
Combining Regions and Patches for Object Class Localization

Caroline Pantofaru1 ∗ Gyuri Dorkó2 Cordelia Schmid3 Martial Hebert1

1 The Robotics Institute, CMU, USA 2 TU Darmstadt, Germany 3 INRIA Rhône-Alpes, France
crp@ri.cmu.edu, dorko@mis.tu-darmstadt.de, cordelia.schmid@inrialpes.fr, hebert@ri.cmu.edu

Abstract

We introduce a method for object class detection and

localization which combines regions generated by image

segmentation with local patches. Region-based descriptors

can model and match regular textures reliably, but fail on

parts of the object which are textureless. They also can-

not repeatably identify interest points on their boundaries.

By incorporating information from patch-based descriptors

near the regions into a new feature, the Region-based Con-

text Feature (RCF), we can address these issues. We ap-

ply Region-based Context Features in a semi-supervised

learning framework for object detection and localization.

This framework produces object-background segmentation

masks of deformable objects. Numerical results are pre-

sented for pixel-level performance.

1. Introduction

Object class detection and localization has been a fre-

quently studied problem in the computer vision literature.

Although the general problem involves detecting and ex-

actly localizing all parts of an object, in many cases the

problem is interpreted as a search for a bounding box sur-

rounding the object, with the box generally axis-aligned [1,

22, 24]. Bounding boxes, however, are somewhat unsat-

isfactory as a final result because they do not capture the

true shape of the object. This is especially problematic

for deformable objects, wiry objects and objects with oc-

clusions, whose bounding boxes may contain a majority of

non-object pixels, such as those in the first row of Fig. 1. A

bounding-box based system also has difficulty searching for

multiple objects in the same image. Once the system finds

one object, it has only two choices in searching for addi-

tional objects: ignore pixels within the first bounding box,

thereby missing objects which are in different scene layers,

or re-process all of the pixels in the bounding box, wasting

∗Part of this research was performed under the Intelligent Robotics De-

velopment Program, a 21st Century Frontier R&D Program funded by the

Korean Ministry of Commerce, Industry and Energy. Caroline Pantofaru

was partially supported by a grant from the European Community under

the Marie-Curie Visitor project.

time and risking classifying the same pixels as belonging

to multiple objects. Bounding box-based systems are also

often fully supervised, with training objects completely lo-

calized using either a segmentation mask or a bounding box.

With this motivation in mind, this paper works towards

addressing the problem of pixelwise object class localiza-

tion. Pixelwise detection and localization involves assign-

ing each pixel in an image to a class label without a prede-

termined rigid shape assumption on the spatial support of

each label. Some such label masks are given in the second

row of Fig. 1. We pose this problem in a semi-supervised

framework, where only image-level object occurrence la-

bels are available for the training data.

How can an image be represented to facilitate pixelwise

labeling? Many popular object recognition methods repre-

sent an image with sparse points extracted using an interest

point operator [6, 12, 13, 16] and then represent these points

using some descriptor such as the SIFT descriptor [13]. Al-

though these sparse detections may be accurate and repeat-

able, they do not give information about the other pixels

on the object which may lie in textureless neighborhoods.

Thus the only options for creating a pixel-level mask using

sparse points are either to resort to bounding boxes (or some

other rigid structure surrounding the interest points) which

include background pixels, or to miss most of the object by

simply labeling the points themselves. Another popular ap-

proach for representing an image is to use patches with pre-

determined shapes, such as rectangles, and describe their

contents as a vector of grayscale values [1]. These repre-

sentations generally have a larger spatial support, however

their predetermined shape can only make inexact estimates

of the object extent, generally a set of rectangles covering

the object such as in [8]. If these patches are extracted in

a sparse manner, they will also exclude parts of the object

with low texture.

