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Abstract

Feature selection (FS) refers to the problem of selecting those input attributes that

are most predictive of a given outcome; a problem encountered in many areas such as

machine learning, pattern recognition and signal processing. Unlike other dimension-

ality reduction methods, feature selectors preserve the original meaning of the features

after reduction. This has found application in tasks that involve datasets containing

huge numbers of features (in the order of tens of thousands), which would be im-

possible to process further. Recent examples include text processing and web con-

tent classification. FS techniques have also been applied to small and medium-sized

datasets in order to locate the most informative features for later use. Many feature

selection methods have been developed and are reviewed critically in this thesis, with

particular emphasis on their current limitations. The leading methods in this field are

presented in a consistent algorithmic framework.

One of the many successful applications of rough set theory has been to this area.

The rough set ideology of using only the supplied data and no other information has

many benefits in FS, where most other methods require supplementary knowledge.

However, the main limitation of rough set-based feature selection in the literature is

the restrictive requirement that all data is discrete. In classical rough set theory, it is

not possible to consider real-valued or noisy data. This thesis proposes and develops

an approach based on fuzzy-rough sets, fuzzy rough feature selection (FRFS), that

addresses these problems and retains dataset semantics. Complexity analysis of the

underlying algorithms is included.

FRFS is applied to two domains where a feature reducing step is important; namely,

web content classification and complex systems monitoring. The utility of this ap-

proach is demonstrated and is compared empirically with several dimensionality re-

ducers. In the experimental studies, FRFS is shown to equal or improve classification

accuracy when compared to the results from unreduced data. Classifiers that use a

lower dimensional set of attributes which are retained by fuzzy-rough reduction out-

perform those that employ more attributes returned by the existing crisp rough reduc-

tion method. In addition, it is shown that FRFS is more powerful than the other FS

techniques in the comparative study.
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Based on the new fuzzy-rough measure of feature significance, a further develop-

ment of the FRFS technique is presented in this thesis. This is developed from the

new area of feature grouping that considers the selection of groups of attributes in the

search for the best subset. A novel framework is also given for the application of ant-

based search mechanisms within feature selection in general, with particular emphasis

on its employment in FRFS. Both of these developments are employed and evaluated

within the complex systems monitoring application.
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Chapter 1

Introduction

It is estimated that every 20 months or so the amount of information in the world

doubles. In the same way, tools for use in the various knowledge fields (acquisition,

storage, retrieval, maintenance, etc) must develop to combat this growth. Knowledge

is only valuable when it can be used efficiently and effectively; therefore knowledge

management is increasingly being recognised as a key element in extracting its value.

Central to this issue is the knowledge discovery process, particularly knowledge

discovery in databases (KDD) [4, 47, 49, 155]. Traditionally, data was turned into

knowledge by means of manual analysis and interpretation. For many applications,

this form of manual probing of data is slow, costly, and highly subjective. Indeed, as

data volumes grow dramatically, this type of manual data analysis is becoming com-

pletely impractical in many domains. This motivates the need for efficient, automated

knowledge discovery. The KDD process can be decomposed into the following steps,

as illustrated in figure 1.1:

• Data Selection:

A target dataset is selected or created. Several existing datasets may be joined

together to obtain an appropriate example set.

• Data Cleaning/Preprocessing:

This phase includes, among other tasks, noise removal/reduction, missing value

imputation, and attribute discretization. The goal of this is to improve the overall

quality of any information that may be discovered.

1
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Cleaning

Mining

Interpretation

Reduction

Target data

Data

Processed data

Knowledge

Patterns
Reduced data

Selection

Figure 1.1: The knowledge discovery process

• Data Reduction:

Most datasets will contain a certain amount of redundancy that will not aid know-

ledge discovery and may in fact mislead the process. The aim of this step is to

find useful features to represent the data and remove non-relevant ones. Time is

also saved during the data mining step as a result of this.

• Data Mining:

A data mining method (the extraction of hidden predictive information from

large databases) is selected depending on the goals of the knowledge discovery

task. The choice of algorithm used may be dependent on many factors, including

the source of the dataset and the values it contains.

• Interpretation/Evaluation:

Once knowledge has been discovered, it is evaluated with respect to validity, use-

fulness, novelty and simplicity. This may require repeating some of the previous

steps.

The third step in the knowledge discovery process, namely data reduction, is the

point of interest for this investigation as this is often a source of significant data loss.

The high dimensionality of databases can be reduced using suitable techniques, de-

pending on the requirements of the future KDD processes. These techniques fall in
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to one of two categories: those that transform the underlying meaning of the data fea-

tures and those that are semantics-preserving. Feature selection (FS) methods belong

to the latter category, where a smaller set of the original features is chosen based on

a subset evaluation function. In knowledge discovery, feature selection methods are

particularly desirable as these facilitate the interpretability of the resulting knowledge.

1.1 Feature Selection

There are often many features in KDD, and combinatorially large numbers of feature

combinations, to select from. Note that the number of feature subset combinations

with m features from a collection ofN total features isN!/[m!(N−m)!]. It might be

expected that the inclusion of an increasing number of features would increase the like-

lihood of including enough information to distinguish between classes. Unfortunately,

this is not true if the size of the training dataset does not also increase rapidly with

each additional feature included. This is the so-called curse of dimensionality [13]. A

high-dimensional dataset increases the chances that a data-mining algorithm will find

spurious patterns that are not valid in general. Most techniques employ some degree

of reduction in order to cope with large amounts of data, so an efficient and effective

reduction method is required.

The use of rough set theory (RST) [125] to achieve data reduction is one approach

that has proved successful. Over the past twenty years, rough set theory has become

a topic of great interest to researchers and has been applied to many domains (e.g.

classification [29, 42, 71], systems monitoring [158], clustering [62], expert systems

[176]). This success is due in part to the following aspects of the theory:

• Only the facts hidden in data are analysed,

• No additional information about the data is required such as thresholds or expert

knowledge on a particular domain,

• It finds a minimal knowledge representation.

Given a dataset with discretized attribute values, it is possible to find a subset of

the original attributes using RST that are the most informative (termed areduct); all
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other attributes can be removed from the dataset with minimal information loss. This

method tends to be a pre-processing step to reduce dataset dimensionality before some

other action is performed (for example, induction of rules [157]).

1.2 Applications of Feature Selection

As many systems in a variety of fields deal with datasets of large dimensionality, fea-

ture selection has found wide applicability. Some of the main areas of application are

shown in figure 1.2.

Monitoring
Systems

Selection

Feature

Bioinformatics

Clustering

Rule Induction

Text Categorisation

Image Recognition

.....

If ... ... then

If ... ... then

If ... ... then

Y

Z

X

Figure 1.2: Feature selection application areas
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Feature selection algorithms are often applied to optimize the classification per-

formance of image recognition systems [70, 163]. This is motivated by a peaking

phenomenon commonly observed when classifiers are trained with a limited set of

training samples. If the number of features is increased, the classification rate of the

classifier decreases after a peak. In melanoma diagnosis, for instance, the clinical ac-

curacy of dermatologists in identifying malignant melanomas is only between 65% and

85% [59]. With the application of FS algorithms, automated skin tumour recognition

systems can produce classification accuracies above 95%.

Structural and functional data from analysis of the human genome have increased

many fold in recent years, presenting enormous opportunities and challenges for AI

tasks. In particular, gene expression microarrays are a rapidly maturing technology

that provide the opportunity to analyse the expression levels of thousands or tens of

thousands of genes in a single experiment. A typical classification task is to distin-

guish between healthy and cancer patients based on their gene expression profile. Fea-

ture selectors are used (along with some initial filtering) to drastically reduce the size

of these datasets which would otherwise have been unsuitable for further processing

[189, 190]. Other applications within bioinformatics include QSAR [25], where the

goal is to form hypotheses relating chemical features of molecules to their molecular

activity, and splice site prediction [143], where junctions between coding and non-

coding regions of DNA are detected.

The most common approach to developing expressive and human readable repres-

entations of knowledge is the use of if-then production rules. Yet, real-life problem

domains usually lack generic and systematic expert rules for mapping feature patterns

onto their underlying classes. In order to speed up the rule induction process and re-

duce rule complexity, a selection step is required. This reduces the dimensionality

of potentially very large feature sets while minimising the loss of information needed

for rule induction. It has an advantageous side-effect in that it removes redundancy

from the historical data. This also helps simplify the design and implementation of the

actual pattern classifier itself, by determining what features should be made available

to the system. In addition, the reduced input dimensionality increases the processing



6 Chapter 1. Introduction

speed of the classifier, leading to better response times [6, 28, 74].

Many inferential measurement systems are developed using data-based methodolo-

gies; the models used to infer the value of target features are developed using real-time

plant data. This implies that inferential systems are heavily influenced by the quality of

the data used to develop their internal models. Complex application problems, such as

reliable monitoring and diagnosis of industrial plants, are likely to present large num-

bers of features, many of which will be redundant for the task at hand. Additionally,

there is an associated cost with the measurement of these features. In these situations it

is very useful to have an intelligent system capable of selecting the most relevant fea-

tures needed to build an accurate and reliable model for the process [73, 80, 158, 136].

The task of text clustering is to group similar documents together, represented as

a bag of words. This representation raises one severe problem: the high dimensional-

ity of the feature space and the inherent data sparsity. This can significantly affect the

performance of clustering algorithms, therefore it is highly desirable to reduce this fea-

ture space size. Dimensionality reduction techniques have been successfully applied to

this area - both those that destroy data semantics and those that preserve them (feature

selectors) [34, 97].

Similar to clustering, text categorization views documents as a collection of words.

Documents are examined, with their constituent keywords extracted and rated accord-

ing to criteria such as their frequency of occurrence. As the number of keywords

extracted is usually in the order of tens of thousands, dimensionality reduction must be

performed. This can take the form of simplistic filtering methods such as word stem-

ming or the use of stop-word lists. However, these do not provide enough reduction for

use in automated categorisers, so a further feature selection process must take place.

Recent applications of FS in this area include web page and bookmark categorisation

[51, 77].

1.3 Limitations of Current Methods

The use of user-supplied information is essential to many existing algorithms for fea-

ture selection in the literature. This is a significant drawback. Some feature selectors
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require noise levels to be specified by the user beforehand, some simply rank features

leaving the user to choose their own subset. There are those that require the user to

state how many features are to be chosen, or they must supply a threshold that de-

termines when the algorithm should terminate. All of these require the user to make a

decision based on their own (possibly faulty) judgement.

It is most often the case that the values of attributes may be both crisp andreal-

valued, and this is where many feature selectors, particularly those based on traditional

rough set theory, encounter a problem. It is not possible to say whether two attribute

values are similar and to what extent they are the same; for example, two close values

may only differ as a result of noise, but in RST they are considered to be as different as

two values of a different order of magnitude. According to RST, the values−0.1 and

−0.11 are as different as−0.1 and 300.

One answer to this problem has been to discretise the dataset beforehand, produ-

cing a new dataset with crisp values. This is often still inadequate, however, as the

degrees of membership of values to discretised values are not considered at all. For ex-

ample, two values may both be mapped to the same label “Negative”, but one may be

much more negative than the other. The values−0.1 and−2000 could both be mapped

to this class, though they are significantly different. This is a source of information

loss, which is against the rough set ideology of retaining information content. Further

discussion of this issue can be found in [16].

It is clear that there is a need for some method that will provide the means of

data reduction for crisp and real-value attributed datasets which utilises the extent to

which values are similar. Fuzzy sets [200] and the process of fuzzification provide a

mechanism by which real-valued features can be effectively managed. By allowing

values to belong to more than one label, with various degrees of membership, the

vagueness present in data can be modelled. This information may then be exploited by

further fuzzy methods to enable reasoning under uncertainty.

For feature selection, this could be achieved through the use offuzzy-rough sets

[43]. Fuzzy-rough set theory is an extension of crisp rough set theory, allowing all

memberships to take values in the range [0,1]. This permits a higher degree of flexib-

ility compared to the strict requirements of crisp rough sets that only deal with full or
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zero set membership.

Also, there are few feature selection methods that can handle data with continu-

ous decision attributes. This type of data is often encountered in regression/function

approximation problems. For example, in QSAR [25] such datasets are encountered

where the measurements (including the decision feature, molecular activity) are all

continuous. The use of FS can discover the key variables that influence the decision

quantity, without transforming the feature space.

1.4 Fuzzy-Rough Feature Selection and Extensions

Fuzzy-rough sets encapsulate the related but distinct concepts of vagueness (for fuzzy

sets [200]) and indiscernibility (for rough sets), both of which occur as a result of

uncertainty in knowledge [43]. A fuzzy-rough set is defined by two fuzzy sets, fuzzy

lower and upper approximations, obtained by extending the corresponding crisp rough

set notions. In the crisp case, elements that belong to the lower approximation (i.e.

have a membership of 1) are said to belong to the approximated set with absolute

certainty. In the fuzzy-rough case, elements may have a membership in the range

[0,1], allowing greater flexibility in handling uncertainty.

