
Combining RDF and XML Schemas to Enhance
Interoperability Between Metadata Application Profiles

Jane Hunter
DSTC Pty Ltd

University of Qld, Australia
jane@dstc.edu.au

Carl Lagoze
Digital Library Research Group

Cornell University, NY
lagoze@cs.cornell.edu

Abstract
The term “application profile” has recently become highly topical.
Heery and Patel [1] define application profiles as metadata
schemas which consist of metadata elements drawn from one or
more namespaces, combined together by implementers and
optimised for a particular local application. They state that the
principal characteristics of an application profile are that: it may
draw on one or more existing namespaces; does not introduce new
metadata elements; it can specify permitted schemes and values;
and it can refine standard metadata elements. Significant new
initiatives such as TV-Anytime [2], MPEG-21 [3] and the Open
Archives Initiative (OAI) [4] are demanding application profiles
which combine elements from a number of different existing
standardized metadata schemas whilst maintaining interoperability
and satisfying their own specific requirements through
refinements, extensions and additions.
So far approaches to application profiles have been based on
either RDF Schemas [5] or XML Schemas [6,7,8]. The
SCHEMAS project [9] has adopted a purely RDF Schema
approach. Justification for a pure XML Schema approach to
application profiles is given in [10]. Despite high level assurances
of unification from the W3C [11, 12], a purist and competitive
attitude has prevailed amongst implementers. This has been
because the demarcation of roles and the interface between these
two disparate W3C Candidate Recommendations has been fuzzy;
no low level details or implementations describing interface
mechanisms have been provided; and implementers have been
afraid of compromising interoperability. In this paper we describe
a hybrid collaborative approach which combines the semantic
knowledge of RDF Schemas with the explicit structural,
cardinality and datatyping constraints provided by XML Schemas
in a complementary manner. First we describe our view of how
XML Schema and RDF Schema fit into the overall web metadata
architecture. We then describe possible schema interface
mechanisms. Finally using examples and mapping
implementations based on XSLT and a metadata ontology, we
demonstrate how interoperability between application profiles can
be enhanced by using a dual schema approach.

Keywords: Metadata, Interoperability, XML, RDF, Schema,
XSLT

1. Introduction
Metadata interoperability is a fundamental requirement for access
to information on the Internet. In particular there are three

scenarios in which interoperability between metadata descriptions
is essential:
• To apply a single query syntax over descriptions expressed in

multiple descriptive formats;
• To express the relationship between multiple descriptions in

terms of a “core” or “canonical” description;
• To project community or individual specific descriptions out

of a single canonical description.
The metadata interoperability problem has been exacerbated by
the need for more complex metadata descriptions. It has become
increasingly evident that simple standards such as Dublin Core
(DC) [13] cannot satisfy the requirements of communities such as
TV-Anytime [2], MPEG-21 [3], BIBLINK [14] and OAI [4] who
need to combine metadata standards for simple resource discovery
(DC), rights management (INDECS [15]), multimedia (MPEG-7
[16]), geospatial (FGDC [17]), educational (GEM [18], IEEE
LOM [19]) and museum (CIDOC CRM [20]) content, to satisfy
their application-specific requirements.
In this paper we propose mechanisms for metadata interoperability
based on both RDF Schema and XML Schema. Using examples
and implementations, we demonstrate how these two schema
languages can be made to work together to enable flexible,
dynamic mapping between complex, metadata descriptions which
mix elements from multiple domains, i.e., application profiles.
Our objective is to demonstrate how these two W3C Candidate
Recommendations can be used in a complementary manner,
exploiting the benefits of both.
In Section 2 we describe our overall web metadata architecture
proposal and how the various components described in this paper
fit together. In Section 3 we describe alternative mechanisms by
which the two schema languages can be made to work together.
The first part of section 3 defines clear boundaries between the
responsibilities of RDF Schema and XML Schema to prevent
functional overlap which could lead to contradictory constraints or
incompatibilities. The second part of section 3 examines
alternative mechanisms for linking complementary RDF and
XML Schemas which are being used together to define a single
metadata element set. In Section 4 we describe MetaNet, a “super-
ontology” derived by merging a number of different domain-
specific RDF Schemas. In Section 5 we describe how the semantic
knowledge within MetaNet can be linked to XSLT to enable
interoperability between application-profiles. Section 6 concludes
with an overview of the advantages and disadvantages of this
approach and the areas which require further work.

2. Semantic Web Metadata Architecture
In this section we propose a Web metadata architecture which will
enable interoperability between domain-specific metadata
schemas and application profiles consisting of metadata elements
drawn from those schemas.