One approach to remedy the above situation is to use a

dense set of pixels [5] instead of those found using an inter-

est point detector. Although a dense set of points can create

an accurate object mask, labeling each pixel separately will

be noisy and an elaborate smoothing process will be neces-

sary. Instead, we choose to represent an image as a set of re-

gions extracted by unsupervised image segmentation which

are homogeneous in color and texture space. This is similar

1

to the concept of Superpixels [20]. The spatial support for

each region is data-dependent, thus a subset of the regions

can model the object support precisely. In addition, if the

pixels in a region are all given the same label, we remove

the pixel-level noise inherent in dense representations.

Performing an initial image segmentation allows us to

take advantage of features such as color which are consis-

tent among the member pixels of an object in one image but

not between images. These features are unavailable to ap-

proaches which seek to cluster pixels in single images and

across multiple images at once. By performing segmenta-

tion at multiple image scales and grouping pixels in region

intersections, we can create a multi-scale environment in

which the image is likely to be over-segmented and object

pixels are unlikely to be grouped with background pixels.

One way to describe regions is by the mode of their con-

stituent pixels’ textures. A score reflecting how well each

texture predicts the object class can be learned and used to

classify new regions. This works well for objects with dis-

tinctive textures, such as the cheetah in the first column of

Fig. 1. We run into problems, however, in trying to classify

regions which do not have regular textures which can dis-

criminate between the class and the background. The bicy-

cle’s frame has no texture at all and is better encoded by its

angles, while the texture on the cheetah’s face is not regular

and will be broken into different regions. Clearly we need to

encapsulate more than the information internal to each re-

gion. One possible approach is to use the information from

neighboring regions, but this leaves us with two important

problems. First, for some objects, key features occur only

at the borders between regions, such as the corner of an eye.

Second, region shapes (and hence spatial relationships be-

tween them) are notoriously unstable. This is where de-

scriptors defined on predetermined pixel supports (patches)

are useful; they can find and encode non-repetitive features

and their spatial extent is reliable. Thus the major contribu-

tion of this work is the incorporation of local patch-based

features into a region-based approach through the creation

of Region-based Context Features (RCF), and their combi-

nation with more common texture-based features.

At a high level, a Region-based Context Feature is a

histogram of the (quantized) local descriptors near a re-

gion, with proximity defined by the scale of the local de-

scriptor patches. In this manner we can remain within a

region-based framework but take advantage of the extra fea-

tures found by patches, with their location and scale sta-

bility. By combining Region-based Context Features with

texture-based features in a framework which allows data-

dependent feature selection, we can model an object class

by the set of features which describe it best, and provide

the desired pixel-level object mask. Since explicit angle

relationships between regions and points are not modeled,

we can find objects which are extremely deformable. By

presenting our method in a semi-supervised learning frame-

work in which only image-level labels are necessary, we

Figure 1. The first row shows deformable objects, wiry objects and

objects with occlusions which are not satisfactorily delineated by

bounding boxes. The second row shows pixel-level masks of these

same objects, which capture their exact shape.

decrease the amount of work needed for training.

There have been a limited number of attempts to use seg-

mentation for detection or to combine segmentation with

other cues. Tu et al. [23] combine segmentation with

features (such as splines) based on object specific knowl-

edge to detect faces and text segments on natural im-

ages. Their DDMCMC-based (Data-Driven Markov Chain

Monte Carlo) framework is computationally expensive,

however, and requires prior knowledge. Malik et al. [14]

use local information such as edges to help direct segmen-

tation, but did not perform object detection. On the other

hand, the Blobworld system [2] employs segmentation in-

formation to retrieve images from a database, however, they

do not use local pixel information, nor identify the objects.

Opelt et al. [19] use interest points [16], similarity measure

segmentation, and mean shift segmentation together in an

Adaboost framework. They performed object recognition

and verified the center of the object by a relatively weak

criterion. Many of the described localization methods use

fully supervised data [1, 22, 24], sometimes including full

segmentation masks [10] or textureless backgrounds [11].

Yu and Shi [26] localize only known and previously seen

objects and do not generalize to object classes. Localiza-

tion is usually evaluated by bounding boxes, or the loca-

tion of the center. The above methods either did not pro-

vide pixel-level localization masks, or did not quantify the

masks’ accuracy. Kumar et al. [7] perform detection and

segmentation using pictorial structures and MRFs, however

they cannot cope with occlusion or alternate viewpoints.

