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In the article we show that combining random generators by group operation improves the
statistical properties of the composite. It gives an effective way of finding random generators
more and more close to the uniform. Moreover we obtain an effective estimation of the speed
of convergence to the uniform generator.
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1. Introduction

Empirical studies indicate that combining two or more simple generators, by
means of the operations such as +,−, ∗,⊕ (exclusive or) improves the statistical
properties of the composite. References [2, 12, 18, 22] seem to be the first, which
deal with combining generators. Brown and Salomon [3] provided a theoretical
support for such combinations. They gave an elaborate proof that x + y mod m
was at least as uniform as x or y mod m, which was based on the techniques of
majorization. Marshall and Olkin [20] made the result more general in the elegant
book on inequalities and majorization. Combined generators have more advantages
than simple ones: they passed more practical tests (see [17–19, 22]) and generally
their periods increase (see [4, 5, 14–16]).

From theoretical point of view random generators are random variables with
values in finite groups. The case of independent variables taking values in compact
topological groups was considered by many authors (see [1, 7–11, 21]). In the article
we give similar results for independent random variables with values in any finite
groups (in particular in Z2 = {0, 1}) using only elementary methods. Moreover we
give an effective estimation of the speed of convergence to the uniform generator.
The estimations are important in applications, because they help to find better
and better generators.

To describe the results more precisely we take Ω a probabilistic space, G =
{g1, . . . , gn} a finite group and X : Ω −→ G a random variable. If G = Z2 we may
treat X as a bit generator. X is called uniform if the probability of taking value
gi by X is the same for i = 1, . . . , n i.e.

Pr{X = gi} =
1

n
.

∗ Email: oleksig@math.uni.lodz.pl
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In practise it is difficult to obtain the uniform generator. In the article we give an
effective method of finding random generator closer and closer to uniform.

In case G = Z2, which we consider separetely (because we obtain in this case
a stronger result), we prove the following. Let Xi, i = 1, 2, . . . , be a sequence of
arbitrary independent bit generators and Pr{Xi = 0} = pi, Pr{Xi = 1} = 1 − pi.
If pi’s are not “close enough” to 0 and 1 then the sum distribution modulo 2 of
Xi’s i.e. the distribution of X1 + ...+ Xi mod 2 tends toward uniform (Thms. 2.1,
2.6 and Cors. 2.3, 2.7) in a controlled rate. So, in practise if we have a sequence of
“not uniform” generators then by taking their sum modulo 2 in sufficiently large
quantity we can obtain more and more uniform bit generators. Observe that taking
the sum X1 + ... + Xi mod 2 is equivalent to the operation ”XOR” i.e. exclusive
or.

In the general case, i.e. for an arbitrary finite group G (in particular for Zn =
{0, 1, . . . , n − 1} with summing mod n, n = 1, 2, . . . or Zp \ {0} with multiplying
mod p for prime p) we obtain a similar result in a slightly weaker form (Thm. 3.1
and Cors. 3.2, 3.4).

Recently some authors (see for example [6, 13]) have studied a “weak” type of
uniformity called the ǫ-uniformity. Let Ω be a probabilistic space, G = {g1, . . . , gn}
be a finite group and X : Ω −→ G be a random variable. We say that X is ǫ-uniform

if for every i = 1, . . . , n

∣

∣

∣

∣

Pr(X = gi) −
1

n

∣

∣

∣

∣

≤
ǫ

n
.

In [6] J.D. Dixon constructed the sequence of random cube to get a 1/4-uniform
generator and in [13] A. Lukács gave an efficient method, which provably generates
ǫ-uniform random elements of an abelian group.

2. Combining random generators mod 2

Let (Xi)i∈N be a sequence of the independent random variables with values in Z2,
i.e.

Xi : Ω −→ Z2, i = 1, 2, . . . .

Let δi, |δi| ≤ 1 be real numbers such that

Pr{Xi = 1} =
1

2
(1 − δi), Pr{Xi = 0} =

1

2
(1 + δi), i = 1, 2, . . . .

If we write X1 +X2, by ”+” we mean summing in the group Z2. Then we have the
first limit theorem.

Theorem 2.1 For every b ∈ {0, 1} we have

∣

∣

∣

∣

Pr{X1 + . . . + Xi = b} −
1

2

∣

∣

∣

∣

=
1

2

i
∏

k=1

|δk|, i ∈ N.
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Proof Without loss of generality we may suppose that b = 1. Set

ui := Pr{

i
∑

k=1

Xk = 1}, i ∈ N.