Fuzzy-Rough Feature Selection (FRFS) provides a means by which discrete or real-

valued noisy data (or a mixture of both) can be effectively reduced without the need

for user-supplied information. Additionally, this technique can be applied to data with

continuous or nominal decision attributes, and as such can be applied to regression as

well as classification datasets. The only additional information required is in the form

of fuzzy partitions for each feature which can be automatically derived from the data.

In the work presented here, excluding the simple examples,all fuzzy sets are derived

solely from the data. This avoids the need for domain experts to provide information

on the data involved and ties in with the advantage of rough sets in that it requires no

information other than the data itself. However, if such experts are readily available, it

is beneficial to capture their knowledge in the form of fuzzy data partitions to improve

the transparency of the selection process and any other future processes (e.g. rule

induction).
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FRFS forms the main contribution of this thesis, employing fuzzy-rough sets to

address several of the current limitations of feature selectors. The algorithm for finding

optimal or close-to-optimal feature subsets is given. This can be replaced by other

search strategies. In this thesis, two alternative search mechanisms are presented, both

of which may be applied to the feature selection task in general as well as FRFS in

particular. The first development builds on new ideas in the feature selection field

concerning feature grouping. At various stages in the selection task, features may be

grouped and many selected simultaneously. The second development draws on work

in swarm intelligence for solving combinatorial optimization problems [21]. By re-

modelling the selection task to conform to the ant colony optimization framework [40],

a new swarm intelligence-based feature subset search mechanism can be implemented.

1.5 Applications of FRFS

FRFS can be applied to any of the domains highlighted previously where feature se-

lection has been employed. For the purposes of this thesis, two challenging domains

of interest were chosen to illustrate its potential utility; web content categorisation and

complex systems monitoring.

The problem of web content categorization is a significant one due to the explosive

increase of information available on the web and its increasing popularity. Techniques

for automated categorization of web documents help in the building of catalogues and

facilitate the retrieval of material. In order to deal with the large number of features in-

volved in such classification, feature selectors are typically used [151]. The dimension-

ality of the problem datasets can be sufficiently reduced to enable more sophisticated

learning algorithms to perform their tasks. The work presented here looks specifically

at addressing the issues of bookmark/favorite classification and web page classifica-

tion. FRFS reduces the size of the datasets involved by several orders of magnitude,

retaining most of the information present in the datasets and making the classification

task manageable.

In systems monitoring, it is important to reduce the number of features involved for

several reasons. Firstly, there is an associated cost with the measurement of a feature.
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It is desirable simply from an expense-saving point of view to reduce the number of

monitored variables. Secondly, the resultant transparency of the monitoring process

can be improved if fewer variables are involved. Thirdly, it is often observed that the

accuracy of the monitoring system can be significantly improved using fewer variables

[158]. FRFS is here applied to the water treatment plant dataset [20] as an example

of how this fuzzy-rough method can be used within the systems monitoring domain.

Additionally, the new feature grouping and ant colony optimization-based methods are

applied to this domain to show their potential utility.

1.6 Thesis Structure

The rest of this thesis is structured as follows (with an indication of the publications

produced as a result of this research):

• Chapter 2: Background. A systematic overview of current techniques for di-

mensionality reduction with a particular emphasis on feature selection is given in

this chapter. It begins with a discussion of those reduction methods that irrevers-

ibly transform data semantics. This is followed by a more detailed description

and evaluation of the leading feature selectors presented in a unified algorithmic

framework. A simple example illustrates their operation.

• Chapter 3: Rough Set-based Approaches to Feature Selection. This chapter

presents the current state of research regarding the application of rough set theory

to feature selection. It is an extended version of the work appearing in [78].

Rough Set Attribute Reduction (RSAR), the precursor to the developments in

this thesis, is described in detail. However, these methods are unsuited to the

problems discussed in section 1.3. In particular, they are unable to handle noisy

or real-valued data effectively - a significant problem if they are to be employed

within real-world applications.

• Chapter 4: Fuzzy-Rough Feature Selection. In this chapter, the theoretical de-

velopments behind this new feature selection method are presented together with

a proof of generalisation. This novel approach uses fuzzy-rough sets to handle
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many of the problems facing feature selectors outlined previously. A complexity

analysis of the main selection algorithm is given. The operation of the approach

and its benefits are shown through the use of two simple examples. To evaluate

this new fuzzy-rough measure of feature significance, comparative investigations

are carried out with the current leading significance measures. The contents of

this chapter have been published in [72, 74, 77]

• Chapter 5: Developments of FRFS. Based on FRFS, this chapter introduces two

promising areas in feature selection. The first, feature grouping, is developed

from recent work in the literature where groups of features are selected simul-

taneously. By reasoning with fuzzy labels, the search process can be made more

intelligent allowing various search strategies to be employed [75]. The second,

ant-based feature selection, seeks to address the non-trivial issue of finding the

smallest optimal feature subsets. This new approach to feature selection uses ar-

tificial ants and pheromone trails in the search for the best subsets [76, 79]. Both

of these developments can be applied within feature selection in general, but are

applied to the specific problem of subset search within FRFS in this thesis.

• Chapter 6: Application to Web Content Categorisation. With the explosive

growth of information on the web, there is an abundance of information that

must be dealt with effectively and efficiently. This area in particular deserves the

attention of feature selection due to the increasing demand for high-performance

intelligent internet applications. This motivates the application of FRFS to the

automatic categorization of user bookmarks/favorites and web pages [71, 77].

The results show that FRFS significantly reduces data dimensionality by several

orders of magnitude with little resulting loss in classification accuracy.

• Chapter 7: Application to Complex Systems Monitoring. Complex applica-

tion problems, such as reliable monitoring and diagnosis of industrial plants,

are likely to present large numbers of features, many of which will be redund-

ant for the task at hand. With the use of FRFS, these extraneous features can

be removed. This not only makes resultant rulesets generated from such data

much more concise and readable, but can reduce the expense due to the mon-
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itoring of redundant features. The monitoring system is applied to water treat-

ment plant data, producing better classification accuracies than those resulting

from the full feature set and several other reduction methods (including both

semantics-preserving and transformation-based approaches) [73, 158].

• Chapter 8: Supplementary Developments and Investigations. This chapter presents

initial investigations and ideas for further work, which were developed concur-

rently with the ideas presented in the previous chapters. Firstly, the utility of

using the problem formulation and solution techniques from propositional sat-

isfiability for finding rough set reducts is considered. This is presented with

an initial experimental evaluation of such an approach, comparing the results

with a standard rough set-based algorithm, RSAR. Secondly, the possibility of

universal reducts is proposed as a way of generating more useful feature subsets.

Finally, fuzzy decision tree induction based on the fuzzy-rough metric developed

in this thesis is proposed.

• Chapter 9: Conclusion. The thesis is concluded in this chapter, with a summary

of the key findings from the research conducted here. There is also a discussion

of future work to be carried out in the area of feature selection in general, as well

as fuzzy-rough feature selection in particular.



Chapter 2

Background

There are many factors that motivate the inclusion of a dimensionality reduction (DR)

step in a variety of problem-solving systems [24]. Many application problems process

data in the form of a collection of real-valued vectors (for example, text classification

[193], bookmark categorization [71]). If these vectors exhibit a high dimensionality,

then processing becomes infeasible. Therefore, it is often useful, and sometimes ne-

cessary, to reduce the data dimensionality to a more manageable size with as little

information loss as possible. The process is summarised in figure 2.1, where the di-

mensionality reduction step is a preprocessing stage in the whole system.

Processing

data
Low dimensional System

Intractable

Dimensionality
Reduction

High dimensional
data

Figure 2.1: The dimension reduction problem
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Sometimes, high-dimensional complex phenomena can be governed by signific-

antly fewer, simple variables [48]. The process of dimensionality reduction here will

act as a tool for modelling these phenomena, improving their clarity. There is often a

significant amount of redundant or misleading information present; this will need to be

removed before any further processing can be carried out. For example, the problem

of deriving classification rules from large datasets often benefits from a data reduc-

tion preprocessing step [157]. Not only does this reduce the time required to perform

induction, but it makes the resulting rules more comprehensible and can increase the

resulting classification accuracy.

Dimension reduction problems tend to be classified into one of three categories

(unless the time variable is included which may present two further categories:static

anddynamic):

• Hard dimension reduction problems, where the data may have dimensions ran-

ging from hundreds to hundreds of thousands of components. Usually, a severe

reduction is required. Typical methods include principal component analysis

(PCA) [38] and rough set analysis [29].

• Soft dimension reduction problems, where the data is fairly low-dimensional,

usually less than a few tens of components. A typical method for this purpose is

factor analysis [108].

• Visualisation problems, where the task is to extract and visually represent rela-

tionships within a dataset. Given a set of data with high dimensionality, these

methods effectively summarize the content into four or fewer dimensions, en-

abling graphing or other means of visualising the results. A number of methods

are used for this, such as projection pursuit [52] and multidimensional scaling

[180].

This chapter deals primarily with hard dimension reduction problems as this is the

area of most interest. However, many hard dimensionality reduction techniques des-

troy the underlying meaning behind the features present in a dataset (the semantics) -

an undesirable property for many applications. This is particularly the case where the
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understanding of the data processing method and that of the resulting processed data

is as important as the accuracy of the resultant lower dimensional dataset in use. The

primary focus of this chapter, therefore, is on those techniques that perform dimen-

sionality reduction whilst preserving the meaning of the original dataset. In particular,

it has a focus on the recent development on the use of rough set theory [125] for feature

selection as this forms the basis for the new developments presented in this thesis.

A taxonomy of dimensionality reduction techniques is presented in figure 2.2. The

key distinction made within the taxonomy is whether a DR technique transforms or

preserves the dataset semantics in the process of reduction. The choice of DR tech-

nique is often guided by the particular application it will be a part of. For example, if

an application needs to use the meaning of the original feature set, then a DR technique

must be chosen that will ensure this preservation. If, on the other hand, an application

requires a visualisation of relationships within the dataset, then a DR approach that

transforms the data into two or three dimensions whilst emphasizing those relation-

ships may be more beneficial.

Reduction

Dimensionality

Based

NonlinearLinear

Selection
Based

Transformation

Feature
Selection

Other?

Figure 2.2: Taxonomy of dimension reduction approaches

Included in this taxonomy is the possibility of a semantics-preserving dimension-

ality reduction technique other than feature selection. Perhaps those techniques that

perform a task where semantics-preserving dimensionality reduction is a side-effect
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may be classified here. For example, the machine learning algorithm C4.5 [135] con-

structs decision trees from data, selecting features and partitioning the dataset in the

process. The resulting decision trees often involve fewer features than the original

training data, so a degree of dimensionality reduction has been performed.

This chapter will first examine those techniques that irreversibly destroy feature se-

mantics in the process of dataset dimensionality reduction, separating these into linear

and nonlinear techniques. Next, semantics-preserving (feature selection) techniques

are examined and their advantages and disadvantages discussed. For those methods

that require it, an algorithmic outline is given.

2.1 Transformation-based Reduction

Common throughout the DR literature are approaches that reduce dimensionality but

in the process irreversibly transform the descriptive dataset features. These methods

are employed in situations where the semantics of the original dataset are not needed

by any future process. This section briefly discusses several such popular techniques,

which are separated into two categories: those methods that are linear and those that

are nonlinear.

Transformation
Based

Linear

PP PCA MDS

Nonlinear

Isomap LLE

Figure 2.3: Classification of representative semantics-destroying DR techniques
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2.1.1 Linear Methods

Linear methods of dimensionality reduction have been well developed over the years

and include techniques such as Principal Component Analysis [82] and Multidimen-

sional Scaling [180]. These techniques are used to determine the Euclidean structure

of a dataset’s internal relationships. However, when such relationships are of a higher

dimensionality, these methods generally fail to detect this. This problem is not too

restrictive as for many applications linear DR is all that is needed.

2.1.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction tool in common

use, perhaps due to its conceptual simplicity and the existence of relatively efficient

algorithms for its computation. PCA transforms the original features of a dataset with

a (typically) reduced number of uncorrelated ones, termed principal components.

Figure 2.4: 2-dimensional normal point cloud with corresponding principal components
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PCA works on the assumption that a large feature variance corresponds to useful

information, with small variance equating to information that is less useful. Figure

2.4 shows an example of this, where the principal components of a two-dimensional

normal point cloud are given. The first principle component indicates the direction of

maximum data variance; the data is seen to be the most dispersed along this new axis

in the example. PCA is employed in section 7.3.3 to perform dimensionality reduction

within a monitoring system.