2. Segmentation and Texture Descriptors

The foundation for our object localization procedure is

unsupervised image segmentation. To define the regions in

an image, we use mean shift-based image segmentation [3]

on position, color and texture descriptors. The texture de-

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 2. Example segmentations at three image sizes for images

from the positive and negative Spotted Cats dataset. Images (a)

and (e) are the original images, (b) and (f) are the segmentations

of the smallest image size (rescaled to the original size), (c) and

(g) are of the middle image size, and (d) and (h) are of the largest

image size. Segmentation parameters are kept constant through-

out.

scriptors are textons [14], have a feature length of 30 and

are extracted using the publicly available implementation

from the Berkeley segmentation database website [15]. The

color features are computed in the L*u*v* space, and are

smoothed over the same 15x15 window used to compute

the texton features. In total, we perform segmentation in a

35-dimensional space.

We chose mean shift-based segmentation since it does

not require as input the total number of regions, nor does it

necessarily create regions of equal size. The only parame-

ters are the kernel bandwidths (radii) for the pixel position,

the color, and the texture. A multi-scale representation is

achieved by performing image segmentation at three image

scales, assigning three different regions to each pixel.

Notice that this procedure extracts regions regardless of

their rotation, position, or spatial relationships, and there-

fore forms possible object regions without a low-level spa-

tial model. Examples of mean shift segmentations on posi-

tive and negative images from the Spotted Cats dataset are

presented in Fig. 2.

Once an image is segmented at one scale, each region is

described by the texture part of its mode, a 30-dimensional

vector t. We perform k-means clustering on the texture de-

scriptors from all of the training images at all (3) scales to

derive a vocabulary of texture words T = {Ti}
NT

i=1
, and as-

sign each region to its nearest neighbor texture word.

3. Region-based Context Features (RCF)

There has been a significant amount of work done on

the inclusion of shape (geometric), spatial and context in-

formation into object models. Shape information relates

the various parts of the object to each other, and has been

explored through the concepts of Shape Context [17] and

geometric relations in part-based models [25]. Spatial and

context models may also relate the object to the other parts

of the scene, be they local or global, for example [18]. In

our problem, the objects may be highly deformable or seen

from highly varying angles, so it is beneficial not to limit the

model to strict shape or spatial relationships which enforce

a topology among the parts. However, it is useful to model

a notion of proximity among object features. This allows

us to identify regions which may not have a discriminative

texture themselves, but which have close proximity to ob-

ject features, such as those in Fig. 5. These regions do not

have a discriminative texture (in fact they have no texture at

all), but they do lie near the dots which line the edge of the

butterfly’s wing. For this purpose we introduce the concept

of Region-based Context Features (RCF).

Consider the segmentation-derived regions in an image.

We would like to model the relationships between each re-

gion and its surroundings. Although the regions do contain

a homogeneous set of pixels (in color and texture space),

their shape and size is not repeatable across instances of the

same class. In fact, fairly minor variations in lighting or

pose can change the shape of the regions, so we wish to

rely as little as possible on their shape. This can be accom-

plished by ignoring the relationships between the regions

directly, and instead relying on region-based histograms of

local descriptors computed from independent locations and

scales in the image.

For our local descriptor we use the 128-dimensional

SIFT descriptor [13]. The locations where the descriptors

are computed may be sparse, as determined by a local inter-

est point operator and scale selection, or densely arranged

over the image and in scale space. Let the set of points in

one image be P = {pi}
NP

i=1
, with scales {σi} and local de-

scriptors {di}. Clustering the set of descriptors from all of

the training images produces a vocabulary of local descrip-

tor words W of size NW . Let wi be the nearest neighbor

word to descriptor di. We use the scales {σi} of the points

to define proximity to regions. The idea is to create a his-

togram for each region of the local words which are at most

kσi pixels away. These histograms are appended, weighted

inversely proportionally to their k values, to create a set of

Region-based Context Histograms (RCH).

