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Abstract

In this paper, an adaptive split-and-merge segmen-
tation method is proposed.

The splitting phase of the algorithm employs the in-
cremental Delaunay triangulation competent of form-
ing grid edges of arbitrary orientation and position.
The tessellation grid, defined by the Delaunay trian-
gulation, is adjusted to the semantics of the image
data by combining similarity and difference informa-
tion among pizels.

FEzperimental results on synthetic images show that
the method is robust to different object edge orienta-
tions, partially weak object edges and very noisy homo-
geneous regions. Ezperiments on a real image indicate
that the method yields good segmentation results even
when there is a quadratic sloping of intensities par-
ticularly suited for segmenting natural scenes of man-
made objects.

1 Introduction

Image segmentation is the process of partitioning
an image into uniform regions. Well-known image
segmentation methods are based on two basic prop-
erties of pixels in relation to their local neighborhood:
discontinuity and similarity, [2], [3], [4], for example.
Many of the image segmentation methods based on
discontinuity run short when portion of the edge has
a small value difference or when regions are homo-
geneous but very noisy. The region-based approach
allows reliable computation of homogeneity statistics
for a region but is not able to localize region outlines
accurately.

To suppress the above mentioned disadvantages,
adaptive methods have been proposed combining
region-splitting and edge detection techniques, [11],
[6], for example. Wu [11] proposes a segmentation
method in which splitting of a nonuniform region is
performed along the strongest edge in it. The seg-
mentation method by Pavlidis [6] is based on edge
detection and region splitting based on the quad-tree

data structure [4]. Although, for neighborhood refer-
encing, the quad-tree is implementational simple and
computationally efficient, its major drawback is that
the image tessellation process is unable to adapt the
tessellation grid to the underlying structure of the im-
age data.

To that end, we aim at following a more natural
line. An adaptive split-and-merge image segmentation
method is proposed designed according to the follow-
ing criteria:

1. the method should be robust against partially
weak edges and noisy homogeneous regions as an in-
stance of noise in the images or model deviations in
the object; 2. the method should be robust against
different object border orientation and position. 3.
the method should be robust against small geometri-
cal translations of the image as an instance of registra-
tion error. 4. the method should be computationally
efficient in the number of split and merge operations.

Its novelty is in adjusting the tessellation grid to
the image semantics: if a global similarity criterion
defined on a connected region is not satisfied, pixels
of the heterogeneous region lying on image boundaries
are determined using local difference measures and are
used as new vertices to locally refine the tessellation
grid.

The paper is organized as follows. In Section 2,
the adaptive image segmentation method is proposed.
The processing steps are given in 3. Experimental
results are presented in Section 4.

2 The Adaptive Image Segmentation
Method: Overview

We use a triangular image data tessellation scheme.

The Delaunay triangulation maximizes the mini-
mum angle, minimizes the maximum circumscribing
circle, and minimizes the maximum smallest enclosing
circle for each triangle [8]. Because Delaunay trian-
gulations satisfy these quality criteria, the Delaunay
triangulation of a set of points tends to generate regu-



larly shaped triangles and is preferred over alternative
triangulations as the geometric data structure in the
split and merge scheme.

The incremental Delaunay triangulation [5] is used
for image subdivision because it can be achieved it-
eratively in a systematic constructive way by adding
points one by one as vertices into the triangulation to
locally refine the image tessellation grid.

The adaptive image segmentation method is di-
vided in three steps as follows:

Initialization: Let D7 denote the incremental De-
launay triangulation after j insertions of points in R2.
Let dg form the itB triangle of the jth triangulation.
Further, consider the function g : R? = R defining an
image surface g(z,y). g}(z,y) is a compact area of g
which is bounded by the vertices of triangle dg .

Because it is assumed that the image data points
are limited to a rectangular image domain, the image
segmentation method starts with the construction of
the initial triangulation D° consisting of two triangles
d? for i = 1,2 whose vertices are the corners of g.