Data is transformed in such a way as to allow the removal of those transformed

features with small variance. This is achieved by finding the eigenvectors of the co-

variance matrix of data points (objects), constructing a transformation matrix from

the ordered eigenvectors, and transforming the original data by matrix multiplication.

Consider a sample{xi}n
i=1 of dimensionalityD, with meanx = 1

n ∑n
i=1 xi and covari-

ance matrixΣ = 1
n ∑n

i=1(xi− x)(xi− x)T . The covariance matrix is symmetric with

spectral decompositionΣ = UΛUT (U = (u1, ...,uD) andΛ = diag(λ1, ...,λD) ). Here,

ut is the normalised eigenvector ofΣ with corresponding eigenvalueλt . The principal

component transformationy = UT (x− x) produces a reference system in which the

sample has a mean of zero, and a diagonal covariance matrix containing the eigen-

values ofΣ. The variables are now uncorrelated: those with small variance can be

discarded, reducing the dimensionality of the dataset.

However, it is not known beforehand the number of variables to discard, introdu-

cing a potential source of error. An informed guess has to be made as to how many

variables should be kept. An interesting recent approach to tackling this problem can

be found in [177]. In this work, variable selection based on rough sets is applied to the

results of the PCA data transformation. In order to achieve this, the transformed data

has to be discretized.

PCA is not suitable for datasets with nominal attributes either, as matrix calcula-

tions are not applicable. It is not as effective with data correlated in a non-linear man-

ner. For example, given 2-D data lying on the edge of a circle it is intuitive that this

could be mapped onto 1-D using the angle that the data forms with thex-axis. PCA,

however, would create two axes, each accounting for an equal amount of variance and

hence no reduction would take place.
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2.1.1.2 Projection Pursuit

Projection Pursuit (PP) [52, 53] attempts to optimize a quality metric in the search for

a lower-dimensional projection of data. Potentially interesting projections are selected

by the local optimization over projection directions of a certain index of “interesting-

ness”. This notion is motivated by the observation that for high dimensional data, most

low dimensional projections are approximately normal. Hence, those projections that

produce single dimensional projected distributions far from the normal distribution are

determined to be interesting. Different projection indices arise from alternative defini-

tions of normality deviation.

x

y C2C1

Figure 2.5: Two data clusters

How projections may discover structure in data can be illustrated by considering

the data in figure 2.5, where there are two clusters in the data,C1 andC2. Although the
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data has largest variance in they-axis, the clusters cannot be separated by projecting to

this axis. In this case, the data variance is not a good indicator of useful information

in the PCA sense. By projecting to thex-axis, these clusters may be successfully

separated.

Typically, linear projections are used due to their simplicity and interpretability.

Often there will be several projections determined to be interesting which correspond

to projection index local optima. Each such projection may highlight a different (but

equally interesting) aspect of the structure of the high dimensional data. This can be

a problem for some projection indices as the existence of many local maxima makes

locating global maxima difficult.

This suffers from many of the disadvantages of PCA. In fact, it can be shown that

PCA is a special case of PP [24]. As PP works with linear projections, it is not suited to

deal with highly non-linear structure. In addition, PP methods are computationally in-

tensive. For instance, the projection index and derivatives must be rapidly computable

due to repeated evaluations.

2.1.1.3 Multidimensional Scaling

Multidimensional scaling (MDS) refers to a class of techniques that use proximities

of objects as input and display its structure as a geometrical picture. Proximities are

a measure of the similarities (or dissimilarities) of data points. The resulting trans-

formation to lower dimensions attempts to preserve these original proximities as far

as possible. Classical MDS has its origins in psychometrics, where it was proposed

to help understand people’s judgments of the similarity of members of a set of objects

[138].

As an example, table 2.1 presents the distances between ten cities (in the U.S.)

placed in a matrix. The distances are the proximities and can be thought of as creating

a dissimilarity matrix. When the data is run through an MDS algorithm using two

dimensions the algorithm constructs a map based on the proximities as shown in figure

2.6. Since there is no error in the data, it reconstructs a map that shows the relative

locations of the cities.

One way of modelling distance is to use the Euclidean metric. That is, the distance
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Atl Chi Den Hou L.A. Mia N.Y. San F. Sea Was DC

Atl 0 587 1212 701 1936 604 748 2139 2182 543

Chi 587 0 920 940 1745 1188 713 1858 1737 597

Den 1212 920 0 879 831 1726 1631 949 1021 1494

Hou 701 940 879 0 1374 968 1420 1645 1891 1220

L.A. 1936 1745 831 1374 0 2339 2451 347 959 2300

Mia 604 1188 1726 968 2339 0 1092 2594 2734 923

N.Y. 748 713 1631 1420 2451 1092 0 2571 2408 205

San F. 2139 1858 949 1645 347 2594 2571 0 678 2442

Sea 2182 1737 1021 1891 959 2734 2408 678 0 2329

Was DC 543 597 1494 1220 2300 923 205 2442 2329 0

Table 2.1: Mileages between ten U.S. cities

dist(xi,x j) between pointsxi andx j of dimensionalityA is defined as

dist(xi,x j) =

√

√

√

√

A

∑
a=1

(xia−x ja)2 (2.1)

The first developments of MDS were metric [180, 110]; the values used had to be

quantitative, complete and symmetric (as in the example given above). MDS requires

as input then data points (objects) in the datasetX and also a valuer, where the value

of r is an estimate of the true dimensionality of the dataset, or the required number of

dimensions for visualization, typically two or three. If the input data are not distances,

these can be computed using a suitable distance metric, resulting in ann×n matrix S.

The coordinates to be computed,xia, are contained in then× r matrix D. A suitable

objective function (called the stress) must be defined which is employed to minimize

the discrepancies between the current and original data distances:

stress(D) =

√

n

∑
i, j=1

(dist(xi,x j)−dist(di,d j))2 (2.2)

The distances contained in the matrixD are calculated in such a way as to closely

resemble the dissimilaritiesS, often by means of least-squares.E is a matrix of errors

that are, in the least-squares optimization situation, to be minimized. As the distances

S are a function of the coordinatesX, the goal of classical MDS is to calculate the
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Figure 2.6: Resulting 2-dimensional map

coordinatesD so that the sum of squares ofE is minimized, subject to suitable normal-

ization ofX.

The inability of this class of MDS to handle asymmetric and incomplete data proves

too restrictive for most real datasets. This led to the development of non-metric MDS to

allow for these possibilities and additionally enabling the use of ordinal data [90, 159].

Other extensions to the approach include replicated MDS (RMDS) [197] where the

simultaneous analysis of several matrices of similarity data is allowed, and weighted

MDS (WMDS) [197].

WMDS generalises the distance model so that several similarity matrices could be

assumed to differ from each other in systematically nonlinear or nonmonotonic ways.

Whereas RMDS only accounts for individual differences in the ways subjects use the
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response scale (in psychological terms), WMDS incorporates a model to account for

individual differences in the fundamental perceptual or cognitive processes that gen-

erate the responses. For this reason, WMDS is often called individual differences

scaling.

2.1.2 Nonlinear Methods

As useful as the previous methods are for reducing dimensionality, their utility fails

for nonlinear data. Given a dataset containing nonlinear relationships, these methods

detect only the Euclidean structure. This brought about the need for methods that can

effectively handle nonlinearity. The first attempts were extensions to the original PCA

process, either by clustering data initially and performing PCA within clusters [23],

or by greedy optimization processes [89]. Both suffer from problems brought on as a

result of simply attempting to extend linear PCA [57]. This motivates the development

of techniques designed to suitably and successfully handle nonlinearity.

2.1.2.1 Isomap

Isomap [178] is an extension of MDS in which embeddings are optimized to preserve

geodesic distances between pairs of data points, estimated by calculating the shortest

paths through large sublattices of data. The algorithm can discover nonlinear degrees

of freedom as these geodesic distances represent the true low-dimensional geometry

of the manifold. The “Swiss roll” dataset in figure 2.7 is an example of a set of data

points that exhibit a clear nonlinear relationship. Isomap successfully determines this

nonlinear structure: nearby points in the 2D embedding are also nearby points in the

original 3D manifold.

The Isomap algorithm requires as input the distancedX(i, j) between all object

pairsi, j from N objects (data points) in the original input spaceX . This can be meas-

ured by a suitable metric such as the standard Euclidean metric. The algorithm takes

this input and constructs the neighbourhood graph over all objects subject to proxim-

ity constraints. Pointsi and j are connected if they are closer thanε (this is called

ε-Isomap) or ifi is one of theK nearest neighbours ofj (K-Isomap). The lengths of

the edges become the corresponding distance between them,dX(i, j).
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Figure 2.7: The effect of using Isomap on the “Swiss roll” dataset (ε = 5) [8]

Once the previous step has been completed, the shortest paths between neighbours

can be calculated. If pointsi and j are linked thendG(i, j) = dX(i, j), otherwisedG(i, j)

= ∞. Replace all entries indG(i, j) by min{dG(i, j),dG(i,k)+ dG(k, j)} for everyk

= 1, ...,N. The resulting matrixDG = {dG(i, j)} contains the shortest path distances

between all pairs of points inG. Finally, thed-dimensional embedding is constructed.

This is achieved by applying classical MDS to the matrix of graph distances,DG, such

that the intrinsic geometry of the manifold is best preserved. The algorithm terminates

and outputs the coordinate vectors in ad-dimensional Euclidean space, withd << D,

the dimensionality of the original dataset.

The success of Isomap depends on being able to choose a neighborhood size (either

ε or K) that is neither so large that it introduces “short-circuit” edges into the neighbor-

hood graph, nor so small that the graph becomes too sparse to approximate geodesic

paths accurately. Short-circuit edges occur where there are links between data points

that are not near each other geodesically and can lead to low-dimensional embeddings

that do not preserve a manifold’s true topology. This can be seen in figure 2.8, where

the neighbourhood value,ε is the same but with zero-mean normally distributed noise

added to the coordinates of each point. The resulting embedding contains obvious folds

- the topology of the original solution has not been preserved. However, if a slightly

smaller neighborhood size is chosen (ε = 3.5 to 4.6) then the original topology is ob-

tained. The choice of neighbourhood size is an obvious limitation of this approach, but
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Figure 2.8: The “Swiss roll” dataset with zero-mean normally distributed noise and the

resulting Isomap embedding (ε = 5) [8]

may be determined experimentally.

2.1.2.2 Locally Linear Embedding

Locally Linear Embedding (LLE) [141] is an eigenvector method for the problem of

nonlinear DR. It calculates low dimensional neighbourhood-preserving reconstruc-

tions (embeddings) of data of high dimensionality. LLE achieves this by exploiting

the local symmetries of linear reconstructions. To conceptualise this, consider the fol-

lowing informal analogy. The initial data is 3-dimensional and forms the topology of

a 2-dimensional rectangular manifold bent into a 3-dimensional S-curve. Scissors are

then used to cut this manifold into small squares representing locally linear patches of

the nonlinear surface. These squares can then be arranged onto a flat tabletop whilst

angular relationships between neighbouring squares are maintained. This is a linear

mapping due to the fact that all transformations involve translation, scaling or rotation

only. In this way, the algorithm has identified nonlinear structure through a series of

linear steps.

The first step of LLE is to select neighbours for each data point. Provided there

is sufficient data, it is expected that each data point and its neighbours will lie on

or be close to a locally linear patch of the manifold. This selection can be achieved
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Figure 2.9: Overview of the steps involved in locally linear embedding

using theK nearest neighbours (using the Euclidean distance metric) or by choosing

all points within a ball of fixed radius [57]. In figure 2.9, neighbours of the pointXi are

highlighted. The second step is to compute the weights that best linearly reconstruct

each data point from its neighbours by solving a least squares problem. The following

cost function is minimized:

E1(W ) =
N

∑
i=1
|(Xi−

N

∑
j=1

Wi jX j)|2 (2.3)
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In the diagram, the weights of two ofXi’s neighbours,X j andXk, are shown; namelyWi j

andWik. Finally, the low dimensional embedding vectors are computed, reconstructed

from the weights by minimizing the embedded cost function:

E2(Y ) =
N

∑
i=1
|(Yi−

N

∑
j=1

Wi jYj)|2 (2.4)

The diagram shows the new lower dimensional data pointsYi, Yj andYk.

LLE avoids the need to solve large dynamic programming problems. It also tends

to accumulate very sparse matrices whose structure can be exploited to save time and

space. However, in [141] there is no indication as to how a test data point may be

mapped from the input space to the manifold space, or how a data point may be recon-

structed from its low-dimensional representation. Additionally, LLE suffers from the

problem of short-circuit edges as described previously for Isomap.

2.1.3 Function Approximation

Multivariate Adaptive Regression Splines (MARS) [54] is an implementation of tech-

niques for solving regression-type problems, with the main purpose of predicting the

values of a continuous decision feature from a set of conditional features. It is a non-

parametric regression procedure that makes no assumptions about the underlying func-

tional relationships. Instead, MARS constructs this relation from a set of coefficients

and basis functions, defined by control points, that are selected based on the data only.