Then from independence of the random variables X1, . . . ,Xi+1 we easily get inde-
pendence of the random variables

∑i
k=1 Xk and Xi+1 and hence

ui+1 = ui Pr{Xi+1 = 0} + (1 − ui)Pr{Xi+1 = 1}, i ∈ N.

Since Pr{Xi = 0} = 1
2 (1 + δi), Pr{Xi = 1} = 1

2(1 − δi) then putting ui = 1
2(1 −

ǫi), ǫi ∈ [−1, 1], i ∈ N, we get

1

2
(1 − ǫi+1) =

1

2
(1 − ǫi)

1

2
(1 + δi+1) +

1

2
(1 + ǫi)

1

2
(1 − δi+1), i ∈ N.

After easy transformations we obtain

ǫi+1 = ǫiδi+1, i ∈ N.

Observe that ǫ1 = δ1, hence

ǫi =

i
∏

k=1

δk, i ∈ N. (1)

From (1) we easily get |ui −
1
2 | = 1

2

∏i
k=1 |δk|. It finishes the proof. �

As a direct consequence of the above theorem we have the following.

Corollary 2.2 For every b ∈ {0, 1} we have

lim
i→∞

Pr{X1 + ... + Xi = b} =
1

2
⇐⇒

∞
∏

i=1

|δi| = 0.

Corollary 2.3 Suppose that there exists a positive constant δ ∈ R such that

|δi| ≤ δ < 1, Pr{Xi = 1} = 1
2 (1 − δi), i ∈ N. Then for every b ∈ {0, 1}

lim
i→∞

Pr{X1 + ... + Xi = b} =
1

2
,

and the distribution of X1+ ...+Xi tends to the uniform distribution at a geometric

rate i.e.

∣

∣

∣

∣

Pr{X1 + ... + Xi = b} −
1

2

∣

∣

∣

∣

≤
1

2
δi.

Generally it is difficult to check the condition
∏∞

i=1 |δi| = 0, so we give the
following helpful known proposition.

Proposition 2.4 Let ai ∈ R, i ∈ N. Then the product
∏∞

i=1(1+ |ai|) is convergent

if and only if the series
∑∞

i=1 |ai| is convergent.
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Proof It is a direct consequence of inequalities

k
∑

i=1

|ai| < 1 +

k
∑

i=1

|ai| <

k
∏

i=1

(1 + |ai|) ≤

k
∏

i=1

e|ai| = e
P

k

i=1
|ai|, k ∈ N.

�

This implies following proposition.

Proposition 2.5 Let δi ∈ [−1, 1], i ∈ N. Then

∞
∏

i=1

|δi| = 0 ⇐⇒

(

∞
∑

i=1

(1 − |δi|) = +∞ ∨ ∃i∈N δi = 0

)

.

Proof In the beginning observe that if δi = 0 for some i ∈ N then of course the
equivalence is true. So we can assume that δi 6= 0 , i ∈ N. We have

∞
∏

i=1

|δi| = 0 ⇔

∞
∏

i=1

1

|δi|
= +∞ ⇔

∞
∏

i=1

(

1 +
1 − |δi|

|δi|

)

= +∞ ⇔

∞
∑

i=1

1 − |δi|

|δi|
= +∞.

The last equivalence follows from Proposition 2.4. So that to finish the proof it
is enough to show that

∞
∑

i=1

(1 − |δi|) = +∞ ⇐⇒

∞
∑

i=1

1 − |δi|

|δi|
= +∞.

Because 0 < |δi| ≤ 1, we have “⇒” implication. Now suppose that
∑∞

i=1(1 −
|δi|)/|δi| = +∞. Put A := {i : |δi| ≤ 1/2}. If the set A is finite then (1−|δi|)/|δi| <
2(1 − |δi|), i 6∈ A, so this inequality is true for all i besides a finite number. Hence
∑∞

i=1(1− |δi|) = +∞. If the set A is infinite then 1− |δi| ≥ 1/2 for infinite number
i, and so

∑∞
i=1(1 − |δi|) = +∞. It finishes the proof. �

It is easy to check that 1 − |1 − 2t| = 2min{t, 1 − t} for all t ∈ R. Hence if
we put pi := (1/2)(1 − δi), i ∈ N, we get δi = 1 − 2pi and 1 − |δi| = 1 − |1 −
2pi| = 2min{pi, 1 − pi} So the condition

∑∞
i=1(1 − |δi|) = +∞ is equivalent to

∑∞
i=1 min{pi, 1−pi} = +∞. Then by Proposition 2.5 we can reformulate Theorem

2.1 and Corollary 2.3.

