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Abstract

Sparse coding is an important approach for the unsupervised learning

of sensory features. In this contribution we present two new methods

which extend the traditional sparse coding approach with supervised

components. Our goal is to increase the suitability of the learned

features for classification tasks while keeping most of their general

representation capability. We analyze the effect of the new methods

using a visualization on artificial data and discuss the results on two

object test sets with regard to the properties of the found feature rep-

resentation.

1 Introduction

Most approaches to object recognition employ two kinds of methods – methods

that learn features and methods that learn object representations. While the second

group of methods can directly be used for classification by comparing a test image

with the learned representation, the first group has a supporting function in finding

subspaces in the data in which more robust object representations can be obtained.

For the object representation learning methods there is a further distinction

between probabilistic generative and discriminative approaches, depending on

whether they model the distribution of samples in the data space or not (Ulusoy

& Bishop 2005). In recent years a stronger interest arose in combining the ad-

vantages of both approaches (Raina, Shen, Ng, & McCallum 2003; Ng & Jordan

2002). Following (Ulusoy & Bishop 2005), discriminative approaches are faster
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and more reliable in predicting class labels, since they are trained to do so rather

than to model the joint distribution of input vectors and classes. Because of this

specialization in a certain classification task these approaches suffer the drawback

that they have to be retrained whenever the scenario is changed, e.g. by adding a

new class.

Probabilistic generative methods, e.g. Gaussian mixture models GMMs (Mc-

Lachlan & Peel 2000), learn independent models for each class. Therefore a new

class simply adds a new model but does not influence the existing ones. Also they

are able to deal with missing information and unlabeled data. The disadvantage

of generative methods is that they model details of a data distribution that may be

irrelevant or even disturbing in classification tasks.

Also for the feature learning methods a distinction exists between genera-

tive and discriminative approaches, depending on whether the learned feature

subspace supports reconstruction of the data or classification. Usually both ap-

proaches train one global feature basis for the whole data distribution. The dis-

criminative approaches are trained in a supervised and the generative approaches

normally in an unsupervised manner. Although the term generative is often used

in this context, it is misleading because the feature learning methods do not spec-

ify how new data could be generated from a learned basis, by means of learning

priors on how to combine the features. The probabilistic generative models do so

explicitly.

There is a group of generative feature learning methods called linear genera-

tive methods. These methods search for subspaces that allow for a good recon-

struction of the data vectors in terms of linear combinations of the basis functions.

This means each data vector is associated with a set of coefficients that deter-

mines how the features (basis functions, weights) have to be used to yield the best

reconstruction. The linear generative models differ in the constraints on how to re-

construct the data. Principal component analysis PCA (Duda, Hart, & Stork 2000)

finds dimensions of highest variance in the data, which allows for a reconstruc-

tion with minimal information loss when using fewer features than dimensions in

the data. Non-negative matrix factorization NMF (Lee & Seung 1999) employs

purely positive weights and coefficients, and was shown to learn localized patterns

that often have a direct interpretation as object parts. Sparse coding (Olshausen &

Field 1996) puts constraints on the coefficients, enforcing an efficient usage of the

basis functions. The principle of efficient coding resembles receptive field prop-

erties in primary visual cortex when applied to small patches of natural scenes.

As mentioned in the beginning, linear generative methods are often used to
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facilitate classification. So e.g., PCA was successfully applied to face recogni-

tion (Turk & Pentland 1991) and sparse coding features were used as intermedi-

ate layer in a feature hierarchy related to the ventral visual pathway (Wersing &

Körner 2003), that yields robust classification performance for different recogni-

tion problems. However, linear generative methods for feature learning suffer the

same drawback as the probabilistic generative methods, namely, that they spend

resources for modeling certain dimensions in the data that might be irrelevant or

disturbing for classification tasks. On the other hand, the discriminative feature

learning methods concentrate on dimensions in the data that are relevant for classi-

fication but do not offer the possibility to learn features that have an interpretation

as object parts. Instead, they generate very holistic, noisy-looking features. An

example for those methods is the Fisher linear discriminant (Duda, Hart, & Stork

2000), which finds subspaces in the data where the classes are separated best in

terms of Euclidean distance. This subspace is very specific for the trained sce-

nario, which may decrease the ability to generalize to new scenarios.

The mixture of advantages and disadvantages suggests a combination of dis-

criminative and generative properties as an attractive approach for feature learn-

ing. We decided to use the non-negative sparse coding approach (Hoyer 2002)

as basis for our investigations. The non-negative sparse coding is a linear gen-

erative method that adopts the positivity constraints from the NMF. As outlined

above, this property facilitates the learning of features that have an interpretation

as object parts. But because the linear generative methods are mainly based on the

principle of reconstruction of the data, the obtained features might not be useful

for building a classifier. So the non-negative sparse coding will focus its resources

to reconstruct common parts of the classes in the first, and does not concentrate

on discriminative ones. By adding class-specific, supervised components to the

cost function we hope to prevent this behavior and to learn qualitatively different

features that are more discriminative while keeping their interpretation as object

parts.

