms and KEGG pathways. 
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Figures 

 

Figure S2-1: Green-house grown accessions selected for transcriptomic analysis for leaf shape 
traits. 
a. Circularity, b. Aspect Ratio, c. symPC1, d. symPC2, and e. symPC3. Red circles represent the 
accessions chosen for low ends of the trait spectrum and blue circle represents the accessions 
chosen for high ends of the trait spectrum.  
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Figure S2-2: Correlation plot between leaf shape traits. 
Correlation between traditional and EFD PCs showing that only symPC1 is slightly correlated 
with circularity and solidity; other traditional leaf shape traits (circularity, aspect ratio and 
solidity) are not correlated with symPCs. 
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Figure S2-3 Leaf shape variation captured by EFDs from MI and OH differing significantly in 
their order of variation explained.  
MIsymPC1 explains variation in leaf shape that is attributed to lobing, tip and petiolar sinus 
differences, similar to OHsymPC2 (which only explains ~30% of the variation in OH).  
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Tables 

Table S2-1 Accession IDs with their source and location of origin used in this study. 
(as separate file)*  

Table S2-2 Differentially expressed transcripts associated with leaf shape traits found in this 
study  
(as separate file)* 

Table S2-3 Raw read counts of orthologs of homeobox domain genes within the assembled 
transcriptomes, for accessions chosen for circularity RNA-Seq analysis  
(as separate file)* 

*File containing Tables S2-1:S2-3 is linked here

https://docs.google.com/spreadsheets/d/1HewznT18CpzAXNvjGJWr8WR-l-aaYzPc/edit?usp=sharing&ouid=103804583551884199623&rtpof=true&sd=true
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Appendix B 

 

Supplementary Figures and Tables for Chapter 3 

 

Figures 

	

	
Figure S3-1 Chromosome scaffolding and renaming.  
a) Raw PacBio Sequel filtered subread lengths. b) Phase Genomics Hi-C Proximo scaffolding 
results produces 15 chromosome pseudomolecules. c) Synteny of this Ipomoea purpurea 
assembly against Ipomoea nil was used to orient and name I. purpurea pseudomolecules. d) 
BUSCO results against Viridiplantae odb10 indicate high completeness of conserved gene sets in 
the raw assembly. e) Retrotransposon annotations using LTRharvest were used to compute 
pairwise LTR identities within LTRharvest for both I. purpurea and I. nil. 
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Figure S3-2 Synteny of the I. purpurea genome against related Convolvulaceae species, 
including I. nil, I. trifida, and I. triloba.  
	
	
	
	
	
	

	
	
 
Figure S3-3 Signs of selection across conserved haplotype of multiple glycosyltransferases for 
each individual on Chromosome10.  
Exons are shown in grey. Blue and yellow indicate homozygotes, red indicates heterozygotes; 
stars indicate non-synonymous substitutions. Black bar above gene models indicate 1kb.   
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Figure S3-4 PCA of resistant and susceptible populations used. 
Individuals from the sampled populations do not cluster into distinct resistant and susceptible 
groups when using all the SNPs (a and b), but there is some grouping when only considering the 
SNPs from the regions under selection (c). 
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Tables 

Table S3-1 SNP outliers (in the top 5% BF and 5% Rho) identified via bayenv2 
(as separate file)* 

Table S3-2 Functional annotation of genes present within +/- 5KB of bayenv2 SNP outliers 
(as separate file)* 

Table S3-3 Summary of the genome-wide regions under selection via the Md-rank-P 
(as separate file)* 

Table S3-4 Functional annotations of genes under selection identified via md-rank-P approach 
(as separate file)* 

Table S3-5 Functional annotations of genes under selection identified via bayenv2 and md-rank-
P approach  
(as separate file)* 

Table S3-6 Mutations and their effects present within the genes of interest 
(as separate file)* 

Table S3-7 List of differentially expressed genes between treated (herbicide sprayed) resistant vs 
susceptible individuals  
(as separate file)* 

Table S3-8 List of differentially expressed genes between control (non-herbicide sprayed) 
resistant vs susceptible individuals  
(as separate file)* 
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Contrast Contrast Estimate t-ratio P-value

Malathion vs Glyphosate 0.455 3.913 0.0007 

Malathion vs Malathion-Glyphosate 0.834 8.200 <0.0001 

Malathion vs Control -0.460 -5.342 <0.0001 

Glyphosate vs Malathion-Glyphosate 0.379 2.946 0.0190 

Glyphosate vs Control -0.915 -7.834 <0.0001 

Malathion-Glyphosate vs Control -1.29 -12.654 <0.0001 

Table S3-9 Pairwise contrast statistics for normalized above-ground biomass between the four 
treatment conditions.  
These were calculated using the lsmeans function in R, with P-values adjusted for multiple tests 
using tukey correction. 