The basis functions take the form:

(x− t)+ =

{

x− t x > t

0 otherwise
(2.5)

Parametert is the control point of a basis function, determined from the data. Through

the determination of control points, MARS attempts to approximate the shape of the

underlying data hyperplane, illustrated in figure 2.10.

The general model equation of MARS is:

y = β0+
M

∑
m=1

βmhm(x) (2.6)
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Figure 2.10: MARS data estimation using control points

The summation is over theM terms in the model,y is predicted as a function of the

predictor variablesx and their interactions. This function consists of an intercept para-

meterβ0 and the weighted (byβm) sum of functionshm(X):

hm(X) =
zm

∏
l=1

(xdml
− tml)qml

(2.7)

wherezm is the interaction level (or order) of themth spline,dml indicates which of the

p predictor variables enters into thelth interaction of themth spline,dml ∈{1, ..., p}, tml

is a spline control point, andqml determines the orientation of the spline interactions,

qml ∈ {+,−}.
The variables, interactions and locations of the control points are all found by a

brute force approach and the regression coefficients are determined by a least squares

procedure. The general MARS algorithm is as follows:

1. Begin with the simplest model involving only the constant basis function.

2. Search the space of basis functions, for each variable and for all possible control

points, and add those which maximize a certain measure of goodness of fit (e.g.

minimisation of the prediction error).

3. Step 2 is recursively applied until a model of pre-determined maximum com-

plexity is derived.

4. Finally, in the last stage, a pruning procedure is applied where those basis func-

tions are removed that contribute least to the overall (least squares) goodness of

fit.
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However, this is a relatively complex process, and suffers from the curse of dimen-

sionality. Each dimension of the hyperplane requires one dimension for the approx-

imation model, and an increase in the time and space required to compute and store

the splines. The time required to perform predictions increases exponentially with

the number of dimensions. Noise may also distort the model by causing MARS to

generate a much more complex model as it tries to incorporate the noisy data into its

approximation.

Also worth mentioning are methods based on artificial neural networks (ANNs).

ANNs are mathematical models that are inspired by the connections and the function-

ing of neurons in biological systems, based on the topology of nodes and connections

between them, and transfer functions which relate the input and output of each node.

ANNs are often used as a way of optimizing a classification (or pattern recognition)

procedure. They also usually have more input than output nodes; they may thus also be

viewed as performing a dimensionality reduction on input data, in a way more general

than principal component analysis and multidimensional scaling [18, 89, 93].

2.2 Selection-based Reduction

Whereas semantics-destroying dimensionality reduction techniques irreversibly trans-

form data, semantics-preserving DR techniques (referred to as feature selection) at-

tempt to retain the meaning of the original feature set. The main aim of feature se-

lection (FS) is to determine a minimal feature subset from a problem domain while

retaining a suitably high accuracy in representing the original features. In many real

world problems FS is a must due to the abundance of noisy, irrelevant or misleading

features. For instance, by removing these factors, learning from data techniques can

benefit greatly. A detailed review of feature selection techniques devised for classific-

ation tasks can be found in [33].

The usefulness of a feature or feature subset is determined by both itsrelevancy

and redundancy. A feature is said to be relevant if it is predictive of the decision

feature(s), otherwise it is irrelevant. A feature is considered to be redundant if it is

highly correlated with other features. Hence, the search for a good feature subset
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involves finding those features that are highly correlated with the decision feature(s),

but are uncorrelated with each other.
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Figure 2.11: Aspects of feature selection

A taxonomy of feature selection approaches can be seen in figure 2.11. Given a

feature set sizen, the task of FS can be seen as a search for an “optimal” feature subset

through the competing 2n candidate subsets. The definition of what an optimal subset is

may vary depending on the problem to be solved. Although an exhaustive method may

be used for this purpose in theory, this is quite impractical for most datasets. Usually

FS algorithms involve heuristic or random search strategies in an attempt to avoid this

prohibitive complexity. However, the degree of optimality of the final feature subset

is often reduced. The overall procedure for any feature selection method is given in

figure 2.12.

The generation procedure implements a search method [95, 161] that generates

subsets of features for evaluation. It may start with no features, all features, a selected

feature set or some random feature subset. Those methods that start with an initial sub-

set usually select these features heuristically beforehand. Features are added (forward

selection) or removed (backward elimination) iteratively in the first two cases [33]. In

the last case, features are either iteratively added or removed or produced randomly

thereafter. An alternative selection strategy is to select instances and examine differ-

ences in their features. The evaluation function calculates the suitability of a feature
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Figure 2.12: Feature Selection

subset produced by the generation procedure and compares this with the previous best

candidate, replacing it if found to be better.

A stopping criterion is tested every iteration to determine whether the FS process

should continue or not. For example, such a criterion may be to halt the FS process

when a certain number of features have been selected if based on the generation pro-

cess. A typical stopping criterion centred on the evaluation procedure is to halt the

process when an optimal subset is reached. Once the stopping criterion has been satis-

fied, the loop terminates. For use, the resulting subset of features may be validated.

Determining subset optimality is a challenging problem. There is always a trade-

off in non-exhaustive techniques between subset minimality and subset suitability -

the task is to decide which of these must suffer in order to benefit the other. For

some domains (particularly where it is costly or impractical to monitor many features),

it is much more desirable to have a smaller, less accurate feature subset. In other

areas it may be the case that the modelling accuracy (e.g. the classification rate) using

the selected features must be extremely high, at the expense of a non-minimal set of

features.

Feature selection algorithms may be classified into two categories based on their

evaluation procedure. If an algorithm performs FS independently of any learning al-

gorithm (i.e. it is a completely separate preprocessor), then it is afilter approach. In

effect, irrelevant attributes are filtered out before induction. Filters tend to be applic-

able to most domains as they are not tied to any particular induction algorithm.
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If the evaluation procedure is tied to the task (e.g. classification) of the learning

algorithm, the FS algorithm employs thewrapper approach. This method searches

through the feature subset space using the estimated accuracy from an induction al-

gorithm as a measure of subset suitability. Although wrappers may produce better

results, they are expensive to run and can break down with very large numbers of fea-

tures. This is due to the use of learning algorithms in the evaluation of subsets, some

of which can encounter problems when dealing with large datasets.

2.2.1 Filter Methods

To illustrate the operation of the algorithms outlined in this section, an example dataset

as given in table 2.2 will be used. The dataset is restricted to containing only binary

values due to the different requirements of the algorithms. Throughout the text,C

indicates the set of conditional features, whilstD denotes the set of decision features.
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Object a b c d e f ⇒ g

0 0 1 1 1 0 0 1

1 1 0 1 1 0 0 1

2 1 1 0 0 0 0 1

3 1 1 0 1 0 1 1

4 1 1 1 0 1 0 1

5 0 0 1 1 0 0 1

6 0 0 0 1 1 1 0

7 0 0 1 0 0 1 0

8 1 0 0 0 1 1 0

9 1 0 1 0 0 1 0

10 0 1 0 0 0 1 0

11 0 1 0 1 1 1 0

12 0 1 1 0 1 0 0

Table 2.2: Example 2-class dataset

2.2.1.1 RELIEF

The first feature selection algorithms were based on the filter approach. In RELIEF [83]

each feature is given a relevance weighting that reflects its ability to discern between

decision class labels. An overview of this algorithm can be found in figure 2.14. The

first threshold,its specifies the number of sampled objects used for constructing the

weights. For each sampling, an objectx is randomly chosen, and its nearHit and

nearMiss are calculated. These arex’s nearest objects with the same class label and

different class label respectively. The distance between objecto andx is defined here

as the sum of the number of features that differ in value between them:

dist(o,x) =
|C|
∑
i=1

di f f (oi,xi) (2.8)

where

di f f (oi,xi) =

{

1, oi 6= xi

0, oi = xi

(2.9)

The user must supply a threshold which determines the level of relevance that features

must surpass in order to be finally chosen. This method is ineffective at removing
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RELIEF(O, c, its, ε).
O, the set of all objects;c, the number of conditional features;
its, the number of iterations;ε, weight threshold value.

(1) R←{}
(2) ∀Wa, Wa← 0
(3) for i = 1...its
(4) choose an objectx in O randomly
(5) calculatex’s nearHit and nearMiss
(6) for j = 1...c
(7) Wj ←Wj− diff(x j,nearHit j)/its + diff(x j,nearMiss j)/its

(8) for j = 1...c
(9) if Wj ≥ ε; R← R∪{ j}
(10) return R

Figure 2.14: The RELIEF Algorithm

redundant features as two predictive but highly correlated features are both likely to be

given high relevance weightings. The method has been extended to enable it to handle

inconsistency, noise and multi-class datasets [87].

RELIEF is applied to the example dataset in the following way. An object is chosen

randomly, say object 0, and its nearest neighbours are found, nearHit and nearMiss. In

this case, object 5 is the nearHit and object 12 is the nearMiss. For each feature, the

weight is updated according to the difference of the feature and that ofx’s nearHit and

nearMiss. This process continues until the desired number of iterations have elapsed.

Features are then added to the final subset if their weights surpass the desired level,

ε. Running RELIEF on the dataset withits = 100 andε = 0 produces the final subset

{a,d,e, f}. Removing from the dataset all but these attributes will result in a smaller

yet still consistent set of data. However, upon examination it can be seen that a further

reduction can take place; no inconsistencies are introduced by eliminating featuree

from this newly reduced dataset.

2.2.1.2 FOCUS

FOCUS [1], another filter method, conducts a breadth-first search of all feature subsets

to determine the minimal set of features that can provide a consistent labelling of the
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FOCUS(O, c).
O, the set of all objects;
c, the number of conditional features;

(1) R←{}
(2) for num = 1...c
(3) for each subsetL of sizenum

(4) cons = determineConsistency(L,O)
(5) if cons == true

(6) R← L

(7) return R

(8) else continue

Figure 2.15: The FOCUS Algorithm

training data. The FOCUS algorithm, as summarised in figure 2.15, generates all sub-

sets of the current size (initially one) and checks each for at least one inconsistency. If

an inconsistency is found, then that particular subset is removed. This continues until

a consistent subset is found or all possible subsets have been evaluated. The consist-

ency criterion makes FOCUS very sensitive to noise or inconsistencies in the training

data. Moreover, the exponential growth of the size of the power set of features makes

this impractical for domains with medium to large dimensionality. By introducing a

threshold value to line (5) in the algorithm, the sensitivity can be reduced, allowing a

certain amount of inconsistency within the dataset.

Given the example dataset, FOCUS first evaluates the consistency of all subsets of

size 1, namely{a},{b},{c},{d},{e},{ f}. It determines that none of these subsets

produces a reduced dataset with zero inconsistency. For example, selecting the subset

{ f} results in objects 0 and 12 conflicting. Again, all subsets of size 2 are examined

(e.g.{a,b},{a,c}, etc.) and no suitable subset is found. The algorithm continues until

the subset{a,d, f} is chosen - this will result in no inconsistencies. Hence, the dataset

can now be reduced to one only involving these attributes. This subset of features is

the minimal subset for this dataset in terms of the consistency criterion.
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LVF(O, C, att, ε).
O, the set of all objects;C, the set of conditional features;
att, the number of iterations of the algorithm;ε, consistency threshold.

(1) R← C

(2) for num = 1...att

(3) S← randomFeatureSubset()
(4) if |S| ≤ |R|
(5) if inconsistency(S,O)≤ ε
(6) if |S| < |R|
(7) R← S; output R

(8) else R← R∪S

(9) return R

Figure 2.16: The LVF Algorithm

2.2.1.3 LVF

LVF employs an alternative generation procedure - that of choosing random feature

subsets, accomplished by the use of a Las Vegas algorithm [102]. An outline of LVF

is given in figure 2.16. Initially, the best feature subset is considered to be the en-

tire conditional feature set. A feature subset is randomly chosen; if the subset has a

smaller cardinality than the current best and its inconsistency rate is less than or equal

to a threshold,ε, it is considered to be the new best subset. Here, the inconsistency

count is defined as the sum of the number of inconsistent objects minus the number of

inconsistent objects with the most frequent class label. For example, say there aren

inconsistent objects for a 2-class dataset,c1 such objects belong to class 1,c2 to class

2, soc1 + c2 = n. If the largest of these is, for example,c1 then the inconsistency

count will ben− c1. The inconsistency rate is simply the sum of all inconsistency

counts divided by the number of objects. Every time a better subset is encountered, it

is outputted. A problem with this approach is that it will tend to take longer to locate

an optimal subset than algorithms that employ heuristic generation procedures. Addi-

tionally, when datasets are huge, checking the consistency of the dataset takes a long

time.