After reviewing related work in Sect. 2 the new methods are introduced in

Sect. 3 and analyzed using a visualization of their representation properties de-

pendent on the cost function parameters. In Sect. 4 we analyze the obtained

feature representations for two object test sets and give in Sect. 5 our conclusions.
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2 Related Work

The standard approach to sparse coding (Olshausen & Field 1996) is formulated

as a linear code representing the data. Its target is to combine efficient reconstruc-

tion with a sparse usage of the representing basis, resulting in the following cost

function:
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where the samples xi = (xi1, xi2, . . . , xiK)T
, i = 1, . . . , I , and the weights

wp = (wp1, wp2, . . . , wpK)T
, p = 1, . . . , P , have the same dimension K. In

the left reconstruction term each xi is approximated by a linear combination

ri =
∑

p cipwp, where ri is referred to as the reconstruction of the correspond-

ing xi. The coefficients cip specify how much the p-th weight is involved in the

reconstruction of the i-th data vector. The squared Euclidean norm ‖·‖2
2 of the dif-

ference vector between an xi and its reconstruction ri contributes to the cost. The

right sparsity term sums up the cip. The non-linear function Φ (e.g. Φ(·) = | · |)

increases the cost, the more the activation is spread over different cip, and so many

of them become zero while few are highly activated. The influence of the spar-

sity term is scaled with the positive constant γ. The sparsity forces the weights to

align more directly to the data, and to reconstruct an xi most sparsely, if multi-

ple possibilities exist. This enables the sparse coding to handle an over-complete

representation.

Principal component analysis PCA (Duda, Hart, & Stork 2000) and non-

negative matrix factorization NMF (Lee & Seung 1999) are based on the same

measure of reconstruction as the sparse coding model described by (1), but do

not put sparsity constraints on the coefficients. Using less weights than dimen-

sions in the data (P < K), PCA forces the weights to align to the directions with

the biggest variance in data space. Therefore PCA is often used to reduce the

dimensionality of data, with a minimal loss of information.

NMF differs from PCA in the fact that it puts positivity constraints on both

the weights and the coefficients. Therefore, the contribution of each weight to a

certain reconstruction is purely positive and cannot be canceled out by the contri-

bution of another weight. This limitation makes it economical to reconstruct an

image with non-overlapping weights, where each single weight is already a good

reconstruction of an image part. This is often referred to as a parts-based repre-

sentation. Later Hoyer (2004) added to the NMF an option to directly control the

sparseness of the weights and the coefficients. He discovered that for achieving
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a parts-based representation with standard NMF, the same parts have to occur at

the same position in the training samples. By adding sparseness constraints on

the weights, a parts-based representation can be more reliably produced. In other

cases the NMF produces weights that are too parts-based. This means they con-

tain only single pixels or small blobs, and do not reveal any meaningful statistical

background of the data. Adding sparseness constraints onto the coefficients forces

the weights to reveal more holistic dependencies.

Non-negative sparse coding (Hoyer 2002) adopts the idea of a parts-based rep-

resentation for sparse coding, by also putting positivity constraints on the weights

and the coefficients. It differs from NMF in the fact that the sparsity of the coeffi-

cients is enforced explicitly, and so non-negative sparse coding is similar to NMF

with sparseness constraints. The remaining difference between both approaches

is, that sparse coding methods often use simple gradient descent for the optimiza-

tion of the cost function, whereas NMF methods apply multiplicative update rules

that do not require the definition of a learning rate.

In the algorithms described above, each weight contributes only once to a

reconstruction of a certain image, and the position of activation in the weight

determines directly the position of activation in the reconstruction. Therefore, a

single weight cannot represent or learn a part that occurs in different images at

different locations (or in other transformations). This leads to redundancies in the

coding scheme by representing transformations of one part with different weights.

To overcome this limitation, in (Grimes & Rao 2005) an extension of the sparse

coding is proposed that factors an image into object features and transformations

using a bilinear function. In this way the weights can contribute several times to

the same reconstruction, each time undergoing another transformation beforehand

(e.g. shifts to different locations). Currently the approach handles only translation,

but in general it is able to deal with arbitrary transformations, as e.g. rotation,

scaling and view changes. The concept of bilinearity imposes that for a certain

image all features use the same transformations. This contradicts the notion of

features as independent parts. Therefore, further extensions in (Grimes & Rao

2005) go into the direction to allow for independent transformations of features

per image. This is then a similar method to the translation invariant adaptation

of the non-negative sparse coding proposed in (Wersing & Körner 2003) and the

translation invariant adaptation of the NMF introduced in (Eggert, Wersing, &

Körner 2004).

The unsupervised methods mentioned above produce features with reconstruc-

tive qualities. The features are not specialized in solving a certain task and, there-
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Cups with Handle Cups without Handle Closed Containers

Figure 1: Example views of the three-class problem.

fore, could be transfered to other scenarios than those used for training. The draw-

back is that the extraction of statistically significant parts in high-dimensional data

with unsupervised methods requires large training sets. Also there is no guarantee

that the obtained parts are useful in object recognition tasks.