Theorem 2.6 Let (Xi)i∈N be the sequence of the independent random variables

with values in Z2 such that Pr{Xi = 0} = pi , Pr{Xi = 1} = 1 − pi, i ∈ N. Then

for every b ∈ {0, 1}

lim
i→∞

Pr{X1 + ... + Xi = b} =
1

2
⇐⇒

(

∞
∑

i=1

min{pi, 1 − pi} = +∞ ∨ ∃i∈N pi =
1

2

)

.

and

∣

∣

∣

∣

Pr{X1 + . . . + Xi = b} −
1

2

∣

∣

∣

∣

=
1

2

i
∏

k=1

|1 − 2pk|.
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Corollary 2.7 Let (Xi)i∈N be the sequence of the independent random variables

with values in Z2 such that Pr{Xi = 0} = pi , Pr{Xi = 1} = 1−pi, i ∈ N. Suppose

that there exist constants α, β ∈ R such that 0 < α ≤ pi ≤ β < 1, i ∈ N. Then for

every b ∈ {0, 1}

lim
i→∞

Pr{X1 + ... + Xi = b} =
1

2
,

and distribution of X1 + ... + Xi tends to uniform distribution at a geometric rate

i.e.

∣

∣

∣

∣

Pr{X1 + ... + Xi = b} −
1

2

∣

∣

∣

∣

≤
1

2
δi,

where δ = max{1 − 2α, 2β − 1}.

Proof Let i ∈ N. From our assumptions, if pi ≤ 1/2 we get that |1 − 2pi| =
1 − 2pi ≤ 1 − 2α ≤ δ and if pi > 1/2 we get |1 − 2pi| = 2pi − 1 ≤ 2β − 1 ≤ δ. So
|δi| = |1 − 2pi| ≤ δ and by using Corollary 2.3 we get the thesis. �

Remark 1 The above result is true for every two-element group because every
two-element group is isomorphic to Z2.

Remark 2 It is a standard fact of probability theory that if we have arbitrary distri-
butions µn, n ∈ N on a finite group G we may construct probabilistic space Ω and
independent random variables Xn : Ω −→ G with distributions µn. Moreover if we
have a finite sequence of independent random variables X1, . . . ,Xk we may always
extend it to infinite sequence X1, . . . ,Xk,Xk+1,Xk+2, . . . preserving independence
with arbitrary distributions µk+1, µk+2 . . . .

3. Combining random generator by group operation

Let G = {g1, . . . , gn} be a finite n-element group with operation ◦ and let (Xi)i∈N

be a sequence of independent random variables with values in G i.e.

Xi : Ω −→ G, i = 1, 2, . . . .

Let pik, 0 ≤ pik ≤ 1 be real numbers such that pi1 + . . . + pin = 1 and

Pr{Xi = gk} = pik, k = 1, . . . , n, i ∈ N.

Set pi := min{pil : l = 1, . . . , n}, i ∈ N. Then we have the second limit theorem.

Theorem 3.1 For every k ∈ {1, 2, . . . , n}

∣

∣

∣

∣

Pr{X1 ◦ . . . ◦ Xi = gk} −
1

n

∣

∣

∣

∣

≤
n

max
m=1

∣

∣

∣

∣

p1m −
1

n

∣

∣

∣

∣

i
∏

m=2

(1 − pm), i ∈ N

and if
∑∞

i=1 pi = +∞ then

lim
i→∞

Pr{X1 ◦ . . . ◦ Xi = gk} =
1

n
.
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Remark 1 It is easy to see that if G = Z2 with summing modulo 2 Theorem 3.1 is
a “weaker form” of Theorem 2.6

Remark 2 Observe, that the converse of the second part of the above theorem
isn’t true. Indeed, if Xi0 has uniform distribution then it is easy to check that
all X1 ◦ . . . ◦ Xj , j ≥ i0 have the uniform distibution independent of distribution
of random variable Xi, i 6= i0. So we may take X1 a random variable with the
uniform distribution and X2,X3, . . . arbitrary such that

∑∞
i=2 pi < ∞. Another

counterexample in which no random variables Xi has the uniform distribution is:
take G = Z3 with summing modulo 3 and sequence of the independent random
variables (Xi)i∈N, such that Pr{Xi = 0} = 0, Pr{Xi = 1} = Pr{Xi = 2} = 1/2, i ∈
N, then of course

∑∞
i=1 pi = 0 but one can check using Markov chain method that

limi→∞ Pr{X1 + . . . + Xi = k} = 1/3, k = 0, 1, 2 (Compare this remark to the first
part of Theorem 2.6).