More specifically, let R be a region in the image, with

member pixels {rj}
NR

j=1
. Let hk be the k-histogram for the

region R with NW bins, one for each word. We build the

histograms as follows:

hk(w) = |{wi |

w=wi, (k−1)σi < minrj
{d(rj , pi)} ≤ kσi}|.

(1)

where d(∗, ∗) is the Euclidean distance between the pixel

locations. In our implementation, k ∈ {1, 2} and the his-

togram for k = 1 includes the points with distance k = 0
(points which are within the region itself). Each hk is then

normalized. For larger k, the histogram contains points

which are farther away from, and less related to, the region,

and accumulates them over an area which grows quadrati-

cally (while k grows linearly). So the hk are weighted in-

versely proportionally to k. For our experiments, we use

weights of 0.5k. The (weighted) {hk} are concatenated to

get a final feature H = [h1, h2, . . . , hK]. The method for

Figure 3. Example of a Region-based Context Histogram (RCH).

The top figure is the image, with the black blob representing one

region from the segmentation. The red circles represent points

pi in the image that are within 1σi of the region, and the green

concentric circles represent points within 2σi. The numbers in the

circles are the local descriptor words for each point. The bottom

figure is the resulting RCH. The left half represents the points that

are within 1σi of the region, and the right half 2σi. Each entry in

the histogram corresponds to a (w,k) pair, where w is a word and

k is the multiple of σ. In practice, each k-section of the histogram

is normalized and weighted inversely to k.

building an RCH is summarized in Fig. 3.

A vocabulary is created by clustering (using k-means)

the RCHs from all of the training images at all the image

scales. The Region-based Context Features (RCFs) are the

cluster centers, and regions are assigned the RCF which is

the nearest-neighbor to their RCH.

4. Computing feature scores

Certain features in the texture and RCF vocabularies will

be able to discriminate between an object class and its back-

ground. Each feature’s discriminative score can be evalu-

ated under a semi-supervised learning model in which im-

ages are labeled as positive if they contain the object class,

or negative otherwise. No object localization or configura-

tion information is given. Let P (Fi|O) be the conditional

probability that a descriptor from an object image is as-

signed to feature cluster i, and define P (Fi|Ō) similarly

for non-object images. Combining the texture features and

RCFs into one large set, and given the positive and negative

labels on the training images, we compute the discrimina-

tive power of a given feature Fi as:

R̃(Fi) =
P (Fi|O)

P (Fi|O) + P (Fi|Ō)

Figure 4. Examples of image regions within discriminative texture

clusters. The feature on the left is one of the top (best ranked)

Spotted Cat texture features, while the one on the right is one of

the top Machaon Butterfly texture features.

Figure 5. Examples of image regions within a discriminative RCF

cluster for black swallowtail butterflies. The red and white out-

lines denote the regions. Note that these regions would not be

discriminative based on texture alone.

This score ranks the features in the same order as the likeli-

hood ratio:

R(Fi) =
P (Fi|O)

P (Fi|Ō)

which is the likelihood criterion presented in [4, 21] to

select discriminative interest point clusters. Examples of

some discriminative feature clusters are given in Fig. 4 and

Fig. 5. Notice that the discriminative scores of the texture

features and the RCFs are directly comparable.

We can now assign two scores to each region corre-

sponding to the discriminative values of its texture feature

and RCF, hence we are ready to localize objects in test im-

ages. Note that this entire learning scheme can also be ap-

plied in a fully supervised setting by simply replacing posi-

tive and negative images with positive and negative regions.

5. One-vs-all Classification

For each new image, we perform unsupervised segmen-

tation and local patch extraction as described above, and

compute the nearest neighbors in the texture, Ti, and RCF,

RCFi, vocabularies for each resulting region. We can then

determine two values for the region R̃(RCFi) and R̃(Ti).
Since these values are on the same scale, we can combine

them to get one region score Si = R̃(RCFi)R̃(Ti). In this

formulation, if the texture features cannot discriminate be-

tween a certain class and its background, they will all be

near 0.5 and will have little to no affect on the region score

ordering imposed by the RCFs, and vice versa. If, on the

other hand, both texture features and RCFs have a wide

range of scores, they can reinforce each other when both

agree or cancel each other out when they disagree. Thus

both feature sets can co-exist in one model.