Returning to the example, LVF randomly chooses feature subsets from among the

six features present, e.g. the subset{a,b,c}. For class 1 there are 3 inconsistent objects,
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for class 2 there are also 3 so the inconsistency count will be(6−3)/12= 1
4. If no

inconsistency is allowed (ε = 0), then this subset will not be kept. Given sufficient

time, the algorithm should eventually reach the subset{a,d, f} which is the smallest

subset that produces the required inconsistency rate.

2.2.1.4 SCRAP

Selection Construction Ranking using Attribute Pattern (SCRAP) [137] is an instance-

based filter, which determines feature relevance by performing a sequential search

within the instance space. SCRAP considers objects (instances) one at a time, instead

of typical forward or backward search. The central idea is to identify those features

that change at decision boundaries in the data table - these are assumed to be the

most informative. An algorithmic overview may be seen in figure 2.17. A sequential

search is conducted starting from a random object, which becomes the first point of

class change (PoC). The nearest object to this with a different class label becomes the

next PoC. These two PoCs define a neighbourhood; features that change between them

define the dimensionality of decision boundary between the two classes. If there is

only one such feature that changes, this is determined to be absolutely relevant and

is included in the feature subset. If more than one feature changes, their associated

relevance weights, initially zero, are incremented. If objects of the same class label are

closer than this new PoC and differ in only one feature, then that feature’s weight is

decremented. Objects determined to belong to neighbourhoods are then removed from

processing. The process stops when all objects have been assigned to a neighbourhood.

Features that have a positive relevance weight and those that have been determined to

be absolutely relevant are chosen as the final feature subset.

From the example dataset, SCRAP first chooses a random object, say object 1, and

proceeds to find its nearest neighbour with a different class label. In this case, object 12

is the PoC with two features that differ,d ande. These are said to be weakly relevant

and their weights (initially zero) are incremented. Those objects of a lesser distance

away than object 12 with the same label as object 1 are assigned to this neighbourhood.

Only object 5 is closer as it differs in one feature,b. This results inb’s weight being

decremented. If more than one feature differed here, the weights would not have been
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SCRAP(O).
O, the set of all objects;

(1) A←{}; ∀Wi,Wi = 0;
(2) T ← randomObject();PoC← T

(3) while O 6= {}
(4) O← O−PoC; PoCnew← NewPoC(PoC)
(5) n = dist(PoC,PoCnew)
(6) if n == 1
(7) i = diffFeature(PoC,X ); A← A∪{i}
(8) N← getClosestNeighbours(PoC,n)
(9) ∀X ∈ N

(10) if classLabel(X ) == classLabel(N)
(11) O← O−X

(12) if dist(PoC,X )==1
(13) i = diffFeature(PoC,X ); Wi = Wi−1
(14) else if dist(PoC,X ) > 1
(15) incrementDifferingFeatures(X ,W )
(16) R← A

(17) ∀Wi, if Wi > 0 then R← R∪{ i}

Figure 2.17: The SCRAP Algorithm

affected - only those cases where one feature differs result in weights being reduced.

Object 12 now becomes the new PoC and the algorithm continues. Object 4 is the

nearest neighbour with a different class label, with only one feature differing in value,

featurea. This feature is determined to be absolutely relevant and is added to the

final subset, irrespective of its final relevance weight. When the algorithm eventually

terminates, the subset{a,b,c,d,e, f} is returned:a is absolutely relevant, the rest have

a positive final weight. No reduction of this dataset is achieved.

The above example serves to illustrate one of the main weaknesses of this ap-

proach - it regularly chooses too many features. This is due, in part, to the situation

where weights are decremented. If more than one feature changes between a PoC and

an object of the same class label then the corresponding feature weights remain unaf-

fected. This drawback could be tackled by reducing the weights of these features when

this occurs. With this modification in place and running the algorithm on the dataset,

a smaller subset,{a,b,e, f} is obtained. Another alteration may be to decrement each



2.2. Selection-based Reduction 39

weight proportionally, e.g. for three irrelevant features, their weights will be reduced

by one third each. This combined with a similar modification for incrementing weights

may produce a more accurate reflection of a feature’s importance within a dataset. Cur-

rently, SCRAP will only handle nominal values, although it is relatively straightforward

to extend this to continuously valued features.

2.2.1.5 EBR

EBR(C).
C, the set of all conditional features;

(1) R←{}
(2) do

(3) T ← R

(4) ∀x ∈ (C−R)
(5) if H(R∪{x}) < H(T )
(6) T ← R∪{x}
(7) R← T

(8) until H(R) == H(C)
(9) return R

Figure 2.18: The Entropy-based Algorithm

A further technique for filter-based feature selection is entropy-based reduction

(EBR), developed from work carried out in [71]. This approach is based on the en-

tropy heuristic employed by machine learning techniques such as C4.5 [135]. A sim-

ilar approach has been adopted in [33] where an entropy measure is used for ranking

features. EBR is concerned with examining a dataset and determining those attributes

that provide the most gain in information. The entropy of attributeA (which can take

valuesa1...am) with respect to the conclusionC (of possible valuesc1...cn) is defined

as:

H(A) =−
m

∑
j=1

p(a j)
n

∑
i=1

p(ci|a j) log2 p(ci|a j) (2.10)

This can be extended to dealing withsubsets of attributes instead of individual

attributes only. Using this entropy measure, the algorithm used in rough set-based
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attribute reduction [29] can be modified to that shown in figure 2.18. This algorithm

requires no thresholds in order to function - the search for the best feature subset is

stopped when the resulting subset entropy is equal to that of the entire feature set. For

consistent data, the final entropy of the subset will be zero. It is interesting to note that

any subset with an entropy of 0 will also have a corresponding rough set dependency

of 1.

Returning to the example dataset, EBR first evaluates the entropy of each individual

attribute:

Subset Entropy

{a} 0.8885861

{b} 0.9543363

{c} 0.9543363

{d} 0.8885860

{e} 0.8650087

{ f} 0.6186034

The subset with the lowest entropy here is{ f} so this is added to the current feature

subset. The next step is to calculate the entropy of all subsets containingf and one

other attribute:

Subset Entropy

{a, f} 0.42382884

{b, f} 0.46153846

{c, f} 0.55532930

{d, f} 0.42382884

{e, f} 0.40347020

Here, the subset{e, f} is chosen. This process continues until the lowest entropy for

the dataset is achieved (for a consistent dataset this is zero). The algorithm eventually

reaches this lowest value when it encounters the feature subset{a,b,e, f} (H({a,b,e, f})
= 0). The dataset can now be reduced to these features only. As has been shown pre-

viously, this is close to the best feature subset for this dataset. The optimal subset was

discovered by the FOCUS algorithm which works well for small datasets such as this,
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but cannot be applied to datasets of medium to large dimensionality. EBR does not

suffer from this problem as its complexity is O((n2 + n)/2). It also does not require

any user-defined thresholds in order to function, a drawback of RELIEF.

2.2.1.6 FDR

Fractal Dimension Reduction (FDR) [181] is a novel approach to feature selection

based on the concept of fractals - the self-similarity exhibited by data on different

scales. For example, the Sierpinski triangle [58] is constructed from an equilateral

triangle, eliminating its middle triangle and repeating this process on the resulting

smaller triangles. This continues infinitely, removing the middle triangles from the

newly generated smaller ones. The resulting shape is not one-dimensional, however it

is not two-dimensional either as its area is zero so its intrinsic dimension lies between

1 and 2. This issue is resolved by considering fractional dimensionalities. For the

Sierpinski triangle itsfractal dimension is approximately 1.58 [150].

Figure 2.19: The Lorenz attractor

This concept may be applied to feature selection by considering the change in

fractal dimension when certain features are removed from the original dataset under

consideration. For the lorenz dataset in figure 2.19, the fractal dimension is approxim-
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ately 2.05 [150]. It is clear from the figure that most of the data lie in a two-dimensional

plane, the third dimension is effectively redundant. Removing this feature from the

dataset will result in a slight, but acceptable reduction in the fractal dimension. This

forms the basis of the work carried out in [181]. The feature selection algorithm based

on this can be seen in figure 2.20. Given a dataset, the correlation fractal dimension

is calculated and attributes are removed via backward elimination until the removal of

any further attribute reduces the fractal dimension too much.

FDR(C,ε).
C, the set of all conditional features;
ε, the allowed reduction in fractal dimension;

(1) R← C; bestDim = 0; dc = calculateFractalDim(C)
(2) do

(3) T ← R,
(4) ∀x ∈ R

(5) S← R−{x}
(6) ds = calculateFractalDim(S)
(7) if ds > bestDim

(8) bestDim = ds; w← x

(9) R← R−{w}
(10) until dc−bestDim > ε
(11) return R

Figure 2.20: Fractal Dimension Reduction

One problem with this approach is that the calculation of the correlation fractal

dimension requires datasets containing a large number of objects. If a dataset has too

few instances, the procedure for calculating the fractal dimension will not be able to

estimate the dimension of the dataset effectively. Another weakness of FDR is how

to estimate the extent of the allowed reduction in fractal dimensionality,ε. It is not

clear how to determine this value beforehand. The fractal dimension of the full set of

features is often used as an additional stopping criterion if the number of remaining

features falls below this value (the intrinsic dimensionality of the dataset).
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2.2.1.7 Feature Grouping

Typically in feature selection, the generation procedure incrementally adds or removes

individual features. Recently, there have been a couple of investigations into the po-

tential utility of grouping features at each stage. This strategy can decrease the time

taken in finding optimal subsets by selecting several features at once.

An automatic feature grouping technique is proposed in [195] that uses k-means

clustering [60] beforehand in order to generate groups. From these groups, one or two

features are pre-selected for a typical forward search FS method. No feature grouping

takes place during the search itself however. As yet, no results are available for this

approach.

In Group-wise Feature Selection (GFS) [122], feature groups are again calculated

beforehand. These groups are then used throughout the subset search instead of con-

sidering individual features. An overview of the algorithm can be seen in figure 2.21.

Here, the effect of adding groups of features to the currently considered subset is eval-

uated at each stage. The group that produces the largest increase in performance is

selected and all features present within the group are added to the current subset. The

process continues until the performance is of an appropriate quality.

GFS(G,ε).
G, the set of feature groups;
ε, required level of subset performance

(1) R←{}; A←{}; best = 0
(2) while evaluate(R) < ε
(3) for each groupGi

(4) T ← all features fromGi

(5) εt = evaluate(R∪T )
(6) if (ε > best)
(7) A← T

(8) best = εt

(9) R← R∪A

(10) output R

Figure 2.21: The Group-wise FS Algorithm
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In the evaluation, a measurement cost is also considered though this can be omit-

ted if no measurement information is available or required. In addition to the GFS

algorithm presented in figure 2.21, an extension to it, GNFS, that performs a nested

forward search within groups has also been proposed. Instead of selecting the best

group, GNFS searches for the best subset within a group and adds this to the currently

selected feature subset. Both algorithms perform comparably with their standard indi-

vidual feature selection method, but with the benefit of reduced computation time.

All feature grouping approaches so far have relied on groups being defined before-

hand. Group membership is not changed in the selection process leading to a depend-

ence on a suitably accurate grouping mechanism for good results. In addition to this,

theextent of group membership is not considered at all; features either belong or do

not belong to single groups. Fuzzy grouping can be used to handle this problem so that

features can belong to more than one group with varying degrees of membership. This

additional membership information can then be used in the selection process itself.

These ideas motivated the development of the new rough and fuzzy-rough set-based

grouping FS technique, detailed in section 5.1.

2.2.1.8 Other Approaches

In addition to those approaches outlined above, a filter method based on ideas from

probabilistic reasoning and information theory is proposed in [85]. The central mo-

tivation behind this development is the observation that the goal of an induction al-

gorithm is to estimate the probability distributions over the class values. In the same

way, feature subset selection should attempt to remain as close as possible to these

original distributions. The algorithm performs a backward elimination search, at each

stage removing the feature that causes the least change between the distributions. The

search stops when the desired number of features remain (specified by the user). An

important problem with this method is that it requires the features in a dataset to be

binary-valued. This constraint is added to avoid the bias toward many-valued features

present in entropy-based measures.

Also worth mentioning is the Chi2 algorithm [101]. This is in effect a heuristic

feature selector that discretizes continuous features and in the process removes irrelev-
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ant ones based on theχ2 statistic [127]. In fact, feature selection takes place only as a

side-effect of the discretization process; if a feature ends up with all its values mapped

to a single discrete value, then it can be removed from the dataset without introduction

of inconsistency.

2.2.2 Wrapper Methods

The LVW algorithm [103] is a wrapper method based on the earlier LVF algorithm

[102] (described in section 2.2.1.3) and can be outlined as shown in figure 2.22. This

again uses a Las Vegas style of random subset creation which guarantees that given

enough time, the optimal solution will be found. As with LVF, LVW produces inter-

mediate solutions while working toward better ones that result in a lower classification

error. The algorithm requires two threshold values to be supplied;ε, the classification

error threshold and the valueK, used to determine when to exit the algorithm due to

there being no recent updates to the best subset encountered so far.