Corollary 3.2 For every k ∈ {1, 2, . . . , n}

∣

∣

∣

∣

Pr{X1 ◦ . . . ◦ Xi = gk} −
1

n

∣

∣

∣

∣

≤

(

1 −
1

n

) i
∏

m=1

(1 − pm), i ∈ N. (2)

Proof It is a direct consequence of Theorem 3.1 and following inequality:

n
max
i=1

∣

∣

∣

∣

ai −
1

n

∣

∣

∣

∣

≤

(

1 −
1

n

)

(1 −
n

min
i=1

ai)

for ai ≥ 0 such, that
∑n

i=1 ai = 1. Indeed for n = 1 or n = 2 one can easily check
this inequality. Let n > 2. There exist i0 such that maxn

i=1 |ai − 1/n| is attained.
If ai0 ≤ 1/n, then

∣

∣

∣

∣

ai0 −
1

n

∣

∣

∣

∣

=
1

n
− ai0 ≤

1

n
. (3)

On the other hand observe that minn
i=1 ai ≤ 1/n, so

(

1 −
1

n

)

(1 −
n

min
i=1

ai) ≥

(

1 −
1

n

)2

>
1

n
. (4)

From (3) and (4) we get our inequality in this case.
If ai0 > 1/n, then

(

1 −
1

n

)

(1−
n

min
i=1

ai) ≥

(

1 −
1

n

)

(1−(1−ai0)) =

(

1 −
1

n

)

ai0 ≥ ai0−
1

n
=

∣

∣

∣

∣

ai0 −
1

n

∣

∣

∣

∣

and we get our inequality in this case. �

Remark 3 From the results of the paper by Brown and Salomon (see [3], Sec. 4)
one can deduce similar estimation as in Corollary 3.2, but without the constant
factor 1 − 1/n. This constant is the best possible in inequality (2). Indeed, if we
take G = Z2 and two independent random variables with distributions Pr{X1 =
0} = 0,Pr{X1 = 1} = 1,Pr{X2 = 0} = 1,Pr{X2 = 1} = 0, then the inequality in
Corollary 3.2 becomes an equality. Hence inequality (2) couldn’t be improved.

Moreover, one can also obtain similar estimations from the case when G is a
compact group (see [1]), but without the constant factor 1 − 1/n as well.

Page 6 of 9

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview
 O

nly

August 22, 2011 21:21 International Journal of Computer Mathematics generator2

6 Grzegorz Oleksik

To prove Theorem 3.1 we give a useful lemma.

Lemma 3.3 Let ai, xi ∈ R, ai ≥ 0, i = 1, . . . , n such that
∑n

i=1 ai = 1 and
∑n

i=1 xi = 0. Then

∣

∣

∣

∣

∣

n
∑

i=1

aixi

∣

∣

∣

∣

∣

≤
n

max
i=1

|xi|

(

1 −
n

min
i=1

ai

)

.

Proof If xi = 0 for every i, then the inequality is trivial. So we can suppose, that
there exist i, j such that xixj < 0. Hence the sets A := {i = 1, . . . , n : xi > 0},
B := {i = 1, . . . , n : xi < 0} are nonempty. We get further

∣

∣

∣

∣

∣

n
∑

i=1

aixi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

i∈A

aixi +
∑

i∈B

aixi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

i∈A

aixi −
∑

i∈B

ai|xi|

∣

∣

∣

∣

∣

≤ max

{

∑

i∈A

aixi,
∑

i∈B

ai|xi|

}

.

The last inequality is the consequence of the fact that |a − b| ≤ max{a, b} for
a, b ≥ 0. On the other side

∑

i∈A

aixi ≤
n

max
i=1

|xi|
∑

i∈A

ai ≤
n

max
i=1

|xi|(1 −
n

min
i=1

ai)

and

∑

i∈B

ai|xi| ≤
n

max
i=1

|xi|
∑

i∈B

ai ≤
n

max
i=1

|xi|(1 −
n

min
i=1

ai).