Splitting: After the construction of D°, the algo-
rithm successively examines triangles d] by comput-
ing the similarity predicate H(). The similarity pred-
icate is defined on g denoting the underlying image
data of triangle df' . If the similarity predicate is false,
edge pixels in gf are classified topographically based
on their local neighborhood by the difference function
L(). After edge detection, the splitting function S()
assigns a transition error to every edge point express-
ing the wish to enter that point as a vertex in DJ to
generate the next triangulation D’*! with the goal to
adapt the image tessellation grid properly to the un-
derlying structure of the image data. The point with
lowest transition error is then entered into D’ to gen-
erate the next triangulation D/*1. The splitting phase
continues until all triangles satisfy H().

Merging: Let R; is a point set in R? forming the
ith polygon with corresponding r; C R? a compact
area of the plane by merging triangular areas of the
final Delaunay triangulation (D). In fact, r; = gV U
gl U ...gY where all n triangular image regions are
adjacent.

The merging phase starts with the triangulation
produced by the splitting phase R; = d¥ for all 1.
Function H() provides the criterion by which two ad-
jacent polygons are merged into one. By using the
same similarity predicate for the split- as well as the
merge phase, the method, as a whole, will be robust
against accidental splittings because accidental split-
tings will be recovered in the merge phase.

The quality of the algorithm is determined by func-

tions H(), L() and S(). They are discussed in the fol-

lowing section.

3 Processing Steps
3.1 Similarity Predicate H()

We consider the similarity predicate of a region to
be true if all image pixels in the region can be repre-
sented by bivariate polynomial functions [1]. If their
order is not too high, region pixels are approximated
by planar, quadric and cubic surfaces [1]:

fm(l’:y) = Z aijwiyja m S 3 (1)

i+j<m
A least-square solver calculates vector @ and mean fit-
ting error € for an arbitrarily shaped image region 7':

) (9(z,y) —J\{m(w,y))2 @)

z,yeT

where g(z,y) is the image surface and N is the total
of surface interior pixels contributing to the sum.

If the mean noise standard deviation ¢ in T is esti-
mated, the mean fitting error can be compared to this.
If the noise is additive, stationary and has zero mean,
an estimate of o is obtained by a local least-square
linear fit to an approximately constant image patch,
where edge pixels are discarded from contributing to
the sum:

o= Z (g(way) _-N-fl(l':y))2 (3)
z,y€Q

where N is the number of pixels of a small neighbor-
hood Q (e.g. 5x5 mask).

Then, the functional homogeneity predicate defined
over image region T to return a Boolean value, is as
follows:

true, ifhp,(T)<o
H(T) = (4)

false, otherwise

3.2 Difference Function L()

When the homogeneity predicate H (gf) defined
over the image data defined by the vertices of dg is
false, the image data in gf deviates from the approx-
imating surface and should be broken at edge points
into two or more regions. To classify edge points in g}
by their topographic characterization, the output of
L() is an edge type image t(z,y) : R?> — R consisting
of:



Edges: Edges are found by differentiating the im-
age region domain. Canny’s edge detector [2] is used
to locate edges.

Corners: Corners are defined on locations where
the image surface exhibits high values of isophote cur-
vature [9]:

2929y9ey — gwwgz - gyygi
3
(92 + 93)®

k(d(z,y)) = (5)

We use the corner detector of [9] which employs
Gaussian-based fuzzy derivatives to calculate the
equation.

Y-junctions: A Y-junction is a point where
three regions (edges) meet. A Y-junction provides
valuable topographical descriptive information. The
Y-junctions detector of [9] is used to compute Y-
junctions.

After edge detection, the edge type image tg (z,y)
indicates the presence of edges and their types.

3.3 Splitting Function S()

After edge detection, edge pixels in the image do-
main of the heterogeneous triangle d! have topo-
graphic edge labels t? , where tg is derived from gg
bounded by the vertices of d{ . However, only one edge
point is added as a vertex to go from D7 to get the
next triangulation D/*!. This is done as follows.