LVW(C, K, ε).
C, the set of conditional features;
K, update threshold;ε, error threshold.

(1) R← C; k = 0
(2) while ε not updated forK times
(3) T ← randomFeatureSubset()
(4) εt = learn(T )
(5) if (εt < ε) or (εt == ε and |T |< |R|)
(6) output T

(7) k = 0; ε = εt; R← T

(8) k = k +1
(9) ε = learn(R)

Figure 2.22: The LVW Algorithm

Initially, the full set of conditional features are considered to be the best subset.

The algorithm continues to generate random subsets and evaluates them using an in-

ductive learning algorithm until no better subsets are encountered for a given number

of attempts (theK criterion). Finally, training and testing is carried out on the res-

ulting best feature subset. In the reported experimentation, C4.5 [135] is used as the
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learning algorithm due to its relatively fast induction time (a critical factor in designing

wrapper-based systems).

NEURALNET(C,εmax).
C, the set of all conditional features;
εmax, network classification error threshold

(1) R← C; εw=0
(2) do

(3) T ← R,
(4) ∀x ∈ R

(5) S← R−{x}
(6) εS = trainNet(S)
(7) if εS > εw

(8) εw = εS; w← x

(9) R← R−{w}
(10) until εR > εmax

(11) trainNet(T )

Figure 2.23: Neural network feature selection

In [154], a neural network-based wrapper feature selector is proposed that employs

backward elimination in the search for optimal subsets. This algorithm is summarised

in figure 2.23. Initially, a 3-layer feedforward network is trained using all features in

the dataset. This is then evaluated using an error function which involves both the

classification error and a measure of the network complexity. The attribute that gives

the largest decrease in network accuracy is removed. This process repeats until no

more attributes can be eliminated without exceeding the maximum error threshold.

A wrapper method was proposed in [81] where feature subsets are explored us-

ing heuristic search and evaluated usingn-fold cross validation. The training data is

split inton partitions and the induction algorithm runn times; the standard C4.5 pack-

age is used for decision tree induction. For each partition, the algorithm usesn− 1

partitions for training and the remaining partition for testing. The average of the clas-

sification accuracy over alln runs is used as the estimated accuracy. The results show

that although there is not much difference between the compared filter and wrapper

approaches in terms of classification accuracy, the induced decision trees were smaller

for the wrapper method in general.



2.2. Selection-based Reduction 47

2.2.3 Genetic Approaches

Genetic Algorithms (GAs) [64] are generally quite effective for rapid search of large,

nonlinear and poorly understood spaces. Unlike classical feature selection strategies

where one solution is optimized, a population of solutions can be modified at the same

time [162, 92]. This can result in several optimal (or close-to-optimal) feature subsets

as output. Section 8.2 discusses the potential usefulness of this aspect of GAs in feature

selection.

A feature subset is typically represented by a binary string with length equal to

the number of features present in the dataset. A zero or one in thejth position in

the chromosome denotes the absence or presence of thejth feature in this particular

subset. The general process for feature selection using GAs can be seen in figure 2.24.

selection process

operators
genetic

stopping criteria
satisfied?

yes

apply
Population
Initial

no

Filter/Wrapper

Evaluation

Halt

Pool of Subsets New Subset Pool

Figure 2.24: Feature Selection with Genetic Algorithms

An initial population of chromosomes is created; the size of the population and how

they are created are important issues. From this pool of feature subsets, the typical ge-

netic operators (crossover and mutation) are applied. Again, the choice of which types

of crossover and mutation used must be carefully considered, as well as their probabil-

ities of application. This generates a new feature subset pool which may be evaluated

in two different ways. If a filter approach is adopted, the fitness of individuals is calcu-

lated using a suitable criterion functionJ(X). This function evaluates the “goodness”

of feature subsetX ; a larger value ofJ indicates a better feature subset. Such a criterion

function could be Shannon’s entropy measure [135] or the dependency function from
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rough set theory [125].

For the wrapper approach, chromosomes are evaluated by inducing a classifier

based on the feature subset, and obtaining the classification accuracy (or an estimate

of it) on the data [173]. To guide the search toward minimal feature subsets, the subset

size is also incorporated into the fitness function of both filter and wrapper methods.

Indeed, other factors may be included that are of interest, such as the cost of meas-

urement for each feature etc. GAs may also learn rules directly, and in the process

perform feature selection [31, 80, 191].

A suitable stopping criterion must be chosen. This is typically achieved by lim-

iting the number of generations that take place or by setting some threshold which

must be exceeded by the fitness function. If the stopping criterion is not satisfied, then

individuals are selected from the current subset pool and the process described above

repeats. Among the selection strategies that have been applied are roulette wheel se-

lection [121] and rank-based selection [194, 198]. In roulette wheel selection, the

probability of a chromosome being selected is proportional to its fitness. Rank selec-

tion sorts all the individuals by fitness and the probability that an individual will be

selected is proportional to its rank in this sorted list.

As with all feature selection approaches, GAs can get caught in local minima,

missing a dataset’s true minimal feature subset. Also, the fitness evaluation can be very

costly as there are many generations of many feature subsets that must be evaluated.

This is particularly a problem for wrapper approaches where classifiers are induced

and evaluated for each chromosome.

2.2.4 Simulated Annealing-based Feature Selection

Annealing is the process by which a substance is heated (usually melted) and cooled

slowly in order to toughen and reduce brittleness. For example, this process is used

for a metal to reach a configuration of minimum energy (a perfect, regular crystal). If

the metal is annealed too quickly, this perfect organisation is unable to be achieved

throughout the substance. Parts of the material will be regular, but these will be separ-

ated by boundaries where fractures are most likely to occur.

Simulated Annealing (SA) [84] is a stochastic optimization technique that is based
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on the computational imitation of this process of annealing. It is concerned with the

change of energy (cost) of a system. In each algorithmic step, an “atom” (a feature

subset in FS) is given a small random displacement and the resulting change of energy,

∆E, is calculated. If∆E ≤ 0, this new state is allowed and the process continues.

However if∆E > 0, the probability that this new state is accepted is:

P(∆E) = e−(∆E
T

) (2.11)

As the temperature,T , is lowered, the probability of accepting a state with a pos-

itive change in energy reduces. In other words, the willingness to accept a bad move

decreases. The conversion of a combinatorial optimization problem into the SA frame-

work involves the following:

• Concise configuration description. The representation of the problem to be

solved should be defined in a way that allows solutions to be constructed eas-

ily and evaluated quickly.

• Random move generator. A suitable random transformation of the current state

must be defined. Typically the changes allowed are small to limit the extent of

search to the vicinity of the currently considered best solution. If this is not

limited, the search degenerates to a random unguided exploration of the search

space.

• Cost function definition. The cost function (i.e. the calculation of the state’s

energy) should effectively combine the various criteria that are to be optimized

for the problem. This function should be defined in such a way that smaller

function values indicate better solutions.

• Suitable annealing schedule. As with the real-world annealing process, prob-

lems are encountered if the initial temperature is too low, or if annealing takes

place too quickly. Hence, an annealing schedule must be defined that avoids

these pitfalls. The schedule is usually determined experimentally.

To convert the feature selection task into this framework, a suitable representation

must be used. Here, the states will be feature subsets. The random moves can be
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produced by randomly mutating the current state with a low probability. This may

also remove features from a given feature subset, allowing the search to progress both

forwards and backwards. The cost function must take into account both the evaluated

subset “goodness” (by a filter evaluation function or a wrapper classifier accuracy)

and also the subset size. The annealing schedule can be determined by experiment,

although a good estimate may beT (0) = |C| andT (t +1) = α ∗T (t), with α ≥ 0.85.

Heret is the number of iterations andα determines the rate of cooling.

SAFS(T0, Tmin, α, Lk).
T0, the initial temperature;
Tmin, the minimum allowed temperature;
α, the extent of temperature decrease;
Lk, extent of local search

(1) R← genInitSol()
(2) while T (t) > Tmin

(4) for i=1...Lk

(5) S← genSol(R)
(6) ∆E = cost(S)
(7) if ∆E ≤ 0
(8) M← S

(9) else if P(∆E) > randNumber()
(10) M← S

(11) R←M

(12) T (t +1) = α ∗T (t)
(13) output R

Figure 2.25: The SAFS Algorithm

The SA-based feature selection algorithm can be seen in figure 2.25. This differs

slightly from the general SA algorithm in that there is a measure of local search em-

ployed at each iteration, governed by the parameterLk. An initial solution is created,

from which the next states are derived by random mutations and evaluated. The best

state is remembered and used for processing in the next cycle. The chosen state may

not actually be the best state encountered in this loop, due to the probabilityP(∆E)

that a state is chosen randomly (which will decrease over time). The temperature is

decreased according to the annealing schedule and the algorithm continues until the

lowest allowed temperature has been exceeded.
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Problems with this approach include how to define the annealing schedule cor-

rectly. If α is too high, the temperature will decrease slowly, allowing more frequent

jumps to higher energy states, slowing convergence. However, ifα is too low, the

temperature decreases too quickly and the system will converge to local minima (equi-

valent to brittleness in the case of metal annealing). Also, the cost function definition

is critical - there must be a balancing of the importance assigned to the different evalu-

ation criteria involved. Biasing one over another will have the effect of directing search

toward solutions that optimize that criterion only.

2.3 Summary

This chapter has reviewed the important problem of dimensionality reduction for data-

sets, with a focus on semantics-preserving reduction or feature selection. This has

become a vital step in many areas such as machine learning, pattern recognition and

signal processing due to their inability to handle high dimensional descriptions of in-

put features. Additionally, feature selection can provide a better understanding of the

underlying concepts within data. It is estimated that every 20 months or so the amount

of information in the world doubles, similarly applications for dealing with this vast

amount of information must develop. Part of the solution to this must be drastic and ef-

ficient dimensionality reduction techniques. The extent of reduction needs to be severe

to allow more detailed analysis of the data to take place by future processes. Although

less of an issue for dimensionality reduction which usually takes place off-line, effi-

ciency is still an important consideration. As one of the main goals of reduction is to

enable further, more complex data processing which would otherwise be intractable,

the reduction methods must not themselves be subject to the curse of dimensionality if

possible.

Dimensionality reduction may be split into the two disjoint areas: transformation-

based and selection-based reduction. Transformation-based approaches reduce dimen-

sional data (which may exhibit linear or nonlinear relationships) by irreversibly trans-

forming the data points, and as a result destroy the original dataset semantics. Feature

selection seeks to retain this information by selecting attributes as opposed to trans-
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forming them. This aspect is particularly useful when feature selection precedes other

processes that require the original feature meanings to be intact, for example rule in-

duction where rules may need to be human-readable. Two general methods for this,

filter and wrapper approaches, were shown and examples given.

This chapter proposed an area for research based on an alternative generation pro-

cedure, namely simulated annealing-based FS. Hill-climbing techniques often fail to

find minimal feature subsets as they can be misled by initially promising features. Later

on in the search, these features turn out to require the presence of many other less in-

formative attributes, leading to oversized final subsets. By using stochastic techniques,

this problem may be countered by allowing a degree of randomness in the search.



Chapter 3

Rough Set-based Approaches to

Feature Selection

Many problems in machine learning involve high dimensional descriptions of input

features. It is therefore not surprising that much research has been carried out on di-

mensionality reduction [33, 83, 95, 104, 111]. However, existing work tends to destroy

the underlying semantics of the features after reduction (e.g. transformation-based ap-

proaches [38]) or require additional information about the given data set for threshold-

ing (e.g. entropy-based approaches [112]). A technique that can reduce dimensionality

using information contained within the dataset and that preserves the meaning of the

features (i.e. semantics-preserving) is clearly desirable. Rough set theory (RST) can

be used as such a tool to discover data dependencies and to reduce the number of at-

tributes contained in a dataset using the data alone, requiring no additional information

[125, 133].

Over the past ten years, RST has indeed become a topic of great interest to research-

ers and has been applied to many domains. Given a dataset with discretized attribute

values, it is possible to find a subset (termed areduct) of the original attributes us-

ing RST that are the most informative; all other attributes can be removed from the

dataset with minimal information loss. From the dimensionality reduction perspective,

informative features are those that are most predictive of the class attribute.

However, it is most often the case that the values of attributes may be both crisp and

53
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real-valued, and this is where traditional rough set theory encounters a problem. It is

not possible in the original theory to say whether two attribute values are similar and to

what extent they are the same; for example, two close values may only differ as a result

of noise, but in RST they are considered to be as different as two values of a different

order of magnitude. As a result of this, extensions to the original theory have been

proposed, for example those based on similarity or tolerance relations [166, 172, 175].