Another group of methods only concentrates on discriminative properties of

the features. One example of such an approach is the Fisher linear discriminant

(Duda, Hart, & Stork 2000). It searches for a low-dimensional representation of

the data, that unlike PCA does not favor the directions of biggest variance, but

the directions allowing the best separation of the classes in the data. This is done

by generating a transformation matrix that minimizes the ratio of within-class

scatter to between-class scatter. Thus in some sense, this projection maximizes

the signal-to-noise ratio. When Q is the number of classes in the data, the feature

space has dimension Q − 1. This allows a linear separation of the classes only if

each one has a very peaked, unimodal Gaussian distribution in feature space.

Discriminative features are very efficient in solving the task they are trained

for, but normally lack the property of being reusable in adapted scenarios. Meth-

ods combining the advantages of unsupervised and supervised methods are rare.

One is the MRDF approach (Talukder & Casasent 1998). It combines PCA and

an adaptation of the Fisher linear discriminant, which could also handle multi-

modal distributions, and introduces a parameter that determines to which degree

reconstruction or discrimination are desired. Since the method has no positivity

constraints the generated features are holistic and do not have a direct interpreta-

tion as object parts.

We propose two new methods to combine unsupervised and supervised feature

learning on the basis of a non-negative, parts-based representation.

3 Class-specific Sparse Coding

Class-specificity should denote the property of a feature to give a strong clue on

the class-membership of an image the feature is detected in. Following this defini-
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tion, in the three-class problem shown in Fig. 1 the handles show a high specificity

for the cups with handle class, because whenever you recognize a handle you can

be sure that you see a view of this class. In the same way the white caps are

specific for the closed container class.

The standard sparse coding model in (1) does not care about the existence of

different classes and produces features that are useful for general image recon-

struction but lack the property of being class-specific.

Our two new approaches extend non-negative sparse coding with supervised

components. Suppose that the data samples are split into Q subsets (classes) Xq,

with q = 1, . . . , Q. Each subset has nq elements labeled as class q. In the first

approach this class information has direct effect on the coefficients cip and it will

therefore be referred to as coefficient coding:

EC =
1

2

∑

i

∥

∥

∥

∥

∥

xi −
∑

p

cipwp

∥

∥

∥

∥

∥

2

2

+ γ
∑

i,p

cip +
1

2
α
∑

p

∑

i,̃ı

q(i) 6=q(ı̃)

cipcı̃p

nq(i)nq(ı̃)

. (2)

We assume cip and wpk ≥ 0. For the sparsity term we used the function Φ(cip) =

cip, which corresponds in the non-negative case to the absolute value. The right

coefficient term causes cost if coefficients belonging to the same weight wp are

active for differently labeled samples xi and xı̃, where q(i) is the label of xi and

nq(i) is the number of samples in the class of xi. nq(i) is used to normalize the

effect of classes with different cardinality. The influence of the coefficient term is

scaled with the positive constant α.

In the second approach the class information has a more direct effect on the

weights and it will therefore be referred to as weight coding:
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The right weight term causes cost if a wp has a large inner product with differently

labeled samples xi and xı̃. Again q(i) denotes the label of xi and nq(i) is the

number of samples in the class of xi. The influence of the weight term is scaled

with the positive constant β.

The minimization of the cost functions of coefficient and weight coding is

done by alternately applying coefficient and weight steps as described in (Wersing

& Körner 2003). In the coefficient step the cost function is minimized with respect

to the cip using an asynchronous fixed-point search, while keeping the wp constant.
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Figure 2: (a) Artificial setting used in our visualization. The artificial setting

is two-dimensional and contains ten data samples xi. The xi are randomly dis-

tributed on the unit circle and assigned to two classes (symbolized with star and

diamond). The optimization employs two normalized two-dimensional weights

wp. For a certain parameter setting the optimization results in the shown position

of weights and reconstructions ri. (b) Schematic description of visualization. The

actual visualization shows for each symbol in (a) the angle between a ray from the

origin to that symbol and the x-axis (see how θ in (a) is represented in (b)). The

angles of weights and reconstructions are shown at the x-coordinate of 0.2 because

the result in (a) was produced with a cost function parameter of 0.2. Visualizing ri

and wp for different values of the same parameter will reveal its qualitative effect

on the cost function.

The weight step is a single gradient step with a fixed step size in the wp, keeping

the cip constant. A more detailed description of the optimization procedure is

given in the appendix.

To give an instructive visualization of sparse coding and to show the qualita-

tively different behavior of our new approaches we performed optimizations for an

artificial two-dimensional setting. The conlcusions we draw from this toy-setting

hold in principle also for more complex and higher dimensional problems. The

artificial setting contains ten samples which were distributed on the positive part

of the unit circle and then assigned to two classes (see Fig. 2a). These samples

are reconstructed using two normalized weights. The actual visualization shows

the resulting weights wp and reconstructions ri for different values of a control
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Figure 3: Influence of certain parameters on different cost functions. (a) Non-

negative sparse coding (SC): The results of optimization are plotted for 15 dif-

ferent influence factors of the sparsity term γ. (b) Coefficient coding (CC): The

influence factor of the coefficient term α is varied while γ is set to 0.05. (c)

Weight coding (WC): The influence factor of the sparsity term γ is varied while

the influence factor of the weight term β is set to 0.3. (d) Accumulated results.