Let p; € R? be the location (z,y) of an edge pixel
in t!(z,y) = I, where | denotes the edge type. Tri-
angles d{ of DI for which the circumcircle contains p;
form a region R, in the plane which is called the influ-
ence region of p;. Edges not shared by any two of the
triangles in R, compose the influence polygon of p; in
D’ and is denoted by R,. Then the following results
are known [8]: (1) The insertion of a new vertex in D7
modifies triangle d] in D7 if and only if d/ is in R,;
(2) Let D11 be the Delaunay triangulation obtained
from D7 by the insertion of p;. DIt! is obtained from
DJ by deleting all edges and triangles that are internal
to R, and by connecting all vertices of R, to p.

Let the newly created triangles of D! within R,
be denoted by di:,"'l. We want the fitting errors over
all triangles dt! € Dj+1‘to be small. Because only
newly created triangles dg,—H can alter the fitting er-
ror of DI*!, that specific p; is selected which shows
minimum transition error.

The transition error is defined over triangles dg,'H
as follows:

e = lgit" — fll g (6)

where dz,+1 are the newly created triangles of DJ+!
obtained by the insertion of p; in D7, and fy is the
approximating function evaluated over gg,'H which is
the image surface bounded by vertices of df,+ LIn
other words, ef ! is the fitting error of DIt computed
over the newly defined triangles.

To minimize the fitting error, for location p; of each
edge point to exist in ¢](z,y), transition error €' is
computed and p; yielding lowest transition error
€min = IMin L (7

Pt

is taken to generate ’DJ:‘H. This is done by erasing
from D7 all triangles d/ whose circumcircle contains
pi- Then for each triangle edges which are not shared
by any two of the erased triangles, a new triangle is
created with p; and added into D to obtain DI*T,

Up to this point, no bounds have been imposed on
the number of edge types to be used to compute the
transition error. However, for computational reasons
in the implementation, the number of different edge
types to compute the transition error is limited to the
two most prominent edge pixels, the two most promi-
nent corners and the two most prominent T-junctions.
This number is arrived at through experimentation. It
has proved to be effective on our test images.
3.4 Merging

The merging stage is similar to the merge stage of
the standard split-and-merge scheme and consists of
the following steps at each iteration. First the largest
triangular region R; = maxp, cp~ 7(Ry), where 7 de-
note the triangle size, is selected as a seed for grow-
ing. Let R;, j = 1,..,M be a neighboring poly-
gon of seed R;. The functional homogeneity predi-
cate H(R;|J R;) (i.e. merge score) is computed. If
H(R;|UR;) is below the mean noise standard devi-
ation o (i.e. merge threshold), R; is merged with
the seed. The merging continues with this newly
merged region R;|JR; as seed until all merge-scores
of neighbor triangles are larger than the merge thresh-
old. Then the next largest unmerged triangle is taken
as a new seed to grow for the next iteration. This pro-
cess continues until there are no unmerged triangles

left.

4 Experiments

The method has been tested on natural and syn-
thetic images. To quantify the performance of the
segmentation method, experiments have been carried
out to evaluate the criteria 1-4 of Section 1.

In the experiments, we consider the class of syn-
thetic images where the data can be described by a
piecewise smooth polynomial up to degree 2.



4.1 Sensitivity to Different Object Edge
Orientations and Positions
We report on the robustness of the method against
different edge orientations. To that end, Figure 1.a
has been created.

Figure 1: a.
thetic image containing thetic image consisting of
various object edge orien- centered circular discs of
tations. b. Segmentation various radii. b. Segmen-
result. tation result.

First syn- Figure 2: a. Second syn-

The size of the image is 80x80 with 256 grey lev-
els. The image consists of regions of different con-
stant brightness with various region border orientation
(30° from each other). In Figure 1.b, the segmenta-
tion result is shown. Although the test image consists
of different boundary orientations, the method yields
a geometrically good and topologically sound image
segmentation result (except for some minor deforma-
tions).