Copyright is held by the author/owner(s).
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

457

We propose that both metadata diversity and interoperability can
more easily be accommodated across the WWW if each metadata
domain defines both an RDF Schema and an XML Schema for their
domain in their registered namespace. The RDF Schema file will
define the domain-specific semantic knowledge by specifying type
hierarchies and definitions - based on the ISO/IEC 11179 standard
for the description of data elements. The XML Schema file will
specify recommended encodings of metadata elements and
descriptions by defining types and elements, and their content
models, structures, occurrence constraints and datatypes. In
addition, the XML Schema will contain links to the corresponding
semantic definitions in the RDF Schema file in the same namespace.
By expressing the semantic knowledge of each domain in a
machine-understandable RDF Schema, it then becomes possible
to merge these separate domain ontologies or vocabularies into a
single encompassing ontology or vocabulary, also expressed as an
RDF Schema, known as the MetaNet ontology.
XSLT provides the language for transforming between XML-
encoded metadata descriptions. Combined with the semantic
knowledge provided by MetaNet, XSLT is capable of performing
both the semantic mapping and the structural and syntactic
mapping required between metadata descriptions based on mixed-
domain application profiles.
Hence the key components of this architecture, as illustrated in
Figure 1, are:
• Domain-specific namespaces which express each domain's

metadata model and vocabulary using both an RDF Schema
and an XML Schema. Each XML Schema contains links to
the corresponding RDF Schema;

• MetaNet - a single metadata ontology, expressed as an RDF
Schema and based on a common underlying, extensible
vocabulary. This has been generated by merging the domain-
specific ontologies (RDF Schemas) from each namespace;

• XSLT - a language for transforming between XML-encoded
metadata descriptions. When combined with the semantic
knowledge of MetaNet, XSLT is capable of flexible dynamic
mappings between application profile instantiations;

• Application Profiles - XML Schema definitions which
combine, restrict, extend and redefine elements from
multiple existing namespaces. In addition, using mechanisms
such as those described in the next section, application
profiles can also embed RDF Schema definitions of new
Classes or Properties which are subClasses or subProperties
of classes and properties defined in the domain-specific RDF
Schemas.

In the next section we describe various interface mechanisms by
which RDF Schema and XML Schema can be made to work
together concurrently.

3. Combining RDF and XML Schemas
There are two possible alternative schema languages for defining
application profiles (application-specific metadata element sets) :
RDF Schema [5] and XML Schema [6,7,8]. (XML DTDs cannot
seriously be considered as a solution since they do not explicitly
support namespaces [21].) Of the two possible approaches, each
offers its own advantages and disadvantages:
• RDF Schemas provide support for rich semantic descriptions

but provide limited support for the specification of local
usage constraints (i.e., structural, cardinality and datatyping
constraints);

• XML Schemas provide support for explicit structural,
cardinality and datatyping constraints but provide little
support for the semantic knowledge necessary to enable
flexible dynamic mapping between metadata domains.

Figure 1 - Example of the Proposed Web Metadata Architecture

458

Hence the most logical approach is to use both RDF Schemas and
XML Schemas so as to exploit their complementary features. The
difficulties associated with using both schema languages in
conjunction are that:
• there is a degree of functional overlap between RDF Schema

and XML Schema which can be resolved by:
o Either developing a hybrid RDF+XML schema

parser which is capable of checking for
consistency between RDF Schema and XML
Schema constraints;

o Or clearly demarcating the responsibilities of each
schema language to prevent duplication or
inconsistency between constraints;

• there are currently no clearly defined mechanisms for
smoothly and cleanly meshing RDF Schema and XML
Schema definitions.

In the long-term we believe that this calls for a re-examination of
the two schema languages and the formulation of a design that
integrates their complementary functionality. However, there is
an immediate need for a more near-term solution to serve the
critical need for metadata interoperability.
In the remainder of this section we propose various immediately-
available solutions (and their advantages and disadvantages) to the
problems outlined above which will enable RDF Schema and
XML Schema to work in synergy to satisfy the requirements for
metadata interoperability.

3.1 A Comparison of RDF Schema and XML
Schema Representations
In this section we express a simple example in both XML Schema
and RDF Schema to highlight the advantages and disadvantages
of each schema language and to demonstrate the overlap in
functionality.
Consider the following simple example: In our domain, we have a
new class Book which is a subClassof Resource. The Book class
has 2 properties, title and author. Each book may have one and
only one title but may have up to four authors. Author is a subtype
of the DCMES element dc.creator and also has an additional
property of its own, organisation. The values of the organisation
property are constrained to a set of three allowable instances
("OCLC,” “Cornell University” and “DSTC").
Below is an RDF Schema representation for this example.
The RDF Schema Class and Property declarations and label and
comment elements, provide semantic definitions for the metadata
elements and their attributes. The type hierarchy is defined using
the subClassOf and subPropertyOf elements. The domain
constraint specifies the attachment of properties to classes and the
range constraint can be used to indicate the classes that the values
of a property must be members of.
<?xml version='1.0'?>
<rdf:RDF
 xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc=“http://purl.org/dc/elements/1.1/"/>

<rdfs:Class rdf:ID=“Book” >
 <rdfs:label>Book</rdfs:label>
 <rdfs:comment>The class of books</rdfs:comment>
 <rdfs:subClassOf rdf:resource=“http://www.w3.org/2000/01/rdf-
schema#Resource"/>

</rdfs:Class>

<rdf:Property rdf:ID=“title” >
 <rdfs:label>Title</rdfs:label>
 <rdfs:comment>The name given to the resource</rdfs:label>
 <rdfs:domain rdf:resource=“#Book"/>
 <rdfs:range
 rdf:resource=“http://www.w3.org/2000/01/rdf-schema#Literal"/>
</rdf:Property>