Let ms be the likelihood map for an image at scale s in

which each pixel is assigned its corresponding region’s Si.

Then the final one-vs-all pixel map of object class mem-

bership likelihood is M =
∏Ns

s=1
ms. In our experiments

the number of scales is Ns = 3. Note that if {rs} is a set of

regions, one region at each scale, then the pixels in the inter-

section of the regions, p ∈
⋂Ns

s=1
rs, all have the same final

score. This is reasonable because pixels in the same region

at all scales have a common texture and color at all scales.

By assigning them the same score we achieve our original

goal of classifying similar pixels in a consistent manner and

avoiding pixel-level noise.

We have described a method for creating one-vs-all clas-

sifiers for a dataset. We can extend this to a multi-class clas-

sifier by running each of our one-vs-all classifiers over an

image and assigning to each pixel the class corresponding

to its maximum score, thresholding the responses to identify

the background.

6. Experiments

6.1. Spotted Cats

Our first set of experiments uses data from the Corel

Image Database, with the folder ‘Cheetahs, Leopards and

Jaguars’ as a positive class and ‘Backyard Wildlife’ as a

negative class. In this paper, this dataset is refered to as the

‘Spotted Cats’ dataset. Each folder contains 100 images; for

training we used 51 positive images (evenly divided among

the 3 types of cats) and 50 negative images, with the remain-

der for testing. All of the images are 640x480 pixels, in ei-

ther portrait or landscape orientations. However, the size of

the actual cats varies considerably, as does the pose, level

of occlusion, background and lighting. Many of the im-

ages contain multiple cats. All experiments were done using

semi-supervised training only. Local patch features were

extracted densely, using a regular grid with points spaced 8

pixels apart, and scales of 2, 4, and 8 at each point.

Fig. 6 gives example images and results for this dataset.

The first column contains the original images with hand-

drawn ground truth for reference (although it was not used

for training). The second column contains results obtained

using texture-based region features only, in other words

Si = R̃(Ti). The third column contains results obtained

using RCFs only such that Si = R̃(RCFi). Finally, the

fourth column contains the results of combining the feature

sets, Si = R̃(RCFi)R̃(Ti). For display purposes, detec-

tion thresholds were chosen to give equal error rates on the

images. Notice that in the first and third rows, the texture-

only classification misses parts of the cats’ heads, while in

the second example it misses the shadowed section under

the chin. These are all low-texture regions. The RCF-only

classification is able to properly label these regions, but has

trouble with the tails which are mainly surrounded by back-

(a) (b) (c) (d)
Figure 6. Sample results for the Spotted Cats dataset. Column

(a) contains the original images, column (b) contains results from

texture-only classification, column (c) contains results from RCF-

only classification, and column (d) contains results from combined

texture and RCF classification. The first three rows show good re-

sults, while the fourth result is poor. The white outlines are ground

truth.

ground. The combined results manage to capture most of

the cat silhouettes, and reduce the amount of background

noise present. The fourth row shows a poor result where

background texture is too dominant and a large part of the

object is too shadowed for proper classification.

Fig. 7(a) plots recall-precision results for pixel-level

classification on the Spotted Cats dataset. Notice that each

of the baseline texture-only and RCF-only methods have

strengths and weakness. The texture-only method performs

poorly at low recall values, however its performance de-

grades slowly as the recall increases. On the other hand,

the RCF-only method has excellent precision at low recall,

but the curve drops quickly as the recall increases. By com-

bining the two feature sets we produce a curve which has

both high precision at low recall rates, and drops off slowly.

Our results include all of the pixels in the image, including

those near the borders of the image and the object outline.