Table S3-10 ILD summary statistic (99th percentile value and max r2) for the five regions under 
selection that exhibited GST > 0.39. 
The summary is reported only for only the SNPs within regions under selection. The 99th 
percentile reports the top 1% of r2 values whereas the max r2 value is the highest r2 value in the 
region  
(as separate file)* 

Table S3-11 Individual ILD interactions, above the 99 percentile cutoff r2 value, for SNPs 
within the region under selection  
(as separate file)* 

*File containing Tables S3-1:S3-8, S3-10:S3-11 is linked here.

https://docs.google.com/spreadsheets/d/15ugOVKibZzCtPstESZl8ShrNqkX7LFO_/edit?usp=sharing&ouid=103804583551884199623&rtpof=true&sd=true
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Pop	
Abbrev	

Resistance	
Type	

State	 Proportion	
survival	at	
1.7	

Latitude	 Longitude	 No	of	
individuals	
sampled	

BI	 R	 TN	 1	 35.775	 -85.903 10	

DW	 R	 NC	 1	 34.983	 -78.039 10	

FL	 S	 SC	 0.20	 34.145	 -79.865 10	

HA	 S	 NC	 0.15	 35.424	 -77.917 10	

RB	 S	 TN	 0.18	 35.316	 -87.353 9	

SH	 S	 VA	 0.1	 38.373	 -78.662 10	

SPC	 R	 TN	 0.71	 35.533	 -85.951 10	

WG	 R	 TN	 0.83	 35.099	 -86.225 10	

Table S3-12 Population information for each population used in the study. 
Pop Abbrev = abbreviation for each population as used in Kuester et al. 2015, Resistance type = 
classification of resistance in the population R >0.5 prop. survival S <0.5 prop. survival, State = 
state where seeds were collected, Proportion survival at 1.7 = proportion of individuals that 
survived a spray rate of 1.7 kg/ha of glyphosate based on Kuester et al 2015, Latitude and 
Longitude = location where seeds were collected. 
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Sample	name	 Pop	Abbrev	 Resistance	
Type	

TRT	

IP_438	 WG	 R	 Control	

IP_447	 WG	 R	 Control	

IP_235	 WG	 R	 Herbicide	

IP_244	 DW	 R	 Herbicide	

IP_247	 WG	 R	 Herbicide	

IP_248	 WG	 R	 Herbicide	

IP_252	 DW	 R	 Herbicide	

IP_261	 WG	 R	 Herbicide	

IP_459	 RB	 S	 Control	

IP_477	 SH	 S	 Control	

IP_177	 HA	 S	 Herbicide	

IP_188	 RB	 S	 Herbicide	

IP_189	 HA	 S	 Herbicide	

IP_232	 HA	 S	 Herbicide	

IP_257	 RB	 S	 Herbicide	

IP_260	 RB	 S	 Herbicide	

IP_497	 SH	 S	 Herbicide	

Table S3-13 RNA-Seq sample information used in the study. 
Pop Abbrev = abbreviation for each population as used in previous studies, Resistance type = 
classification of resistance in the population R >0.5 prop. survival S <0.5 prop. survival,TRT = 
Treatment type based on either herbicide sprayed (Herbicide) or not sprayed (Control).   
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Pop Abbrev Resistance Type TRT Sample size 

BI R Malathion 6 

DW R Malathion 13 

WG R Malathion 22 

HA S Malathion 4 

IN S Malathion 3 

RB S Malathion 11 

SH S Malathion 3 

BI R Glyphosate 3 

DW R Glyphosate 5 

WG R Glyphosate 8 

HA S Glyphosate 3 

RB S Glyphosate 4 

BI R Glyphosate + Malathion 2 

DW R Glyphosate + Malathion 9 

WG R Glyphosate + Malathion 13 

HA S Glyphosate + Malathion 4 

RB S Glyphosate + Malathion 6 

BI R Control 5 

DW R Control 12 

WG R Control 20 

HA S Control 8 

IN S Control 3 

RB S Control 10 

SH S Control 3 
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Table S3-14 Sample information used for the malathion assay. 
Pop Abbrev = abbreviation for each population as used in previous studies, Resistance type = 
classification of resistance in the population R >0.5 prop. survival S <0.5 prop. survival,TRT = 
Treatment type, Sample size = Total number of individuals per population per resistance type per 
treatment.  
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