Reasumming

∣

∣

∣

∣

∣

n
∑

i=1

aixi

∣

∣

∣

∣

∣

≤
n

max
i=1

|xi|

(

1 −
n

min
i=1

ai

)

.

It finishes the proof. �

The proof of Theorem 3.1

Let k ∈ {1, . . . , n}. We may suppose that n ≥ 2, because for n = 1 the assertion
of the theorem is trivial. First observe that from independence of random variables
(Xi)i∈N we easily get independence of the random variables X1 ◦ . . . ◦ Xi and
Xi+1 , i ∈ N. Hence

Pr{X1 ◦ . . . ◦ Xi+1 = gk} =

n
∑

l=1

Pr{X1 ◦ . . . ◦ Xi = gk ◦ g−1
l ∧ Xi+1 = gl} =

=
n
∑

l=1

Pr{X1 ◦ . . . ◦ Xi = gk ◦ g−1
l }pi+1,l. (5)

Let sij = Pr{X1 ◦ . . . ◦ Xi = gj}, i ∈ N, j ∈ {1, . . . , n} Then we have

si+1,k =
n
∑

l=1

si,rk,l
pi+1,l, i ∈ N, (6)
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where rk,l ∈ {1, . . . , n} is such number that gk ◦ g−1
l = grk,l

. Let ǫij = sij −
1
n
, i ∈

N, j ∈ {1, . . . , n}. By hypothesis we have
∑n

l=1 pi+1,l = 1, so we can rewrite (6) in
the form:

ǫi+1,k =

n
∑

l=1

ǫi,rk,l
pi+1,l, i ∈ N. (7)

Because
∑n

j=1 sij = 1, i ∈ N, so by definition of ǫij we have
∑n

j=1 ǫij = 0, i ∈ N.

Hence from (7), using Lemma 3.3, we get

|ǫi+1,k| ≤
n

max
l=1

|ǫi,rk,l
|(1 −

n

min
l=1

pi+1,l) =
n

max
l=1

|ǫil|(1 −
n

min
l=1

pi+1,l), i ∈ N.

Set ǫi := maxn
l=1 |ǫil| and remember that pi = minn

l=1 pil, i ∈ N. Then we have

ǫi+1 ≤ ǫi(1 − pi+1), i ∈ N.

Observe, that ǫ1 = maxn
l=1 |p1l − 1/n| hence by easy induction

ǫi ≤
n

max
l=1

|p1l − 1/n|

i
∏

m=2

(1 − pm), i ∈ N, (8)

and we get the first part of the assertion.
If
∑∞

i=1 pi = +∞ , so
∑∞

i=1
pi

1−pi
= +∞, because 0 ≤ pi ≤ 1

n
. Then from

Proposition 2.4 we have

∞
∏

m=1

(

1 +
pi

1 − pi

)

= +∞,

so
∏∞

m=1
1

1−pi
= +∞. Hence

∏∞
m=1(1 − pi) = 0. So from (8) we get limi→∞ ǫi = 0.

It finishes the second part of the theorem in this case.

As a direct consequence of Corollary 3.2 we obtain the following corollary.

Corollary 3.4 Let (Xi)i∈N be a sequence of independent random variables such

that Pr{Xi = gk} = pik, k = 1, . . . , n, i ∈ N. If there exists α > 0 such that

pi ≥ α, i ∈ N, then for every k ∈ {1, 2, . . . , n}

lim
i→∞

Pr{X1 ◦ . . . ◦ Xi = gk} =
1

n

and distribution of X1 ◦ . . . ◦ Xi tends to uniform distribution at a geometric rate

i.e.

∣

∣

∣

∣

Pr{X1 ◦ . . . ◦ Xi = gk} −
1

n

∣

∣

∣

∣

≤

(

1 −
1

n

)

(1 − α)i, i ∈ N.
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8 REFERENCES

4. Concluding remarks

The results of the paper have a practical meaning. If we have a sequence of random
generators X1,X2, . . . (binary or in general in values in Zn or in an arbitrary finite
group G) satisfying mild conditions, then by combining them via group operation
we get the sequence of the random generators Yi = X1 + X2 + . . . + Xi more and
more uniform, when i tends to infinity (see Thm. 2.1, 2.6, 3.1 and Cors. 2.3, 2.7,
3.2, 3.4).
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