<rdfs:Property ID=“author” >
 <rdfs:label>Author</rdfs:label>
 <rdfs:comment>A person responsible for creating a written
document</rdfs:comment>
 <rdfs:subPropertyOf
rdf:resource=“http://purl.org/dc/elements/1.1/dcmes.rdf#Creator"/>
 <rdfs:domain rdf:resource=“#Book"/>
 <rdfs:range
 rdf:resource=“http://www.w3.org/2000/01/rdf-schema#Literal"/>
</rdfs:Property>

<rdf:Property ID=“organisation” >
 <rdfs:label>Organisation</rdfs:label>
 <rdfs:comment=“The author's affiliation."/>
 <rdfs:domain rdf:resource=“#Author"/>
 <rdfs:range rdf:resource=“#OrgNames"/>
</rdf:Property>

<rdfs:Property rdf:ID=“OrgNames"/>

<OrgNames rdf:ID=“OCLC"/>
<OrgNames rdf:ID=“Cornell University"/>
<OrgNames rdf:ID=“DSTC"/>

</rdf:RDF>

Below is the corresponding XML Schema representation for the
example above.

<schema xmnls=“http://www.w3.org/1999/XMLSchema"
 targetNamespace=“http://www.dstc.edu.au/"
 xmnls:dstc=“http://www.dstc.edu.au/"
 xmnls:dc=“http://purl.org/dc/elements/1.1/"/>

 <import namespace=“http://purl.org/dc/elements/1.1/"/>

 <element name=“Book” >
 <annotation>
 <documentation>The class of books</documentation>
 </annotation>

 <sequence>
 <element ref=“dc:title” minOccurs=“1” maxOccurs=“1"/>
 <element name=“author” type=“author” maxOccurs=“4"/>
 </sequence>
 <attribute name=“id” type=“uriReference"/>
 </element>

 <complexType name=“author” >
 <extension base=“dc:creator” >
 <element name=“organisation” type=“OrgNames"/>

459

 </extension>
 </complexType>

 <simpleType name=“OrgNames” >
 <restriction base=“string” >
 <enumeration value=“OCLC"/>
 <enumeration value=“Cornell University"/>
 <enumeration value=“DSTC"/>
 </restriction>
 </simpleType>

</schema>

A comparison of the two schema language representations above,
show that:
• RDF Schema provides support for richer semantic definitions

through its ability to define type hierarchies, class/property
relationships and human-readable descriptions (using the
label and comment tags). But it provides limited support for
the specification of local usage constraints (i.e., structural,
cardinality and datatyping constraints);

• XML Schema provides support for explicit structural,
cardinality and datatyping constraints but provides little
semantic information.

• Overlap in functionality occurs in the following areas:
o Between the RDF Schema range constraint and XML

Schema type constraints;
o Between the RDF Schema domain constraint and the

content model definitions of XML Schema types and
elements;

o In the definition of the enumerated list or controlled
vocabulary values for organisations;

o Between RDF Schema comments and XML Schema
annotations. Both provide human-readable descriptions
of metadata elements or types.

Since hybrid RDF+XML Schema validators, which are capable of
validating both schemas and also checking for consistency
between the two, don't yet exist, we need to clearly delineate the
roles of the two schema languages to prevent duplication or
inconsistencies between constraints.
For this reason we adopt the approach that the RDF Schema
representation for a metadata element set should only contain
semantic definitions. Because constraints on the attachment of
properties to classes (domain) and property values (range) can
also be expressed using XML Schema, we suggest that these
particular RDF Schema constraints should not be used in this
context and that such class/property relationship constraints and
property value constraints should be expressed in the associated
XML Schema file.
Similarly the XML Schema encroaches onto the semantic
responsibilities which have been delegated to RDF Schema. When
using both RDF Schema and XML Schema in conjunction, the
XML Schema should contain only local usage constraints and no
semantic definitions such as the semantic descriptions inside the
annotation and documentation tags associated with each type.

3.2 Mechanisms for Interfacing RDF Schemas
and XML Schemas
In section 3.1 we clarified the demarcation of responsibilities
between RDF Schema and XML Schema when they are used in
conjunction. In this section, we will now investigate how to link or

Figure 2 - Linking from Multiple XML Schema Definitions to a Common Base RDF Schema

460

combine the two schema languages.
In section 3.1 we also demonstrated that RDF Schema is ideal for
expressing the base semantic concepts for a particular domain's
metadata model and XML Schema is ideal for expressing the local
usage constraints (such as closed vocabularies, occurrence or
formatting constraints). Because the underlying semantics will
remain relatively stable compared to the syntax which will be
application-dependent, we have chosen to make the RDF Schema
the base schema and to point to the base RDF Schema from the
application-specific XML Schemas. Figure 2 demonstrates the
logic behind this approach.
In sections 3.2.1 and 3.2.2 we describe two methods for
combining RDF Schema semantics with XML Schema local
constraints:
1. Embedding the RDF Schema Class/subClassOf,

Property/subPropertyOf definitions inside type annotations
in the XML Schema file;