The angular positions of the weights wp are visualized for typical parameter set-

tings of the different approaches. A detailed description is given in the running

text.

parameter of the cost function, e.g. the influence of the sparsity term γ (see Fig.

2b). The relative position of ri and wp allows conclusions on the sparsity of the

reconstructions, whereas the course of the wp is a direct indicator for their discrim-
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inative properties. The optimally discriminating weights are those that maximize

the gradient of their dot product with samples near the border between the classes.

This corresponds to the property of a linear separator. In Fig. 2a the best discrim-

inating features would point into the directions of the coordinate axes. Hence, in

the visualization of the angles (see Fig. 2b) these weights lie at 0◦ and 90◦.

In Fig. 3 the visualization is used to compare non-negative sparse coding,

coefficient coding, and weight coding. Fig. 3a shows the typical behavior of the

non-negative sparse coding for an increasing influence factor of the sparsity term

γ. Each reconstruction lies between the weights or on one of them, due to the

non-negativity constraints. For γ → 0 the reconstruction is perfect (when using at

least as many weights as dimensions in the data) and the weights are aligned with

the outermost xi. If an ri lies on top of a weight symbol, then this reconstruction

is very sparse, because it does not use the other weight at all. With increasing γ

each ri gives up the use of the less suitable weight and therefore the ri unite to

two main paths. At the same time each wp aligns to the ’center’ of the ri which

are assigned to it. For high values of γ the result is therefore comparable to that

of a cluster approach.

The coefficient term restricts the use of features by different classes. When

increasing its influence factor for the coefficient coding (see Fig. 3b) the recon-

structions of each class are forced to use the same distinct weight basis (here only

a single weight). So the reconstruction of the lowermost sample of the star class

aligns with increasing α to the upper weight, due to its class membership, while

for the non-negative sparse coding (see Fig. 3a) the same ri aligns to the lower

weight with increasing γ, due to a better sparseness. Note that the outermost two

reconstructions at both sides are equal from the beginning. For high values of α

each feature is dedicated to a single class, and changes its direction independently

of other classes. Therefore, an increase in discriminative quality is impossible,

because this would require a strong influence of different classes onto the same

weight.

For the weight coding (see Fig. 3c) there is a complex interplay between spar-

sity term and weight term. When the weight term dominates, as for very small

values of γ, it removes activation from the lower weight that it shares with mem-

bers of the upper class (the same applies for the upper weight vice versa). So one

weight moves to the top and the other one to the bottom. This means each wp

aligns to the direction which is most specific for the class it is representing. In the

non-negative case this can be referred to as a gain in discriminative power. The

weight term also dominates for very high values of γ. In this case the reconstruc-
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tion cost is near its maximum and the algorithm tries to minimize the weight cost

at least. Only for a certain range of parameters there is a meaningful combination

of discriminative and reconstructive properties.

Fig. 3d shows some typical weights obtained with the different approaches.

The features of non-negative sparse coding lie relatively close to the borders of the

data distribution, offering a good compromise between reconstruction and sparse-

ness. For the coefficient coding it is expensive to reconstruct the samples near the

class border using both weights strongly. Therefore, the features move closer to

the class centers. Only the weight coding finds out that activation in y is specific

or diagnostic for the star class and activation in x for the diamond class.

The results on the toy setting showed that non-negative sparse coding limits

the use of features globally. So each data sample is reconstructed using a small

subset of features. To reduce the reconstruction cost, the features model parts

that occur most frequently among the samples. But those parts are usually not

specific for certain classes. In the extreme case sparse coding works like a cluster

approach, using a single weight per sample. The coefficient coding penalizes the

use of a feature for different classes. So each class tends to use a distinct feature

subset to reconstruct its samples. In this way coefficient coding can not avoid

that parts that occur frequently in different classes attract weights. These weights

are therefore not discriminative or class-specific. More than this, the approach

may waste resources by modeling those parts for each class independently. The

weight coding directly penalizes if a feature reflects a part that occurs in different

classes. As a result of this, the presence of a certain feature in an image gives a

good indication for one or only a few classes.

By enforcing the use of a distinct set of features for reconstructing each class

the coefficient coding mimics the behavior of probabilistic generative methods

like a Gaussian mixture model GMM. A GMM models a data distribution with

the help of a finite number of Gaussians. When using the GMM framework to

build a classifier, it also trains a separate GMM for each class. Therefore, GMM

and coefficient coding represent or reconstruct details of the data distribution that

may be irrelevant for determining the class label (Ulusoy & Bishop 2005).