It is, therefore, desirable to develop techniques to provide the means of data reduc-

tion for crisp and real-value attributed datasets which utilises the extent to which val-

ues are similar. This can be achieved through the use offuzzy-rough sets. Fuzzy-rough

sets encapsulate the related but distinct concepts of vagueness (for fuzzy sets [200])

and indiscernibility (for rough sets), both of which occur as a result of uncertainty

in knowledge [43]. Vagueness arises due to a lack of sharp distinctions or boundar-

ies in the data itself. This is typical of human communication and reasoning. Rough

sets can be said to model ambiguity resulting from a lack of information through set

approximations.

This chapter focuses on those recent techniques for feature selection that employ a

rough-set based methodology for this purpose, highlighting current trends in this prom-

ising area. Rough set fundamentals are introduced with a simple example to illustrate

its operation. Several extensions to this theory are also presented, which enable altern-

ative approaches to feature selection. Many of these are evaluated experimentally and

compared.

3.1 Rough Selection

Rough set theory [46, 124, 155, 167, 168] is an extension of conventional set theory

that supports approximations in decision making. It possesses many features in com-

mon (to a certain extent) with the Dempster-Shafer theory of evidence [165] and fuzzy

set theory [126, 188]. The rough set itself is the approximation of a vague concept

(set) by a pair of precise concepts, called lower and upper approximations, which are a

classification of the domain of interest into disjoint categories. The lower approxima-

tion is a description of the domain objects which are known with certainty to belong to
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the subset of interest, whereas the upper approximation is a description of the objects

which possibly belong to the subset. This section focuses on several rough set-based

techniques for feature selection. Some of the techniques described here can be found

in rough set systems available online [139, 140].

To illustrate the operation of these, an example dataset (table 3.1) will be used.

Here, the table consists of four conditional features (a,b,c,d), one decision feature (e)

and eight objects. The task of feature selection here is to choose the smallest subset

of these conditional features so that the resulting reduced dataset remains consistent

with respect to the decision feature. A dataset is consistent if for every set of objects

whose attribute values are the same, the corresponding decision attributes are identical.

Throughout this thesis, the terms attribute, feature and variable are used interchange-

ably.

x ∈U a b c d ⇒ e

0 1 0 2 2 0

1 0 1 1 1 2

2 2 0 0 1 1

3 1 1 0 2 2

4 1 0 2 0 1

5 2 2 0 1 1

6 2 1 1 1 2

7 0 1 1 0 1

Table 3.1: An example dataset

3.1.1 Rough Set Attribute Reduction

Rough Set Attribute Reduction (RSAR) [29] provides a filter-based tool by which

knowledge may be extracted from a domain in a concise way; retaining the inform-

ation content whilst reducing the amount of knowledge involved. The main advantage

that rough set analysis has is that it requires no additional parameters to operate other

than the supplied data [47]. It works by making use of the granularity structure of

the data only. This is a major difference when compared with Dempster-Shafer theory
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and fuzzy set theory which require probability assignments and membership values

respectively. However, this does not mean thatno model assumptions are made. In

fact by using only the given information, the theory assumes that the data is a true and

accurate reflection of the real world (which may not be the case). The numerical and

other contextual aspects of the data are ignored which may seem to be a significant

omission, but keeps model assumptions to a minimum.

3.1.2 Theoretical Background

Central to RSAR is the concept of indiscernibility. LetI = (U,A) be an information

system, whereU is a non-empty set of finite objects (the universe) andA is a non-

empty finite set of attributes such thata : U→ Va for everya ∈ A. Va is the set of

values that attributea may take. With anyP ⊆ A there is an associated equivalence

relationIND(P):

IND(P) = {(x,y) ∈ U2 | ∀a ∈ P, a(x) = a(y)} (3.1)

The partition ofU, generated byIND(P) is denotedU /IND(P) (or U /P) and can be

calculated as follows:

U/IND(P) =⊗{a ∈ P : U/IND({a})}, (3.2)

where

A⊗B = {X ∩Y : ∀X ∈ A,∀Y ∈ B,X ∩Y 6= Ø} (3.3)

If (x,y) ∈ IND(P), thenx andy are indiscernible by attributes fromP. The equi-

valence classes of theP-indiscernibility relation are denoted [x]P. For the illustrative

example, ifP = {b,c}, then objects 1, 6 and 7 are indiscernible; as are objects 0 and 4.

IND(P) creates the following partition ofU :

U/IND(P) = U/IND(b)⊗U/IND(c)

= {{0,2,4},{1,3,6,7},{5}}⊗{{2,3,5},{1,6,7},{0,4}}
= {{2},{0,4},{3},{1,6,7},{5}}

Let X ⊆ U. X can be approximated using only the information contained withinP by

constructing the P-lower and P-upper approximations ofX :
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PX = {x | [x]P ⊆ X} (3.4)

PX = {x | [x]P∩X 6= Ø} (3.5)

Let P andQ be equivalence relations overU, then the positive, negative and bound-

ary regions can be defined as:

POSP(Q) =
⋃

X∈U/Q PX

NEGP(Q) = U−⋃

X∈U/Q PX

BNDP(Q) =
⋃

X∈U/Q PX−⋃

X∈U/Q PX

The positive region contains all objects ofU that can be classified to classes of

U/Q using the information in attributesP. The boundary region,BNDP(Q), is the set

of objects that can possibly, but not certainly, be classified in this way. The negative

region,NEGP(Q), is the set of objects that cannot be classified to classes ofU/Q. For

example, letP = {b,c} andQ = {e}, then

POSP(Q) =
⋃{Ø,{2,5},{3}}= {2,3,5}

NEGP(Q) = U−⋃{{0,4},{2,0,4,1,6,7,5},{3,1,6,7}}= Ø

BNDP(Q) =
⋃{{0,4},{2,0,4,1,6,7,5},{3,1,6,7}}−{2,3,5}= {0,1,4,6,7}

This means that objects 2, 3 and 5 can certainly be classified as belonging to a class

in attributee, when considering attributesb andc. The rest of the objects cannot be

classified as the information that would make them discernible is absent.

An important issue in data analysis is discovering dependencies between attributes.

Intuitively, a set of attributesQ depends totally on a set of attributesP, denotedP⇒
Q, if all attribute values fromQ are uniquely determined by values of attributes from

P. If there exists a functional dependency between values ofQ andP, thenQ depends

totally onP. In rough set theory, dependency is defined in the following way:

For P, Q ⊂ A, it is said thatQ depends onP in a degreek (0≤ k ≤ 1), denotedP

⇒k Q, if

k = γP(Q) =
|POSP(Q)|
|U| (3.6)

If k = 1,Q depends totally onP, if 0 < k < 1, Q depends partially (in a degreek) on

P, and ifk = 0 thenQ does not depend onP. In the example, the degree of dependency

of attribute{e} from the attributes{b,c} is:
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γ{b,c}({e}) =
|POS{b,c}({e})|

|U|
= |{2,3,5}|

|{0,1,2,3,4,5,6,7}| = 3
8

By calculating the change in dependency when an attribute is removed from the set

of considered conditional attributes, a measure of the significance of the attribute can

be obtained. The higher the change in dependency, the more significant the attribute

is. If the significance is 0, then the attribute is dispensable. More formally, givenP,Q

and an attributea ∈ P,

σP(Q,a) = γP(Q)−γP−{a}(Q) (3.7)

For example, ifP = {a,b,c} andQ = e then

γ{a,b,c}({e}) = |{2,3,5,6}|/8 = 4/8

γ{a,b}({e}) = |{2,3,5,6}|/8 = 4/8

γ{b,c}({e}) = |{2,3,5}|/8 = 3/8

γ{a,c}({e}) = |{2,3,5,6}|/8 = 4/8

And calculating the significance of the three attributes gives:

σP(Q,a) = γ{a,b,c}({e})−γ{b,c}({e}) = 1/8

σP(Q,b) = γ{a,b,c}({e})−γ{a,c}({e}) = 0

σP(Q,c) = γ{a,b,c}({e})−γ{a,b}({e}) = 0

From this it follows that attributea is indispensable, but attributesb and c can be

dispensed with when considering the dependency between the decision attribute and

the given individual conditional attributes.

3.1.3 Reduction Method

The reduction of attributes is achieved by comparing equivalence relations generated

by sets of attributes. Attributes are removed so that the reduced set provides the same

predictive capability of the decision feature as the original. Areduct is defined as a

subset of minimal cardinalityRmin of the conditional attribute setC such thatγR( D) =

γC(D).



3.1. Rough Selection 59

R = {X : X ⊆ C,γX(D) = γC(D)} (3.8)

Rmin = {X : X ∈ R, ∀Y ∈ R, |X | ≤ |Y |} (3.9)

The intersection of all the sets inRmin is called thecore, the elements of which are

those attributes that cannot be eliminated without introducing more contradictions to

the dataset. In RSAR, a subset with minimum cardinality is searched for.

Using the example, the dependencies for all possible subsets ofC can be calculated:

γ{a,b,c,d}({e}) = 8/8 γ{b,c}({e}) = 3/8

γ{a,b,c}({e}) = 4/8 γ{b,d}({e}) = 8/8

γ{a,b,d}({e}) = 8/8 γ{c,d}({e}) = 8/8

γ{a,c,d}({e}) = 8/8 γ{a}({e}) = 0/8

γ{b,c,d}({e}) = 8/8 γ{b}({e}) = 1/8

γ{a,b}({e}) = 4/8 γ{c}({e}) = 0/8

γ{a,c}({e}) = 4/8 γ{d}({e}) = 2/8

γ{a,d}({e}) = 3/8

Note that the given dataset is consistent sinceγ{a,b,c,d}({e}) = 1. The minimal

reduct set for this example is:

Rmin = {{b,d},{c,d}}

If {b,d} is chosen, then the dataset can be reduced as in table 3.2. Clearly each object

can be uniquely classified according to the attribute values remaining.

The problem of finding a reduct of an information system has been the subject of

much research [2, 177]. The most basic solution to locating such a subset is to simply

generateall possible subsets and retrieve those with a maximum rough set dependency

degree. Obviously, this is an expensive solution to the problem and is only practical

for very simple datasets. Most of the time only one reduct is required as, typically,

only one subset of features is used to reduce a dataset, so all the calculations involved

in discovering the rest are pointless.
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x ∈U b d ⇒ e

0 0 2 0

1 1 1 2

2 0 1 1

3 1 2 2

4 0 0 1

5 2 1 1

6 1 1 2

7 1 0 1

Table 3.2: Reduced dataset

To improve the performance of the above method, an element of pruning can be

introduced. By noting the cardinality of any pre-discovered reducts, the current pos-

sible subset can be ignored if it contains more elements. However, a better approach is

needed - one that will avoid wasted computational effort.

QUICKREDUCT(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R←{}
(2) do

(3) T ← R

(4) ∀x ∈ (C−R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R∪{x}
(7) R← T

(8) until γR(D) == γC(D)
(9) return R

Figure 3.1: The QUICKREDUCT Algorithm

The QUICKREDUCT algorithm given in figure 3.1 (adapted from [29]), attempts

to calculate a reduct without exhaustively generating all possible subsets. It starts off

with an empty set and adds in turn, one at a time, those attributes that result in the

greatest increase in the rough set dependency metric, until this produces its maximum
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possible value for the dataset. Other such techniques may be found in [132].

According to the QUICKREDUCT algorithm, the dependency of each attribute is

calculated, and the best candidate chosen. In figure 3.2, this stage is illustrated using

the example dataset. As attributed generates the highest dependency degree, then that

attribute is chosen and the sets{a,d}, {b,d} and{c,d} are evaluated. This process

continues until the dependency of the reduct equals the consistency of the dataset (1 if

the dataset is consistent). The generated reduct shows the way of reducing the dimen-

sionality of the original dataset by eliminating those conditional attributes that do not

appear in the set.

Determining the consistency of the entire dataset is reasonable for most datasets.

However, it may be infeasible for very large data, so alternative stopping criteria may

have to be used. One such criterion could be to terminate the search when there is no

further increase in the dependency measure. This will produce exactly the same path

to a reduct due to the monotonicity of the measure [29], without the computational

overhead of calculating the dataset consistency.

Other developments include REVERSEREDUCT where the strategy is backward

elimination of attributes as opposed to the current forward selection process. Initially,

all attributes appear in the reduct candidate; the least informative ones are increment-

ally removed until no further attribute can be eliminated without introducing inconsist-

encies. This is not often used for large datasets, as the algorithm must evaluate large

feature subsets (starting with the set containingall features) which is too costly, al-

though the computational complexity is, in theory, the same as that of forward-looking

QUICKREDUCT. As both forward and backward methods perform well, it is thought

that a combination of these within one algorithm would be effective. For instance,

search could continue in a forward direction initially, then resort to backward steps

intermittently to remove less important features before continuing onwards.

This, however, is not guaranteed to find aminimal subset as has been shown in [30].