2. Adding links from the XML Schema to an external RDF
Schema file.

3.2.1 Embedding Local RDF Schema
Semantics in XML Schema Annotations
The first method involves incorporating local RDF Schema Class,
subClassOf, Property and subPropertyOf definitions inside the
XML Schema file. The only method for adding such extensions to
XML Schema without loss of conformance is via the annotation
and appinfo elements. appinfo appears as a subelement of
annotation which may appear at the beginning of most schema
constructions.
To illustrate, the following example shows how RDF semantics
associated with the “title” and “creator” elements can be
embedded in their corresponding type annotations in the XML
Schema file. As suggested in Section 3.1, to prevent duplication or
contradiction of constraints between the XML and RDF Schema
definitions, the RDF Schema domain and range constraints have
not been used.
<schema xmnls=“http://www.w3.org/1999/XMLSchema"
 targetNamespace=“http://purl.org/dc/elements/1.1/"
 xmlns:dc=“http://purl.org/dc/elements/1.1/"
 xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#” >
 xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#” >

 <annotation>
 <documentation>
 Draft XML Schema for the Dublin Core Element Set, V 1.1
 </documentation>
 </annotation>

 <simpleType name=“title” >
 <annotation>
 <appinfo>
 <rdf:Property ID=“title” >
 <rdfs:label=“Title” >
 <rdfs:comment=“The name given to the resource.” >
 </rdf:Property
 </appinfo>
 </annotation>
 <restriction base=“string"/>
 </simpleType>

 <simpleType name=“creator” >
 <annotation>
 <appinfo>
 <rdf:Property ID=“creator” >
 <rdfs:label=“Creator” >
 <rdfs:comment=“An entity primarily responsible for
 making the content of the resource” >
 </rdf:Property
 </appinfo>
 </annotation>
 <restriction base=“string"/>
 </simpleType>
...
</schema>

Using this approach it is also possible to embed RDF Schema
definitions of new classes or properties which are subClasses or
subProperties of existing classes and properties defined in
domain-specific RDF Schemas. For example:
 <simpleType name=“author” >
 <annotation>
 <appinfo>
 <rdf:Property ID=“author” >
 <rdfs:subPropertyOf rdf:resource=
 “http://purl.org/dc/elements/1.1/#Creator"/>
 </rdf:Property
 </appinfo>
 </annotation>
 <restriction base=“string"/>
 </simpleType>

This approach has the advantage of combining both the semantic
definitions and structural and syntactic constraints in a single file,
whilst maintaining XML Schema conformance. However, it is
less flexible than the approach (shown in the next section) of
separating the semantics of metadata elements from the usage
constraints. This method also requires:
• either an RDF/XML Schema parser to be developed by

adding extensions to an existing XML Schema parser (such
as XSV [23]) to parse the embedded RDF-specific
definitions;

• or an XSLT [24] program to extract the RDF Schema
definitions into a separate RDF Schema file which can be
parsed using an existing RDF Schema parser such as
SiRPAC [25].

However, the major limitation of this approach is that those RDF
classes and properties defined explicitly within XML Schema
annotations are local definitions only and cannot be reused or
pointed to by other schemas because they are not globally-
accessible named elements. This conflicts with our reason for
using RDF Schema which is to enable the dissemination and reuse
of the semantic concepts across the Web to promote semantic
interoperability, independent of the local usage constraints.

3.2.2 Linking External RDF Schema
Definitions to an XML Schema
The second method involves using XLink [33] and the XLink
Markup Name Control namespace proposed in a recent W3C
Note[34], to link remote RDF Schema definitions in a separate file
or namespace, to XML Schema type definitions.
In this Note, the authors suggest that an attribute of type
xl:arcrole, defined in an XML Schema in the XLink namespace,

461

be added to each simple or complex type and that it be given a
value that corresponds to an RDF property. This approach is
illustrated in the example schema below. The problem with this
approach is that the RDF semantics are only specified at time of
instantiation not at the time of schema design, which is our
requirement.
<schema xmnls=“http://www.w3.org/1999/XMLSchema"
 targetNamespace=“http://purl.org/dc/elements/1.1/"
 xmlns:dc=“http://purl.org/dc/elements/1.1/"
 xmlns:xl=“http://www.w3.org/2000/10/xlink-ns” >

 <annotation>
 <documentation>
 Draft XML Schema for the Dublin Core Element Set, V 1.1
 </documentation>
 </annotation>

 <complexType name=“title” >
 <simpleContent>
 <extension base=“string” >
 <attribute name=“arcrole” type=“xl:arcrole"/>
 <extension>
 </simpleContent>
 </complexType>

 <complexType name=“creator” >
 <simpleContent>
 <extension base=“string” >
 <attribute name=“arcrole” type=“xl:arcrole"/>
 <extension>
 </simpleContent>
 </complexType>
...
</schema>

The corresponding instantiation would look something like:

 <Description about=“urn:isbn:0-65743-123-1” >
 <title arcrole=“http://purl.org/dc/elements/1.1/dcmes.rdf#title”>
 Where The Wild Things Are
 </title>
 <creator arcrole=
 “http://purl.org/dc/elements/1.1/dcmes.rdf#creator”>
 Maurice Sendak
 </creator>

 </Description>

A better approach is to specify a link to the type's corresponding
semantics (RDF Property or Class definition) from within the
XML Schema file. This is possible using the openness of XML
Schema attributes. Since nearly all types are extended from the
openAttrs type in the Schema for Schemas in [7], it is possible to
extend XML Schema type definitions with a “semantics”
attribute defined in another namespace. Using this approach, the
value of the semantics attribute is the RDF Property or Class
which defines the semantics of each simple or complex type.