The weight coding, instead, punishes directly if a weight contains activation

that is shared among different classes and therefore irrelevant for determining the

class label. The cost function of the weight coding can be rewritten as

EW = ES +
1

2
β
∑

p

∑

q,q̃

q 6=q̃

(

w
T
p xq

) (

w
T
p xq̃

)

with: xq =
1

nq

∑

x∈Xq

x , (4)
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where xq is the K-dimensional mean of the samples with label q. In this form

the weight coding shows some relation to the Fisher linear discriminant, when

neglecting that the weight coding is non-negative in all elements while the Fisher

linear discriminant is not: The Fisher linear discriminant minimizes in the two-

class case the following cost function with respect to w:

EF =

∑

x∈X1

(

w
T
x − w

T
x1

)2
+
∑

x∈X2

(

w
T
x − w

T
x2

)2

(wT (x1 − x2))
2 . (5)

The numerator prefers directions where the variance within each class is minimal

and the denominator tries to separate the means of the classes as far as possible

from each other. By multiplying the denominator out you get:

(

w
T (x1 − x2)

)2
=
(

w
T
x1

)2
− 2

(

w
T
x1

) (

w
T
x2

)

+
(

w
T
x2

)2
(6)

The second term is equivalent to the weight term. The first and the third term

force the weight to align to the input pattern. In the weight coding this is done

by the interplay of reconstruction term and sparsity term. Assuming a unimodal,

peaked distribution for each class in data space the numerator of the Fisher linear

discriminant plays no significant role, and hence both approaches put comparable

forces on the features.

The weight coding is also similar to the MRDF approach (Talukder & Casasent

1998), that combines supervised and unsupervised feature learning by combining

an adaptation of the Fisher linear discriminant with PCA. The advantage of the

weight coding is that it can produce a parts-based, over-complete representation

while the number of features in the Fisher linear discriminant is limited by the

number of classes and in the MRDF by the number of dimensions in the data. The

discriminative component of the MRDF approach tries to increase the distance of

the individual members of different classes in the feature space. On the contrary,

the weight term only handles the means of the class members. This limits its

suitability on classes with unimodal data distributions. Another disadvantage of

the weight coding is that the two parameters have to be chosen carefully. When the

influence of the sparsity term is too weak, the weight term can force the features

to point to meaningless dimensions, i.e. dimensions where no class has activation.

4 Results on Two Scenarios

To further analyze the qualitative and quantitative differences between coefficient

coding and weight coding both approaches have been applied to two scenarios.
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Coefficient Coding Weight Coding NMFNon−negative Sparse Coding

Figure 4: Features trained on first scenario with different approaches. The fea-

tures for each approach are arranged from top-left to bottom-right by decreasing

mutual information. The features of the non-negative sparse coding and the co-

efficient coding are very similar to each other. The features of the weight coding

are less view-specific but much more parts-based and class-specific. In some of

the features there is a focus on the handles of the cups. In these cases also the part

of the cup opposite to the handle is pronounced, since the presence of the handle

at one side shifts the cup to the other side of the image frame, where otherwise

no activation is present. In the cup-related features the opening is not highlighted,

since activation in this part of the image is more typical for the containers with the

white caps. Therefore, there are features containing caps but no cup-related fea-

tures like a handle. The NMF features are also parts-based but not class-specific

and so lie visually somewhere in between.

The first scenario is the three-class problem shown in Fig. 1. Cups with visible

handle, cups with no or occluded handle, and some round containers with caps

from the COIL-100 database (Nayar, Nene, & Murase 1996) were combined to

three classes, each containing 140 views. The gray-scale images were resized to a

resolution of 32×32 pixels in advance. Forty features were trained using the same

influence γ = 0.1 of the sparsity term and relatively high values for the coefficient

term α = 4.0 and for the weight term β = 0.1.

Fig. 4 shows the resulting features sorted by their individual mutual infor-
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Table 1: The table shows the values of the different terms of the cost functions

for the first scenario. The terms do not include their influences (γ, α, and β) to

the total cost. Note that values in brackets were not used for optimization, but are

shown to highlight qualitative differences between features.

Reconstruction Sparsity Coefficient Weight

NNSC 7.718 · 102 6.039 · 103 (19.98) (5.357 · 104)

CC 8.146 · 102 5.909 · 103 9.505 (5.607 · 104)

WC 8.138 · 102 8.952 · 103 (65.95) 2.215 · 104

NMF 6.866 · 102 (7.489 · 103) (46.76) (3.464 · 104)

mation, the calculation of which is described later. The features of non-negative

sparse coding and coefficient coding are very holistic and view-specific. The fea-

tures of weight coding and NMF are both sparser and more parts-based, but the

weight coding clearly emphasizes class-specific parts. So there is a group of fea-

tures highlighting handles, while in all NMF features that contain handles the

whole cup is recognizable. The first NMF feature represents the white cap of a

container while following features show the opening and the rim of a cup. These

both feature types have a strong overlap at the top of the image frame and there-

fore the cap features will also respond to cups and the rim-opening features to

the containers. The weight coding does not tolerate this and makes the features

sparser to better work out the differences of cups and containers.

Table 1 lists the values of the terms of the cost functions after optimization.

