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Our Work 

• Approach: A model combining randomization and discrimination 

 Dense feature representation; 

 Random forest with discriminative decision trees classifier 

original 

image 
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method (SPM) 

our intuition: what 

humans do 

Dense Feature Representation 

• Our representation consists of (pairs of) image regions of 

arbitrary sizes and at arbitrary locations: 

Experiment 

People-Playing-Musical-Instruments (PPMI) 

PASCAL Action Dataset 

Future Work: 

•Improve speed by exploiting the inherent 

parallel nature of random forests using GPUs 

•Strong classifiers with analytical solution  

(e.g. LDA) 

• Incorporate multiple features 
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• Objective: Finding image regions that contain discriminative 

information for fine-grained image categorization. 

Caltech-UCSD Birds 200 

• 200-class classification of 200 bird species from North America 

(* - indicates equal contribution) 
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• MKL: Uses many features 

including Gray/ColorSIFT, 

geometric blur, color 

histograms, etc. 
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Random forest with Discriminative Decision Trees 

Leaf node 

Strong classifier 

Coarse-to-fine Learning 

• 9-class classification of human actions (%mAP) 
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PPMI Binary Classification 

Generalization Error of RF 

Training a Strong Classifier 

• {1, …, 5} represent original class labels 
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… … … … Control Experiments 
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PPMI 24 –Class Classification 
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Overall mAP 

• Ours: Uses a 

single feature 

(ColorSIFT) 
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Class Accuracy 

• Learning our random forest classifier: 

• Select best sample using information  

    gain criterion: 

Features for image regions: 

• Grayscale SIFT descriptors for 

PPMI and PASCAL Action 

• ColorSIFT descriptors for  

Caltech-UCSD Birds-200 

• Dense SIFT sampling at multiple 

scales (8, 12, 16, 24, 30) 

• Locality-constrained Linear 

Coding (LLC) Features  

: set of all training examples 

: entropy of training examples  

• Classification of test example: 

: number of trees 

: class label of test example 

: probability of test example  

  belonging to class c for tree t 

• Generalization error of a random forest: 

: correlation between decision trees 

: strength of the decision trees 

• Dense feature space                decreases 

• Strong classifiers                       increases 

Better generalization 

Depth: 

Area: 

• Our method automatically learns a coarse-to-fine 

region of interest (e.g. shown below for ‘playing 

trumpet’ class) 

• This is similar to the human visual system which is 

believed to analyze raw input from low to high spatial 

frequencies or from large global shapes to smaller local 

ones 
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