We have chosen to link the semantics to XML Schema type
definitions, rather than element declarations. This is because

restrictions, extensions, redefinitions and elements are all built on
top of XML Schema types, so the most logical and flexible
approach is to attach the semantics to the type rather than the
element.
<schema xmnls=“http://www.w3.org/1999/XMLSchema"
 targetNamespace=“http://purl.org/dc/elements/1.1/"
 xmlns:dc=“http://purl.org/dc/elements/1.1/"
 xmlns:xx=“http://www.example.org/XMLRDFSchemaBridge” >

 <annotation>
 <documentation>
 Draft XML Schema for the Dublin Core Element Set, V 1.1
 </documentation>
 </annotation>

 <simpleType name=“title” xx:semantics=
 "http://purl.org/dc/elements/1.1/dcmes.rdf#title">
 <restriction base=“string"/>
 </simpleType>

 <simpleType name=“creator” xx:semantics=
 "http://purl.org/dc/elements/1.1/dcmes.rdf#creator">

 <restriction base=“string"/>

 </simpleType>
...

</schema>

4. MetaNet - A Common Ontology for
Semantic Interoperability
Semantic knowledge in the form of an ontology or thesaurus is
required to enable flexible, dynamic mapping between XML-
encoded instantiations of application profiles. Since this semantic
information is already available in the separate RDF Schemas
provided by each domain, the task remains to merge these RDF
Schemas into a single RDF Schema representation of the merged
ontologies and to link this to XSLT programs to perform dynamic
mappings between metadata descriptions.
In this section we describe a metadata thesaurus, MetaNet, which
has been generated by merging a number of domain-specific
vocabularies manually. Ideally, this would be machine-generated
using inferencing, such as has been proposed in the Ontology
Inference Layer (OIL) [26].
MetaNet [27] is a thesaurus which contains preferred terms,
equivalent/overlapping terms (ET), narrower terms (NT) and
broader terms (BT) which encompass most of the significant
metadata models/vocabularies/standards. The top-level preferred
terms are based on the core ABC vocabulary developed by the
Harmony project [28, 29].
The objective of the MetaNet thesaurus is to provide the semantic
knowledge required to enable machine understanding of
equivalence and hierarchical (subtyping) relationships between
metadata terms from different domains. The scope of this
thesaurus is limited to the most significant metadata
models/vocabularies/standards used for describing attributes and
events associated with resources and their life cycles. This
encompasses metadata vocabularies from the bibliographic,
museum, archival, record keeping and rights management
communities. It has been developed by performing WordNet [30]

462

searches using the core terms from the ABC vocabulary and
extracting those synonyms and hyponyms which could
conceivably be used in a metadata scheme to represent the original
core term. In addition the majority of metadata terms from the
vocabularies of the DC, INDECS, IFLA and CIDOC CRM have
been manually incorporated into the thesaurus.
For example, consider “Agent” which is a core entity of the ABC
model and a core term of the ABC vocabulary [29].
Semantically equivalent terms for “Agent” which are used within
other metadata vocabularies include: actor, contributor, player,
doer, worker, performer Possible narrower terms or hyponyms for
“Agent” include: creator, author, composer, artist, musician, etc..
An RDF Schema representation of this thesaurus has been
developed. The RDF and RDF Schema elements, Class,
subClassOf, Property, subPropertyOf are used to define the type
hierarchy and entity/attribute relationships between metadata
elements. The RDFS label element is used to specify terms which
are considered to be semantically equivalent. Below is an excerpt
from the RDF Schema which illustrates the representation for the
“Agent” metadata term as well as its equivalent terms and a partial
hierarchy of its narrower terms.

<?xml version=“1.0"?>
<rdf:RDF xml:lang=“en"
 xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#” >

<rdfs:Class rdf:ID=“Agent” >

 <rdfs:comment xml:lang=“en” >The resources which
contribute to or act in an event. Typically agents are people,
groups of people, organisations or instruments.</rdfs:comment>

 <rdfs:label xml:lang=“en” >Actor</rdfs:label>
 <rdfs:label xml:lang=“en” >Contributor</rdfs:label>
 <rdfs:label xml:lang=“en” >Player</rdfs:label>
 <rdfs:label xml:lang=“en” >Doer</rdfs:label>
 <rdfs:label xml:lang=“en” >Worker</rdfs:label>
 <rdfs:label xml:lang=“en” >Performer</rdfs:label>

 <rdfs:subClassOf rdf:resource=
 “http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdfs:Class>

<rdfs:Class rdf:ID=“Author” >
 <rdfs:label xml:lang=“en” >Writer</rdfs:label>
 <rdfs:label xml:lang=“en” >Wordsmith</rdfs:label>
 <rdfs:subClassOf rdf:resource=“#Agent"/>
</rdfs:Class>

<rdfs:Class rdf:ID=“Journalist” >
 <rdfs:label xml:lang=“en” >Columnist</rdfs:label>
 <rdfs:label xml:lang=“en” >Reporter</rdfs:label>
 <rdfs:subClassOf rdf:resource=“#Author"/>
</rdfs:Class>
</rdf:RDF>

A web search and browse interface to MetaNet has also been
developed [27]. Users can search on any common metadata term

and retrieve a list of equivalent terms, broader terms and
narrower terms. Figure 3 shows the results of a search on the
term “author.”