Due to inevitable inaccuracies in the hand-labeled data, ob-

taining perfect recall and precision is impossible. Note that

previous publications have given only example images as

results, they have not given pixel-level numerical results.

6.2. Graz02 Bikes

Our second set of experiments was run on the publicly

available ‘Graz02’ dataset used in Opelt et al [19]. We used

the ‘Bikes’ class as the positive class, and the ‘Background’

class as the negative class. The data was split in accordance

with the original paper, with the odd numbered images in

each class for training and the even numbered images for

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Recall−Precision for Spotted Cats
using Semi−Supervised Training

Texture
RCF
Texture*RCF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Recall−Precision for Graz02 Bikes
using Semi−Supervised Training

Texture
RCF
Texture*RCF

(a) (b)
Figure 7. Recall-Precision curves. Plot (a) shows results for

the Spotted Cats dataset, and plot (b) for the Graz02 Bikes vs

Background dataset. Both classifiers were created using semi-

supervised training. The blue solid lines represents classifying

using region texture only, the red dashed lines using RCFs only,

and the green dash-dotted lines using the full region texture and

RCF model. Results are for pixel-level classification.

testing. All of the images in this dataset are 640x480 pixels,

but the size of the objects varies drastically, as do the pose,

level of occlusion, background and lighting. Fig. 7(b) shows

the pixel-level performance of the classification. Notice that

the combination of texture features and RCFs performs bet-

ter than either method alone at almost all operating points.

Since our task of pixelwise classification, and the result-

ing metric of pixelwise recall-precision, differ from pre-

vious work, we adjusted our algorithm to output object

centers and compared localization performance to Opelt et

al [19] using their framework. For the positive (bike) im-

ages, we used as our localization the center of the largest

connected component of values greater than 0.6 in the like-

lihood map M . Setting this threshold is equivalent to setting

the number of clusters k in [19], which is also set by hand.

Since this form of localization is not the main focus of our

work, we did not perform a thorough search for the opti-

mal threshold. Using the comparison method from [1] used

by Opelt et al., a localization is considered correct if it falls

within the ellipse inscribed in the bounding box surround-

ing the ground truth. In the case of multiple ground truth

objects, finding any one is considered correct. Within this

framework, we are able to localize 131/150 of the bikes,

compared to 115/150 for Opelt et al.

6.3. Butterflies

Our third set of experiments was run on the publicly

available ‘Butterflies’ dataset used in [9]. The dataset

consists of 619 images of 7 classes of butterflies: Zebra,

Machaon, Monarch (closed position), Monarch (open posi-

tion), Peacock, Black Swallowtail, and Admiral. The pic-

tures were collected from the internet and hence vary widely

in size, quality, focus, object size, object rotation, number

of butterflies, lighting, etc. The first 26 images from each

butterfly class were used for training, and the remainder

for testing. Butterflies themselves are not extremely de-

formable, however the variety in the images coupled with

the similarity between the different butterfly classes makes

this a very difficult dataset for pixel-level work. The one-

vs-all classifiers in this dataset are required to discriminate

between butterfly classes, in addition to discriminating be-

tween butterflies and backgrounds. Note that the Monarch

(closed position) and Monarch (open position) classes ac-

tually contain the same butterfly type, simply in different

poses. The Admiral and Peacock classes have minimal tex-

ture, making them especially difficult to learn.

Fig. 8 shows example results for each of the butterfly

types, classified with one-vs-all classifiers. The columns

represent, from left to right, the original images, classifi-

cation using only texture features, classification using only

RCFs, and classification using the combined texture and

RCF model. Notice that the texture features are able to ex-

tract most of the regular textures on the butterflies, while

the RCFs are able to extract some of the nearby texture-less

regions. Also, the two models work together to lower back-

ground noise. The Zebra butterfly class (first row) presents

a fairly easy problem, with all of its body covered by a dis-

tinctive texture. The Peacock, Black Swallowtail and Ad-

miral classes (last 3 rows), however, are extremely difficult

as the majority of their surface is textureless, with the Pea-

cock and Admiral butterflies having no distinctive regular

textures at all. Additionally, silhouette shape is not a strong

cue for discriminating between butterfly classes.