Circular shapes are among the more difficult shapes
to segment properly by Delaunay-based methods. To
test the robustness of the method for circular shapes,
the image of Figure 2.a has been created. The im-
age consists of centered circular discs of radii r €
{32,22,16, 7} pixels. Because the image is noise-free,
we have mean noise standard deviation o = 0. The
segmentation result, see Figure 2.b, shows that the
method is able to properly segment circular shapes
except for some minor deformations. Most of these
minor deformations are caused by the digitization of
circular discs on a rectangular grid [10].

To illustrate the method, a polynomial image has
been synthesized, see Figure 3.a.

In Figures 3.b and 3.c, the result is shown of re-
spectively the splitting phase and the final segmenta-
tion. Although the test image consists of varying back-
ground brightness and objects with different boundary
orientations and positions, the method yields a geo-
metrically good and topologically sound image seg-
mentation result. The number of split operations was
110 resulting in a run time of 16.9 seconds on a SPARC
10 station.

Finally, we illustrate the method for a simple real
image, see Figure 4.a.

Figure 3: a. Third synthetic image composed
of randomly placed geometric shapes on a back-
ground of quadratically varying intensity. b.
Splitting result. c¢. Final result of the split and
merge method.

Figure 4: a. Recorded image consisting of
three homogeneously colored objects on a homo-
geneously painted background. b. The splitting
result superimposed on the original real image.
c. The splitting result. d. The final segmenta-
tion result.

The image consists of three objects on a back-
ground. Objects consist of plastic material and
painted wood. Objects were recorded with the aid
of a low cost camera. The digitization was done in
8 bits. Two light sources of average day-light color
were used to illuminate the objects in the scene. The
size of the image was 256x256 with 256 grey levels.
The order of the polynomial approximating criterion
was set to m = 3. Hence, we considered the case
where the image data can be described by a piecewise
smooth polynomial up to order 3. The measured mean
noise standard deviation is ¢ = 3.84 and hence used
as the threshold for the surface fitting process defined
by H(). Note that the image does not contain any
Y-forks. Hence, segmentation is based on edges and
corners alone.

The result is a proper segmentation result despite
various radio-metrical and geometrical variations in-
duced by the imaging process such as sloping intensity
patches. Furthermore, the method is efficient where
the number of split operations is 85 yielding a run
time of 9 seconds on a SPARC 10 station.



4.2 Robustness to Noise

In this subsection, we study the performance of
the image segmentation algorithm for different object
shapes of varying sizes in response to added noise. We
experiment with synthetic images where ”true” geo-
metric features can be computed from the reference
image to evaluate and compare objectively the qual-
ity of the segmentation results.

In the next sections, the dataset is defined first.
Then, the error measure and experimental results are
given.

4.2.1 The Dataset

Two basic sets of synthetic images are generated to
simulate objects of different shapes and sizes. The
size of the images are 128x128 with 256 grey-values.

The first set of images is composed of centered
squares of different sizes s. The object value is v, =
144 and the background value is vy = 112. Images
have been created for s € {60,40, 30,12}, where the
area of the rectangular objects varies approximately
from 20% of the image area, through 10%, 5% down
to 1%.

The second set consists of centered circular discs
with different radii r with object value v, on the mid-
dle of a homogeneous background v,. Images of discs
of radii r € {32,22,16, 7} are generated to obtain disc
objects with areas from approximately 20%, 10% and
5% to 1% of the image area.

To simulate ramp edges obtained by a camera,
Gaussian smoothing with ¢ = 1.0 has been performed
on the images.

The effect of noise is produced by adding indepen-
dent zero-mean additive Gaussian noise with ¢ = on
to the images. The Signal-to-Noise Ratio (SNR) is
defined as:

Vo — Up

SNR=( )? ®)

We use SNR € {100,64,16,4,2,1} in our experi-
ments.

on

4.2.2 FError Measures

Let X be the image raster and a a binary image con-
taining the "true” shape A defined by A = {Z# € X :
a(Z) = 1}. Further, let b be a binary image, called the
segmented image, containing the image segmentation
result B = {Z € X : b(£) = 1}. Evaluation measure £
compares B with A to return a numerical measure of
discrepancy.