In the next section, we describe mechanisms by which XSLT
can access the semantic knowledge held in the MetaNet RDF
Schema to perform the semantic mapping component of
metadata description transformations.

5. Adding Semantic Knowledge to XSLT
The Extensible Style Transformation Language's (XSLT) [24]
ability to transform data from one XML representation to another
appears to makes it ideal for metadata interchange applications.
In order to evaluate XSLT's capabilities for mapping between
application profile instantiations, we generated two hybrid
schemas (which use both XML Schema and RDF Schema) and
then attempted to map between instantiations of these schemas
using XSLT.
Table 1 below shows the two application profile examples. Using
XSLT and the Xalan [32] XSLT processor we developed XSL
programs for transforming from myDescription1 to
myDescription2.

Application Profile Examples

<schema xmnls=“http://www.w3.org/1999/XMLSchema"
 targetNamespace=“http://www.dstc.edu.au"
 xmnls:dstc=“http://www.dstc.edu.au"
 xmlns:dc=“http://purl.org/dc/elements/1.1/"
 xmlns:mpeg7=“http://www.mpeg.org/MPEG7/2000/"
 xmlns:ims=“http://ltsc.ieee.org/doc/wg12/"/>

 <import namespace=“http://purl.org/dc/elements/1.1/"/>
 <import namespace=“http://www.mpeg.org/MPEG7/2000/"/>
 <import namespace=“"http://ltsc.ieee.org/doc/wg12/"/>

 <element name=“myDescription1” >
 <complexType>
 <sequence>
 <element ref=“dc:title” minOccurs=“1” maxOccurs=“2” >
 <element ref=“dc:creator” minOccurs=“1” maxOccurs=“3” >
 <element ref=“mpeg7:UsageMetaInformation”
 minOccurs=“0” maxOccurs=“unbounded"/>
 <element ref=“ims:LearningContext"/>
 </sequence>
 </complexType>
 <attribute name=“about” type=“uriReference"/>

Figure 3 - Results of MetaNet Search

463

 </element>

</schema>

<schema xmnls=“http://www.w3.org/1999/XMLSchema"
 targetNamespace=“http://www.dstc.edu.au/"
 xmnls:dstc=“http://www.dstc.edu.au"
 xmnls:dc=“http://purl.org/dc/elements/1.1/"
 xmlns:ims=“http://ltsc.ieee.org/doc/wg12/"/>

 <import namespace=“http://purl.org/dc/elements/1.1/"/>
 <import namespace=“"http://ltsc.ieee.org/doc/wg12/"/>

 <element name=“myDescription2” >
 <element ref=“ims:title” minOccurs=“1” maxOccurs=“1"/>
 <element name=“author” type=“author"/>
 <element ref=“dc:rights"/>
 <element ref=“ims:TypicalAgeRange"/>
 <attribute name=“about” type=“uriReference"/>
 </element>

 <complexType name=“author” >
 <annotation>
 <appinfo>
 <rdf:Property ID=“author” >
 <rdfs:subPropertyOf
 rdf:resource=“http://purl.org/dc/elements/1.1/#Creator"/>
 </rdf:Property
 </appinfo>
 </annotation>
 <sequence>
 <element ref=“dc:creator"/>
 <element name=“organisation” type=“OrgNames"/>
 </sequence>
 </complexType>

 <simpleType name=“OrgNames” >
 <restriction base=“string” >
 <enumeration value=“OCLC"/>
 <enumeration value=“University of Cambridge"/>
 <enumeration value=“DSTC"/>
 </restriction>
 </simpleType>

</schema>

The mapping implementations revealed that XSLT is inadequate
for implementing flexible dynamic semantic mappings between
metadata vocabularies. This is due to:
• XSLT's limited capabilities for handling variable input

descriptions based on schemas which are not tightly
constrained;

• The non-existence of machine-understandable semantic
information in declarative XML-encoded metadata
descriptions;

• Processor-dependent handling of input parameters and
procedural code extensions;

• Limited string manipulation and comparison functions, e.g.,
it is not possible to perform case-insensitive string
comparisons within XSLT.