Fig. 9 gives the pixel-level recall-precision plots for each

of the one-vs-all classifiers, in the same order as the exam-

ples in Fig. 8. These datasets demonstrate the performance

range of our algorithm. The Zebra classifier produces ex-

cellent results due to its regular texture. The combination of

textures on the Machaon, Monarch (Closed) and Monarch

(Open) give promising results as well, with the combined

model improving performance. The Peacock and Admiral

classes contain much larger challenges and strain the sys-

tem since they both lack a distinctive regular texture and

contain mainly large uniform regions. In these cases the

texture-based classifier is essentially useless, severely hand-

icapping the system.

Finally, we present results for multi-class classification

on the butterflies dataset. If the maximum one-vs-all classi-

fier value at pixel pi is c∗ = maxC
c=1

Mc(pi), then the class

at each pixel pi is:

C(pi) =

{

c∗ Mc∗(pi) > 1.5(1 − Mc∗(pi))

background otherwise

In Table 10 we can see the pixelwise classification rates for

the butterfly classes. The only two low scores came from the

Swallowtail and Peacock classes which performed poorly in

the one-vs-all tasks as well. Fig. 11 shows some examples

of classifications. The multiclass framework seems to have

improved classification. One possible explanation for this

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Recall−Precision for
Zebra Butterflies

Texture
RCF
Texture*RCF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall
P

re
c
is

io
n

Recall−Precision for
Machaon Butterflies

Texture
RCF
Texture*RCF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Recall−Precision for
Monarch (closed) Butterflies

Texture
RCF
Texture*RCF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Recall−Precision for
Monarch (open) Butterflies

Texture
RCF
Texture*RCF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Recall−Precision for
Peacock Butterflies

Texture
RCF
Texture*RCF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Recall−Precision for
Black Swallowtail Butterflies

Texture
RCF
Texture*RCF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Recall−Precision for
Admiral Butterflies

Texture
RCF
Texture*RCF

Figure 9. Recall-Precision curve for the one-vs-all classifiers in the Butterflies dataset. All classifiers were created using semi-supervised

training. The blue solid line represents classifying using region texture only, the red dashed line using RCFs only, and the green dash-dotted

line using the full region texture and RCF model. Results are for pixel-level classification.

is that a concensus between 7 classifiers is required to label

a region as background, increasing the precision.

7. Conclusions and future work

In this paper, we have presented a method for performing

pixel-level object classification and localization in a region-

based framework which incorporates both texture features

and a new feature, the Region-based Context Feature. In

addition, training is performed in a semi-supervised man-

ner, minimizing the amount of work required. Our frame-

work takes advantage of the deformable nature of segmen-

tation regions to clearly delineate the boundaries of an ob-

ject and provide a pixel-level mask which is more accurate

than a bounding box or other rigid structure. Through the

use of texture information and flexible spatial information

as encapsulated in the Region-based Context Feature, we

can model objects which are highly deformable and con-

tain repetitive patterns, a challenge for interest-point based

systems with highly constrained shape models. We have

shown that the system performs well on objects which are

at least partially covered by repetitive textures, and it is able

to model low texture regions by relating to these repeti-

tive textures and shape cues. Objects which have neither

strong shape nor texture features are probably better served

by other methods. As future work, it would be interesting to

try to learn thresholds for the detection task while still only

using semi-supervised training data. We would also like to

explore methods for identifying the number of objects in an

image. Additional filtering would also help to remove some

of the spurious results.

References

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect ob-

jects in images via a sparse, part-based representation. PAMI,

2004.

[2] C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blob-

world: Color- and texture-based image segmentation using

em and its application to image querying and classification.

IEEE PAMI, 24(8):1026–1038, 2002.

[3] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. PAMI, 2002.

[4] G. Dorkó and C. Schmid. Selection of scale-invariant parts

for object class recognition. In ICCV, volume 1, pages 634–

640, 2003.