These values are useful to interpret the effect of our two new approaches compared

to the non-negative sparse coding: The coefficient term puts a penalty on the use

of features across different classes, which leads to a reduced feature basis for

reconstructing each class. As a result, there is an increase of the reconstruction

cost and a decrease of the sparsity cost. The demand for sparsity of the coefficients

in the non-negative sparse coding has an opposite effect on the weights, forcing

them to become very view-specific and leading to a higher reconstruction cost.

In the weight coding the weight term removes activation from the features. They

become less view-specific, which causes an increase of the sparsity cost.

To evaluate the discriminative power of the trained features we chose to cal-

culate the mutual information between the features and the classes. The mutual

information is a measure for the dependency between two or more random vari-
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Table 2: Mutual information for first scenario. The table lists the mutual infor-

mation conveyed by the pool of features about the 3 classes (see: Ullman & Bart

2004). Also some error rates are given performing 100 nearest-neighbor classifi-

cations per approach.

NNSC CC WC NMF

Mutual Information 1.7831 1.7314 3.4068 2.5708

Mean Error Rate 0.2839 0.2950 0.2045 0.2695

Standard Deviation 0.0809 0.0814 0.0840 0.0820

ables. In our case these variables are the detection of the different features and

the class label, both varying over the set of samples. The mutual information tells

how much the detection of certain features in a sample restricts the possibility

of different class hypotheses. Therefore a high mutual information is a measure

of discriminative power and a desired feature property. Unfortunately, the direct

optimization of mutual information conveyed by a set of features about a class

demands the continuous probability density function PDF of the data. For low-

dimensional data the PDF can be estimated from the training samples using the

Parzen window technique (Kwak & Choi 2002). However, in high-dimensional

data the approach is computationally too expensive and requires a huge set of

samples.

For the results in Table 2 we used a calculation which is similar to the method

applied in (Ullman & Bart 2004) to select informative image fragments: First for

each feature an optimal threshold is determined. For it the dot product with each

sample is calculated. By applying a threshold to the results of this calculation a

binary ’detection-variable’ over the set of samples is generated. The class label is

also a discrete ’class-variable’ over the set of samples. The optimal threshold is

the one that maximizes the mutual information between the ’class-variable’ and

the ’detection-variable’. Now there are different ways to calculate the information

between the classes and the set of features. Simply taking the sum of the individual

mutual information the features convey would totally neglect their dependencies.

Another way is to join the single values of the ’detection-variables’ to a binary

feature vector per sample and then calculate the mutual information between this

vector and the classes. This approach is the mathematically correct one, but a

perfect result only tells that no binary feature vector is used in different classes
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and not how well the information is distributed over the set of features. Therefore

we adopted the iterative process proposed by (Ullman & Bart 2004) to calculate

the values in Table 2. First the feature conveying the most mutual information is

chosen, and later the features with the most additional mutual information. Be-

cause the calculation of the additional mutual information given a set of already

selected features is impractical, we also adopted the heuristic of (Ullman & Bart

2004). In this heuristic the additional mutual information of one candidate feature

is calculated with respect to each single selected feature. The minimum of these

values is assigned to the candidate feature. The candidate feature with the highest

assigned value is selected. This heuristic guarantees that the selected feature is

informative and differs from the already selected features. The sum of the mutual

information of the first feature and additional information of the other features is

the given value. Because of the heuristic approach this value can be higher than

the entropy of the class distribution. The weight coding has the highest value, and

the sparse coding and the coefficient coding the lowest ones. The NMF has an

intermediate value. Furthermore, in the sparse coding and the coefficient coding

already the 26th selected feature of the 40 existing ones has an additional mutual

information of less than 0.0005. In the NMF it is the 34nd, and in the weight

coding the 39th. So in some sense the information is best distributed in the weight

coding approach.

Table 2 also gives some error rates performing nearest-neighbor classifications

on the three-class problem. In 100 runs per approach 3 representatives per class

were chosen randomly out of the 140 views. These representatives were trans-

formed into feature space by calculating the dot product with the trained features.

Each of the remaining views was then assigned to the closest representative in

feature space. The error rates were calculated on the basis of wrong class assign-

ments. The results strongly depend on the chosen representatives causing a high

standard deviation. Nevertheless, we confirmed with a t-test that the error rate of

the weight coding is significantly (with p = 0.001) lower than that of the other

approaches. This supports the claim for an increased discriminative component of

the weight coding features. The coefficient coding shows in the mean the worst

performance because forcing each class to use a distinct set of features prevents

the development of discriminative properties. Note that the projection of the im-

age views on a feature space, which is simply a complete rotation of the original,

orthogonal basis system would not influence the result of a nearest neighbor clas-

sifier. The reason for the shown differences is that the used algorithms produce a

non-orthogonal basis with a reduced dimension.
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To show that the better performance of the weight coding is not simply caused

by the higher degree of sparseness of its features, an additional test was performed:

The features of the NMF were trained again putting additional sparsity constraints

on them following directly the method proposed in (Hoyer 2004). So each NMF

feature was ensured to have the same L2 norm (1.0) as each weight coding feature

and the average L1 norm of the weight coding features. In this way the error

rate of the NMF decreased from 0.2695 to 0.2457 but is still 4 per cent higher

than that of the weight coding. The mutual information increased from 2.5708

to 2.9853 compared to 3.4068 of the weight coding. Although these results show

that sparsity of the weights has indeed some influence on the performance, the

main difference is caused by the supervised component of the weight coding.