A previous paper by Alison Cawsey which investigated the use of
XSLT for customizing RDF descriptions, reached similar
conclusions [31].
Semantic knowledge in the form of an ontology or thesaurus is
required to enable flexible, dynamic mapping between XML-
encoded metadata descriptions. This semantic information is
available already in the MetaNet thesaurus (described in Section
4) which was generated by merging domain-specific ontologies.
Hence we needed to determine a method to link the semantic
information in MetaNet to the XSLT program performing the
mapppings.
Using XSLT, it is possible to parse an input XML description and
for each new element encountered, call a Java procedural code
extension which determines the equivalent term in the output
domain from the MetaNet thesaurus. For example, suppose the
Java program, Mapping.java, contains a readMetaNet function.
For each element encountered during parsing, the input element
name (e.g., 'dstc:Author') and the output domain (e.g., 'dc') are
passed to the readMetaNet function. This function searches the
MetaNet RDF Schema file for the equivalent output domain
element (e.g., dc:creator), returns this value and XSL creates a
new output element with this name in the output description.
Figure 4 below illustrates the program flowchart.

Figure 4 - Program Flow for Metadata Description Mappings

The XSL code below illustrates how to call a Java program
function, readMetaNet, from the main XSL file.
<?xml version=“1.0"?>
<xsl:stylesheet version=“1.0”
 xmlns:xsl=“http://www.w3.org/1999/XSL/Transform"
 xmlns:dc =“http://purl.org/dc/elements/1.1/” >
 xmlns:lxslt=“http://xml.apache.org/xslt"
 xmlns:mapping=“Mapping"
 extension-element-prefixes=“mapping"
 version=“1.0” >

 <lxslt:component prefix=“mapping” elements=“*”
 functions=“readMetaNet” >
 <lxslt:script lang=“javaclass” src=“Mapping"/>
 </lxslt:component>

464

 <xsl:template match=“*” >
 <xsl:element name=“mapping:readMetaNet(., 'dc')"/>
 <xsl:value-of select=“."/>
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

Below is a high-level simplistic algorithm describing the mapping
process which is performed within the readMetaNet Java function
in Figure 4:

For each element in the input description
{
 Search for the input element name in the output domain schema;
 if (found) {
 Map the input element to the equivalent output domain
element;
 {
 else {
 Extract the Equivalent Terms (ETs) to the input element from
MetaNet;
 Search the output domain schema for each of the ETs;
 if (an ET is found)
 {
 Map the input element to the equivalent output domain
element;
 }
 else {
 Extract the broader terms (BTs) for the input element from
MetaNet;
 Search for each BT in the output domain namespace;
 if (a BT is found)
 {
 Map the input element to the broader output domain
element;
 }
 else {
 Extract the narrower terms (NTs) for the input element from
MetaNet;
 Search for each NT in the output domain namespace;
 if (a NT is found)
 {
 Map the input element to the narrower output domain
element;
 }
 }
 }
 }
} endFor

By adding a procedural code extension to XSLT to perform the
semantic mapping (using information on semantic relationships
between metadata terms in MetaNet), we are able to execute
dynamic, flexible mappings between XML-encoded instantiations
of application profiles.

6. Conclusions
In this paper, we have proposed a web metadata architecture which
combines the best features of both XML Schema and RDF Schema
to enhance metadata interoperability across the web.

XML Schemas are used for their ability to explicitly define local
usage constraints such as content model, occurrence and datatyping
constraints. These features make XML Schema language ideal for
defining application profiles. RDF Schemas are used to express the
semantics of domain-specific metadata models in a machine-
understandable syntax which can be used to merge ontologies from
multiple domains.
We have suggested approaches for combining XML Schemas and
RDF Schemas based on the currently available mechanisms. The
overlap in functionality between these two schema languages and
the lack of clearly defined mechanisms or tools for linking RDF
Schemas and XML Schemas have made this task difficult and the
available solutions cumbersome. For example, development of a
hybrid RDF+XML Schema parser to check for consistency of
constraints between two corresponding schemas for the one
underlying model would be extremely useful.
Ideally the XML Schema language would provide an explicit
built-in attribute on simple or complex types, which is a
uriReference to the corresponding semantics for that type, i.e.,
existing classes or properties in an external RDF Schema. This
would preclude the need for semantics attribute definition in the
XMLRDFSchemaBridge namespace. For example:
 <simpleType name=“originator" semantics=
 “http://purl.org/dc/elements/1.1/dcmes.rdf#creator"/>
 <restriction base=“string"/>
 </simpleType>

This work has also shown that the current extensibility mechanisms
for both XML Schema and RDF Schema are unclear and require
clarification, simplification and implementation examples.
We have also described MetaNet, a generic metadata term
thesaurus, expressed in RDF Schema which was generated by
manually merging RDF Schemas from different metadata domains.
In addition, we have shown how the semantic knowledge in the
MetaNet thesaurus can be accessed by a procedural code extension
to XSLT to enable flexible, dynamic mappings between application
profile instantiations.
In the future we are interested in investigating the application of
more lightweight rules-based approaches such as Schematron [35]
in combination with RDF Schema to support interoperable
application profiles.
Our final conclusion is that although we have demonstrated how
each of these web metadata architectural components can be made
to fit together, the process has been analogous to the assembly of a
badly made jigsaw puzzle. The joins have not been intuitive, clean
or easy and some parts are missing all together. Based on the work
described in this paper, we suggest that before either schema
language moves to the Proposed Recommendation or
Recommendation stage, there is a need for a re-examination of the
two schema languages and the formulation of mechanisms which
cleanly and smoothly integrate their complementary functionality.