Let d(Z, A) denote the shortest distance from pixel
Z € X to A C X, then Pratt’s figure of merit FOM
[7], is defined as follows:

1 1
max(r(4),1(B)) 2 1+ ad(z, A7
(9)
where a is usually set to 1/9 and we will follow suit.
We prefer to use:

EprarT(A,B) = (

Erom(A,B) =1—Eprarr(A, B) (10)

for the ease of graphical illustration.

4.2.3 Results

For each SNR level we have generated N = 10 images.
In other words, independent Gaussian noise has been
added separately at level SNR € {100,64,16,4,2,1},
for each noise-free image 10 times. Figure 5 shows
one such dataset.

Figure 5: Synthetic images of rectangles and cir-
cles with sizes corresponding to 20%, 10%,5% and
1% of the image size corrupted by independent
zero-mean additive Gaussian noise with SNR €
{100,64,16,4,2,1}.

Then, after segmentation, for each of the 60 realiza-
tions, Eronm is computed over the largest region and
the average value over N = 10 is taken as the final
result. Figure 6 shows the average segmentation re-
sults for various shapes, sizes and SNR levels. Eron
is computed on the object boundaries. In Figure 7
experimental results of Epoys are shown for rectangles
of different sizes for the SNR values. Results of Epop
for circles of different radii in response to SNR values
are plotted in Figure 8.

First, we concentrate on the quality of the segmen-
tation results with respect to different SNR levels.
For SNR < 4, results show a rapid decrease in the
performance of the method with respect to the noise.
For SNR > 16, the results get close to 0 (for rectan-
gles) or to a constant value (for circles), an artifact
caused by the ill-defined representation of the object’s



Figure 6: The average segmentation results for
the various synthetic images of rectangles and cir-
cles with sizes corresponding to 20%, 10%, 5% and
1% of the image size corrupted by independent
zero-mean additive Gaussian noise with SNR €

{100,64,16,4,2,1}.

Erom(4,B) Erou(4,B)
07 7 T T 07T

rectangle 1% ~+—
rectangle 5% O 05
rectangle 10 % >—
rectangle 20 % A+ -

06

1 2 1 16 61 100 1 2 1 16 61 100
SNR SNR

Figure 7: The average Figure 8: The average

value of Erpon differenti-
ated for rectangles corre-
sponding to 20%,10%, 5%
and 1% of the image size
against the SNR.

value of Eron differen-
tiated for circles corre-
sponding to 20%,10%, 5%
and 1% of the image size
against the SNR.

boundary on the rectangular grid. The method gives
good results up to considerable amounts of noise (SNR
=2) where object boundaries are on average within
two pixels from the reference boundary, even for the
smallest object.

Second, attention is focused on the performance of
the method for objects of different sizes in response
to noise. Obviously, the method performs better on
images with larger objects, because the error measure
shows that performance accuracy increases with the
size of the object.

Finally, the performance of the method is studied
for objects of different shapes with respect to the noise.
The shape and slope of the curves for rectangles and
circles for the same error measure do not differ sig-
nificantly except for the error introduced by the ill-
defined representation of the circular image objects on
the rectangular grid. Apart from this bias, the perfor-
mance of the method is approximately the same for
the two different shapes.

5 Discussion and Conclusion

In this paper, an adaptive image segmentation
method based on directed Delaunay subdivision has
been proposed.

Experimental results on synthetic images show that
the method is robust to various object edge ori-
entations and positions, a favorable property over
many existing split and merge strategies. In addi-
tion, the method is capable of handling quadratic
slopes in image intensities as is often found in nat-
ural scenes. These properties make the method much
better equipped for split and merge real scenes of man-
made objects.

The experimental results further show that the
method gives acceptable results even with consider-
able amounts of noise. However, under the presence
of noise, the method performs better on images with
larger objects. Experiment on a real image indicates
that the method yields geometrically good and topo-
logically sound image segmentation results.

Apart from image segmentation, a potential use of
the method is efficient image coding as for each ho-
mogeneous patch only a few coefficients need to be
stored.
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