As second scenario we acquired the HRI-10 database that consists of 10 classes.

A single class contains 9 similar objects each made up of 100 views taken during

a rotation around the yaw-axis (see Fig. 5). Five objects are used for the training

of the features, and the remaining four objects for testing.

We trained 80 features per approach on the gray-scale images which were

scaled to a resolution of 40×40 pixels. When training on the full rotation we

observed that NMF and weight coding produced very sparse, blob-like features,

that showed identical classification performance, while the weight coding features

had a slightly higher mutual information. Only with such sparse features the ap-

proaches were able to reconstruct the wide variety of images. Because of this

problem we reduced the complexity of the problem by only using views taken

from −35◦ to +35◦ from the first side view. Alternatively we could increase the

number of features, but this would heavily increase the computation time and

allow the standard NMF to produce even sparser features, while the sparsity con-

straint on the coefficients could prevent this development for the weight coding.

The features trained on the simplified database are shown in Fig. 6. The in-

fluence of the sparsity term was set to γ = 0.05, the influence of the coefficient

term was α = 5, and the influence of the weight term was β = 0.4. Again the

features of the non-negative sparse coding and the coefficient coding are holistic

and similar to each other. Both NMF and weight coding produce sparser features.

Although the difference between NMF and weight coding is not that obvious this

time, some qualitative differences can be found. So the first selected weight cod-

ing feature shows again a separated handle that cannot be found among the NMF

features. The first selected NMF feature is a car feature that looks very box-like.

The weight coding does not tolerate this and therefore makes a strong distinction

between car and box features. That the weight coding features are not always
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sparser than the NMF features is shown on the example of the can opener (5th

selected feature). Also interesting is the selected NMF cup feature that seems to

be split up into two features by the weight coding. A reason for this maybe that

the upper part of the rim is a very specific pattern for all cups, while the bright

opening only occurs in a certain cup and is represented because this cup would

otherwise cause very high reconstruction cost.

The evaluation of mutual information and classification rate was performed

on the four test objects per class keeping the procedure of the first scenario. The

results are shown in Table 3. This time 5 representatives per class were chosen

randomly out of 240 views that covered the limited rotation of the four objects

as described above. The weight coding has a higher mutual information than

the NMF, while both approaches are superior to non-negative sparse coding and

coefficient coding. The error rate in the nearest neighbor experiment is for the

weight coding 2 per cent lower than that of NMF and 6 per cent lower than that of

coefficient coding and non-negative sparse coding. The high standard deviation is

again caused by the random selection of representatives. But the improved mean

error rate of weight coding features is significant applying a t-test with p = 0.001.

When adjusting the sparsity of each NMF feature to the average sparsity of the

weight coding features the error rate decreased from 0.2074 to 0.2032. This is still

significantly higher than the 0.1896 of the weight coding. The mutual information

increased from 8.8732 to 9.6584 compared to the 10.7695 of the weight coding.

So again the performance is improved to some degree by the sparsity but does not

reach the weight coding results. Also the arrangement of the features in Fig. 6

indicates that very sparse features normally provide lower information gain. This

was also observed by Ullman & Bart (2004) who discovered the superiority of

features with intermediate complexity.

Despite the simplicity of using segmented views of objects, the two classifica-

tion problems are suitable to show that the features of the weight coding are more

class-specific and diagnostic than the object templates produced by sparse coding.

More complex scenarios would have increased the computational cost drastically

(e.g. by requiring to make the approaches invariant to position and size of the

objects), while we would expect the same qualitative differences.
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Figure 5: HRI-10 database. The HRI-10 database consists of 10 classes each

containing 9 similar objects. The first 5 objects per class are used for training

and the remaining 4 objects for testing. Each object is represented by 100 views

covering a full rotation around the yaw-axis.

5 Conclusion

In this paper two new class-specific extensions of the non-negative sparse coding

were introduced. Normally, unsupervised generative feature learning methods

spend resources to model details of the data that are irrelevant for classification

tasks. The goal of extending the cost function of the non-negative sparse coding

with discriminative components was to shift the focus of some resources from

frequently occurring parts to diagnostic ones, in this way increasing the suitability

of the trained features for classification tasks.

It was shown that the coefficient coding does not increase the discriminative
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Figure 6: Features trained on second scenario with different approaches. The fea-

tures for each approach are arranged from top-left to bottom-right by decreasing

mutual information. At the bottom some selected features of weight coding and

NMF are shown, to highlight qualitative differences between both approaches.