Acknowledgements
The work described in this paper has been carried out as part of the
Harmony Project. It has been funded by the Cooperative Research
Centre for Enterprise Distributed Systems Technology (DSTC)
through the Australian Federal Government's CRC Programme
(Department of Industry, Science and Resources) and NSF Grant
9905955. The authors also wish to acknowledge the valuable
contribution which discussions with Dan Brickley have made to this
paper.

465

References
[1] R. Heery, M. Patel, "Application Profiles: mixing and

matching metadata schemas", Ariadne Issue 25, September
2000. <http://www.ariadne.ac.uk/issue25/app-profiles/>

[2] TV-Anytime Forum, <http://www.tv-anytime.org/>
[3] MPEG-21 Multimedia Framework,

<http://www.cselt.it/mpeg/public/mpeg-21_pdtr.zip>
[4] Open Archives Initiative. <http://www.openarchives.org/>
[5] RDF Schema Specification 1.0, W3C Candidate

Recommendation 27 March 2000.
<http://www.w3.org/TR/rdf-schema/>

[6] XML Schema Part 0: Primer, W3C Candidate
Recommendation, 24 October 2000,
<http://www.w3.org/TR/xmlschema-0>

[7] XML Schema Part 1: Structures, W3C Candidate
Recommendation, 24 October 2000,
<http://www.w3.org/TR/xmlschema-1>

[8] XML Schema Part 2: Datatypes, W3C Candidate
Recommendation, 24 October 2000,
<http://www.w3.org/TR/xmlschema-2>

[9] The SCHEMAS Project, Forum for Metadata Schema
Implementers, <http://www.schemas-forum.org/>

[10] J. Hunter, An XML Schema Approach to Application
Profiles, October 3 2000.
<http://archive.dstc.edu.au/maenad/appln_profiles.html>

[11] T. Berners-Lee, "XML and the Web", XML World,
September, 2000. <http://www.w3.org/2000/Talks/0906-
xmlweb-tbl/Overview.html>

[12]The Cambridge Communiqué, W3C Note 7 October 1999.
<http://www.w3.org/TR/schema-arch>

[13]The Dublin Core Metadata Initiative.
<http://www.purl.org/dc/>

[14] The BIBLINK Core Application Profile.
<http://www.schemas-
forum.org/registry/schemas/biblink/BC-schema.html>

[15] G. Rust, M. Bide, “The indecs Metadata Schema Building
Blocks,” Indecs Metadata Model, November, 1999.
<http://www.indecs.org/results/model.htm>

[16] MPEG-7 Home Page
<http://www.darmstadt.gmd.de/mobile/MPEG7/index.html/>

[17] Content Standard for Digital Geospatial Metadata (CSDGM),
<http://www.fgdc.gov/metadata/contstan.html>

[18] The Gateway to Educational Materials <http://www.the
gateway.org>

[19] IEEE Learning Technology Standards Committee's Learning
Object Meta-data Working Group. Version 3.5 Learning
Object Meta-data Scheme.

[20] ICOM/CIDOC Documentation Standards Group, Revised
Definition of the CIDOC Conceptual Reference Model,
September 1999. <http://www.geneva-
city.ch:80/musinfo/cidoc/oomodel>

[21] Namespaces in XML, W3C Recommendation 14 January,
1999. <http://www.w3.org/TR/REC-xml-names>

[22] Dublin Core Metadata Element Set, Version 1.1, 2 July,
1999. <http://www.purl.org/dc/documents/rec-dces-
19990702.htm>

[23] Validator for XML Schema, 22 September 2000 version.
<http://www.w3.org/2000/09/webdata/xsv>

[24] XSL Transformations (XSLT) Version 1.0 W3C
Recommendation 16 November 1999,
<http://www.w3.org/TR/xslt.html>

[25] SiRPAC, Simple RDF Parser and Compiler.
<http://www.w3.org/RDF/Implementations/SiRPAC>

[26] Ontology Inference Layer,
<http://www.ontoknowledge.org/oil/>

[27] MetaNet Search Page,
<http://sunspot.dstc.edu.au:8888/Metanet/Top.html>

[28] The Harmony Project Home Page,
<http://www.ilrt.bris.ac.uk/discovery/harmony/>

[29] C.Lagoze, J. Hunter, D. Brickley, “An Event-Aware Model
for Metadata Interoperability,” ECDL 2000, Lisbon,
September 2000.

[30] WordNet - a Lexical Database for English.
<http://www.cogsci.princeton.edu/~wn/online/>

[31] A. Cawsey, "Presenting tailored resource descriptions: Will
XSLT do the job?", WWW9, Amsterdam, May 2000.
<http://www.cee.hw.ac.uk/~alison/www9/paper.html>

[32] Xalan-Java Overview.
<http://xml.apache.org/xalan/overview.html>

[33] XML Linking Language (XLink) Version 1.0, W3C
Candidate Recommendation, 3 July 2000.
<http://www.w3.org/TR/xlink/>

[34] XLink Markup Name Control W3C Note 24 October 2000,
<http://www.w3.org/TR/xlink-naming>

[35]The Schematron - An XML Structure Validation Language
using Patterns in Trees.
<http://www.ascc.net/xml/resource/schematron>

466