[5] F. Jurie and B. Triggs. Creating efficient codebooks for vi-

sual recognition. In ICCV, 2005.

[6] T. Kadir, A. Zisserman, and M. Brady. An affine invariant

salient region detector. In ECCV, 2004.

[7] M. Kumar, P. Torr, and A. Zisserman. Obj cut. In CVPR,

2005.

[8] S. Kumar and M. Hebert. Discriminative fields for modeling

spatial dependencies in natural images. In NIPS, 2004.

[9] S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts

for object recognition. In BMVC, 2004.

[10] B. Leibe and B. Schiele. Scale invariant object categoriza-

tion using a scale-adaptive mean-shift search. In DAGM’04

Annual Pattern Recognition Symposium, 2004.

(a) (b) (c) (d)
Figure 8. Sample results for each class within the Butterflies

dataset. Column (a) contains the original images, column (b) con-

tains results from texture-only classification, column (c) contains

results from RCF-only classification, and column (d) contains re-

sults from combined texture and RCF classification. The white

outlines are ground truth. The rows present the classes in the same

order as the plots in Fig. 9: Zebra, Machaon, Monarch (Closed),

Monarch (Open), Peacock, Black Swallowtail, and Admiral. In

many cases the texture and RCF representations are complimen-

tary; the texture representation finds regular textures while the

RCF representation fills in textureless regions which are close to

textured regions. However, in some cases such as in row 5, the

classification fails due to very small scale, low object texture, and

high intraclass variability.

Butterfly Classif. Butterfly Classif.

Admiral 76.09% Swallowtail 13.57%

Machaon 53.58% Zebra 74.94%

Monarch-closed 92.67% Pixel avg 53.84%

Monarch-open 66.85% Class avg 57.59%

Peacock 25.63%

Figure 10. Pixel-level multi-class classification rates for the But-

terflies dataset.

[11] B. Liebe and B. Schiele. Interleaved object categorization

and segmentation. In BMVC, 2003.

Ground Adm Mch MnC MnO Pea Swa Zeb

Figure 11. Examples of multi-class classification on the butterflies

dataset. Each pair of images shows the original image input and

the classified output. Each color in the output represents a butterfly

class, with dark blue the background, as given in the color chart.

[12] T. Lindeberg and J. Garding. Shape-adapted smoothing in

estimation of 3D depth cues from affine distortions of local

2D brightness structure. In ECCV, pages 389–400, 1994.

[13] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[14] J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, contours

and regions: Cue combination in image segmentation. In

ICCV, 1999.

[15] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, 2001.

[16] K. Mikolajczyk and C. Schmid. Scale and affine invariant

interest point detectors. IJCV, 60(1):63–86, 2004.

[17] G. Mori and J. Malik. Estimating human body configurations

using shape context matching. Workshop on Models versus

Exemplars in Computer Vision, CVPR, 2001.

[18] K. Murphy, A. Torralba, and W. Freeman. Using the forest

to see the trees:a graphical model relating features, objects

and scenes. In NIPS, 2003.

[19] A. Opelt and A. Pinz. Object localization with boosting and

weak supervision for generic object recognition. In SCIA,

2005.

[20] X. Ren and J. Malik. Learning a classification model for

segmentation. In ICCV, 2003.

[21] C. Schmid. Constructing models for content-based image

retrieval. In CVPR, 2001.

[22] H. Schneiderman and T. Kanade. A statistical method for 3D

object detection applied to faces and cars. In CVPR, 2000.

[23] Z. Tu, Z. Chen, A. L. Yuille, and S.-C. Zhu. Image parsing:

Unifying segmentation, detection, and recognition. IJCV,

2005.

[24] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians

using patterns of motion and appearance. In ICCV, 2003.

[25] M. Weber, W. Einhuser, M. Welling, and P. Perona.

Viewpoint-invariant learning and detection of human heads.

In Automatic Face and Gesture Recognition, 2000.

[26] S. Yu and J. Shi. Object-specific figure-ground segregation.

In CVPR, 2003.