Like for the first scenario the features of non-negative sparse coding and coeffi-

cient coding are very holistic and view-specific and hardly any difference between

them can be revealed. Weight coding and NMF again produce parts-based fea-

tures, but this time the difference between both approaches is not that obvious as

for the first scenario. But when looking carefully some qualitative differences can

be seen, which are discussed in the running text.

quality of the features because it prevents that multiple classes influence the same

weight. This is due to the fact that the coefficient coding restricts the use of

features by different classes, whereas the weight coding directly penalizes the

suitability of features for different classes and so successfully combines recon-
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Table 3: Mutual information for second scenario. The table lists the mutual in-

formation conveyed by the pool of features about the 10 classes (see: Ullman

& Bart 2004). Also some error rates are given performing 100 nearest-neighbor

classifications per approach.

NNSC CC WC NMF

Mutual Information 6.5459 6.2302 10.7695 8.8732

Mean Error Rate 0.2465 0.2537 0.1896 0.2074

Standard Deviation 0.0330 0.0338 0.0325 0.0316

struction and discrimination. The weight coding is related to the Fisher linear

discriminant and the MRDF, but does not reduce the intra-class variance. Its ad-

vantage is that it learns localized, parts-based features.

We used an artificial two-dimensional setting to introduce sparse coding to

somebody new in the field and to visualize the different behavior of the new ap-

proaches. Furthermore we showed for two object scenarios that the weight coding

results in qualitative other features than that produced by NMF or non-negative

sparse coding. This goes along with a higher mutual information of the features

and an increased classification performance.

To test the difficulty of the scenarios, we used our features with a nearest

neighbor classifier NNC and compared the performance to that of a single layer

perceptron SLP. In this way we always get a lower classification rate for our ap-

proaches. When using some categories as clutter for testing and evaluating the

false positive rate by means of a receiver operating characteristic weight coding

performs slightly better. But those results are more a reflection of the different

nature of SLP and NNC and not of the quality of the weight coding features.

Mutual information is an unbiased measure for the discriminative quality of a

feature learning method, whereas the classification rate is influenced by the aux-

iliary method used to calculate it, e.g. a NNC. A comparison of different features

is only fair, when sticking to the same classifier, because otherwise it is not clear

which component caused the difference. For the same reason, the NNC results are

not comparable with that of superior, standard classification schemes such as an

SLP or a GMM.

However, the question may arise how in principle a discriminative method,

like an SLP, could benefit from the combination with a reconstructive component.
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Purely discriminative approaches suffer from the drawback that they may over-

specialize on the training scenario, i.e. they perfectly learn in which way a class

differs from negative examples present during training. If these examples do not

cover well the expected variations during testing the over-specialization impairs

the classifier in rejecting unseen clutter images, because they may not differ in

the learned features from the class. Keeping reconstructive information means

keeping information on what the class is, regardless of which other classes existed

during training. This gives the classifier the chance to reject a test image, based

on the inability to reconstruct it.

Recent studies suggest that generative methods perform better when training

data is limited (Raina, Shen, Ng, & McCallum 2003), because they converge much

faster. As more training data is available, discriminative models take the lead by

reaching a lower asymptotic error (Ng & Jordan 2002). There is also biological

evidence for this process as outlined in (Logothetis & Sheinberg 1996). When

learning a new object first holistic snapshots are stored keeping as much infor-

mation as possible. With increasing familiarity of the stimulus prototypes are

generated keeping only meaningful, discriminative parts, enabling to generalize

over non-meaningful parts. In relation to this weight coding features are useful

for building a representation of objects that are somewhere between novel and fa-

miliar by going away from a full reconstruction of the stimulus to a prototypical

representation focusing more on the diagnostic object parts. So, weight coding

can provide a basis for building an efficient object representation, which is a pre-

requisite for robust and fast object recognition.

Appendix

A Non-negative Sparse Coding

The minimization of the cost function (1) is done by alternately applying coeffi-

cient and weight steps as described in (Wersing & Körner 2003). In the coefficient

step the cost function is minimized with respect to the cip using an asynchronous

fixed-point search, keeping the wp constant. To do that, the derivation of ES with

respect to a certain cip is set to zero, leading to the update rule
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where σ(·) = max(0, ·) ensures the positivity of the coefficients. This update rule

is applied to randomly chosen cip until convergence. The weight step is a single

gradient step with a fixed step size η in the wp, keeping the cip constant:

wp := σ

(
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[
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The weight step is executed for each wp at the same time and σ(·) is applied

component-wise. Before the next coefficient step the weights are normalized us-

ing

wp :=
wp

‖wp‖2

. (9)

B Coefficient Coding

The optimization of the cost function (2) is nearly the same as for the non-negative

sparse coding. Only the update rule for the coefficients changes into

cip := σ









w
T
p xi −

∑

p̃

p̃6=p

cip̃w
T
p̃ wp − γ − α

∑

ı̃

q(ı̃) 6=q(i)

cı̃p

nq(ı̃)nq(i)









(

w
T
p wp

)−1
, (10)

while the update of the weights follows exactly (8) and (9).

C Weight Coding

The weight term of the cost function (3) has only effect on the weight step and

so the update rule for the coefficients remains (7), while the gradient step in the

weights becomes

wp := σ
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followed by the normalization of the weights (9).
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