Using the dependency function to discriminate between candidates may lead the search

down a non-minimal path. It is impossible to predict which combinations of attributes

will lead to an optimal reduct based on changes in dependency with the addition or

deletion of single attributes. It does result in a close-to-minimal subset, though, which
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Path taken

{b}

{}

{a}

0/8 1/8 0/8 2/8

{d}{c}

Figure 3.2: Branches of the search space

is still useful in greatly reducing dataset dimensionality.

In [30], a potential solution to this problem has been proposed whereby the QUICKRE-

DUCT algorithm is altered, making it into ann-lookahead approach. However, even this

cannot guarantee a reduct unlessn is equal to the original number of attributes, but this

reverts back to generate-and-test. It still suffers from the same problem as the original

QUICKREDUCT, i.e. it is impossible to tell at any stage whether the current path will

be the shortest to a reduct.

It is interesting to note that the rough set degree of dependency measure is very

similar to the consistency criterion used by the FOCUS algorithm and others [1, 148].

In FOCUS, a breadth-first search is employed such that any subset is rejected if this

produces at least one inconsistency. If this is converted into a guided search using

the consistency measure as a heuristic, it should behave exactly as QUICKREDUCT.

Consistency is defined as the number of discernible objects out of the entire object set

- exactly that of the dependency measure.

3.2 Discernibility Matrix Approach

Many applications of rough sets to feature selection make use of discernibility matrices

for finding reducts. A discernibility matrix [86, 164] of a decision tableD = (U,C∪D)

is a symmetric|U|× |U|matrix with entries defined:



3.2. Discernibility Matrix Approach 63

di j = {a ∈C|a(xi) 6= a(x j)} i, j = 1, ..., |U| (3.10)

Eachdi j contains those attributes that differ between objectsi and j. For finding re-

ducts, the decision-relative discernibility matrix is of more interest. This only con-

siders those object discernibilities that occur when the corresponding decision attrib-

utes differ. Returning to the example dataset, the decision-relative discernibility matrix

found in table 3.3 is produced. For example, it can be seen from the table that objects

0 and 1 differ in each attribute. Although some attributes in objects 1 and 3 differ,

their corresponding decisions are the same so no entry appears in the decision-relative

matrix. Grouping all entries containing single attributes forms the core of the dataset

(those attributes appearing inevery reduct). Here, the core of the dataset is{d}.

x ∈U 0 1 2 3 4 5 6 7

0

1 a,b,c,d

2 a,c,d a,b,c

3 b,c a,b,d

4 d a,b,c,d b,c,d

5 a,b,c,d a,b,c a,b,d

6 a,b,c,d b,c a,b,c,d b,c

7 a,b,c,d d a,c,d a,d

Table 3.3: The decision-relative discernibility matrix

From this, the discernibility function can be defined. This is a concise notation of

how each object within the dataset may be distinguished from the others. A discernib-

ility function fD is a boolean function ofm boolean variablesa∗1, ...,a
∗
m (corresponding

to the attributesa1, ...,am) defined as below:

fD(a∗1, ...,a
∗
m) = ∧{∨c∗i j|1≤ j ≤ i≤ |U|,ci j 6= Ø} (3.11)

wherec∗i j = {a∗|a∈ ci j}. By finding the set of all prime implicants of the discernibility

function, all the minimal reducts of a system may be determined. From table 3.3, the
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decision-relative discernibility function is (with duplicates removed):

fD(a,b,c,d) = {a∨b∨ c∨d}∧{a∨ c∨d}∧{b∨ c}
∧{d}∧{a∨b∨ c}∧{a∨b∨d}
∧{b∨ c∨d}∧{a∨d}

Further simplification can be performed by removing those sets (clauses) that are su-

persets of others:

fD(a,b,c,d) = {b∨ c}∧{d}

The reducts of the dataset may be obtained by converting the above expression

from conjunctive normal form to disjunctive normal form (without negations). Hence,

the minimal reducts are{b,d} and{c,d}. Although this is guaranteed to discover

all minimal subsets, it is a costly operation rendering the method impractical for even

medium-sized datasets.

For most applications, a single minimal subset is required for data reduction. This

has led to approaches that consider finding individual shortest prime implicants from

the discernibility function. A common method is to incrementally add those attributes

that occur with the most frequency in the function, removing any clauses containing

the attributes, until all clauses are eliminated [120, 185]. However, even this does

not ensure that a minimal subset is found - the search can proceed down non-minimal

paths.

3.3 Reduction with Variable Precision Rough Sets

Variable precision rough sets (VPRS) [204] extends rough set theory by the relaxation

of the subset operator. It was proposed to analyse and identify data patterns which

represent statistical trends rather than functional. The main idea of VPRS is to allow

objects to be classified with an error smaller than a certain predefined level. This

introduced threshold relaxes the rough set notion of requiring no information outside
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the dataset itself. LetX ,Y ⊆U, the relative classification error is defined by:

c(X ,Y ) = 1− |X ∩Y |
|X |

Observe thatc(X ,Y ) = 0 if and only if X ⊆ Y . A degree of inclusion can be

achieved by allowing a certain level of error,β, in classification:

X ⊆β Y iff c(X ,Y)≤ β, 0≤ β < 0.5

Using⊆β instead of⊆, theβ-upper andβ-lower approximations of a setX can be

defined as:

RβX =
⋃{[x]R ∈ U/R | [x]R ⊆β X}

RβX =
⋃{[x]R ∈U/R | c([x]R,X) < 1−β}

Note thatRβX = RX for β = 0. The positive, negative and boundary regions in the

original rough set theory can now be extended to:

POSR,β(X) = RβX (3.12)

NEGR,β(X) = U−RβX (3.13)

BNDR,β(X) = RβX−RβX (3.14)

Returning to the example dataset in table 3.1, equation 3.12 can be used to calculate

theβ-positive region forR = {b,c}, X = {e} andβ = 0.4. Settingβ to this value means

that a set is considered to be a subset of another if at least 60% of its elements exist in

the other. The partitions of the universe of objects forR andX are:

U/R = {{2},{0,4},{3},{1,6,7},{5}}
U/X = {{0},{1,3,6},{2,4,5,7}}

For each setA ∈ U/R andB ∈ U/X , the value ofc(A,B) must be less thanβ if the

equivalence classA is to be included in theβ-positive region. ConsideringA = {2}
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gives

c({2},{0}) = 1 > β

c({2},{1,3,6}) = 1 > β

c({2},{2,4,5,7}) = 0 < β

So object 2 is added to theβ-positive region as it is aβ-subset of{2,4,5,7} (and

is in fact a traditional subset of the equivalence class). TakingA = {1,6,7}, a more

interesting case is encountered:

c({1,6,7},{0}) = 1 > β

c({1,6,7},{1,3,6}) = 0.3333< β

c({1,6,7},{2,4,5,7}) = 0.6667> β

Here the objects 1, 6 and 7 are included in theβ-positive region as the set{1,6,7}
is a β-subset of{1,3,6}. Calculating the subsets in this way leads to the following

β-positive region:

POSR,β(X) = {1,2,3,5,6,7}

Compare this with the positive region generated previously:{2,3,5}. Objects 1, 6 and

7 are now included due to the relaxation of the subset operator. Consider a decision

table A = (U,C∪D), whereC is the set of conditional attributes andD the set of

decision attributes. Theβ-positive region of an equivalence relationQ on U may be

determined by

POSR,β(Q) =
⋃

X∈U/Q RβX

whereR is also an equivalence relation onU. This can then be used to calculate

dependencies and thus determineβ-reducts. The dependency function becomes:

γR,β(Q) =
|POSR,β(Q)|
|U|
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It can be seen that the QUICKREDUCT algorithm outlined previously can be ad-

apted to incorporate the reduction method built upon the VPRS theory. By supplying

a suitableβ value to the algorithm, theβ-lower approximation,β-positive region, and

β-dependency can replace the traditional calculations. This will result in a more ap-

proximate final reduct, which may be a better generalization when encountering unseen

data. Additionally, settingβ to 0 forces such a method to behave exactly like RSAR.

Extended classification of reducts in the VPRS approach may be found in [14, 15,

91]. As yet, there have been no comparative experimental studies between rough set

methods and the VPRS method. However, the variable precision approach requires

the additional parameterβ which has to be specified from the start. By repeated ex-

perimentation, this parameter can be suitably approximated. However, problems arise

when searching for true reducts as VPRS incorporates an element of inaccuracy in

determining the number of classifiable objects.

3.4 Dynamic Reducts

Reducts generated from an information system are sensitive to changes in the system.

This can be seen by removing a randomly chosen set of objects from the original object

set. Those reducts frequently occurring in random subtables can be considered to be

stable; it is these reducts that are encompassed bydynamic reducts [10]. Let A =

(U,C∪ d) be a decision table, then any systemB = (U′,C∪ d) (U′ ⊆ U) is called a

subtable ofA . If F is a family of subtables ofA , then

DR(A ,F ) = Red(A ,d)∩{⋂B∈F Red(B,d)}

defines the set ofF -dynamic reducts ofA . From this definition, it follows that a

relative reduct ofA is dynamic if it is also a reduct of all subtables inF . In most cases

this is too restrictive, so a more general notion of dynamic reducts is required.

By introducing a threshold, 0≤ ε ≤1, the concept of(F ,ε)-dynamic reducts can

here be defined:

DRε(A ,F ) = {C ∈ Red(A ,d) : sF(C)≥ ε}
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where

sF(C) =
|{B ∈ F : C ∈ Red(B,d)}|

|F |
is theF -stability coefficient ofC. This lessens the previous restriction that a dynamic

reduct must appear inevery generated subtable. Now, a reduct is considered to be

dynamic if it appears in a certain proportion of subtables, determined by the valueε.

For example, by settingε to 0.5 a reduct is considered to be dynamic if it appears

in at least half of the subtables. Note that ifF = {A} thenDR(A ,F ) = Red(A ,d).

Dynamic reducts may then be calculated according to the algorithm given in figure

3.3. Firstly, all reducts are calculated for the given information system,A . Then, the

new subsystemsA j are generated by randomly deleting one or more rows fromA . All

reducts are found for each subsystem, and the dynamic reducts are computed using

sF(C,R) which denotes the significance factor of reductC within all reducts found,R.

DynamicRed(A ,ε,its).
A , the original decision table;
ε, the dynamic reduct threshold;
its, the number of iterations.

(1) R←{}
(2) A← calculateAllReducts(A)
(3) for j=1...its
(4) A j ← deleteRandomRows(A)
(5) R← R∪ calculateAllReducts(A j)
(6) ∀C ∈ A

(7) if sF(C,R)≥ ε
(8) output C

Figure 3.3: Dynamic Reduct algorithm

Returning to the example decision table (call thisA), the first step is to calculate all

its reducts. This produces the set of all reductsA = {{b,d}, {c,d}, {a,b,d}, {a,c,d},
{b,c,d}}. The reduct{a,b,c,d} is not included as this will always be a reduct of any

generated subtable (it is the full set of conditional attributes). The next step randomly

deletes a number of rows from the original tableA . From this, all reducts are again

calculated. For one subtable this might beR = {{b,d},{b,c,d},{a,b,d}}. In this

case, the subset{c,d} is not a reduct (though it was for the original dataset). If the
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number of iterations is set to just one, and ifε is set to a value less than 0.5 (implying

that a reduct should appear in half of the total number of discovered reducts), then the

reduct{c,d} is deemed not to be a dynamic reduct.

Intuitively, this is based on the hope that by finding stable reducts they will be

more representative of the real world, i.e. it is more likely that they will be reducts

for unseen data. A comparison of dynamic and non-dynamic approaches can be found

in [11], where various methods were tested on extracting laws from decision tables.

In the experiments, the dynamic method and the conventional RS method both per-

formed well. In fact, it appears that the RS method has on average a lower error rate

of classification than the dynamic RS method.

A disadvantage of this dynamic approach is that several subjective choices have

to be made before the dynamic reducts can be found (for instance the choice of the

value of ε); these values are not contained in the data. Also, the huge complexity

of finding all reducts within subtables forces the use of heuristic techniques such as

genetic algorithms to perform the search. For large datasets, this step may well be too

costly.

3.5 Alternative Approaches

Other approaches to generating reducts from information systems have been developed

and can be found in [19, 169, 187]. Among the first rough set-based approaches is the

PRESET algorithm [115] which is another feature selector that uses rough set theory

to rank heuristically the features, assuming a noise free binary domain. Since PRESET

does not try to explore all combinations of the features, it is certain that it will fail on

problems whose attributes are highly correlated. There have also been investigations

into the use of different reduct quality measures (see [132] for details).

In [203], a heuristic filter-based approach is presented based on rough set theory.

The algorithm proposed, as reformalised in figure 3.4, begins with the core of the data-

set (those attributes that cannot be removed without introducing inconsistencies) and

incrementally adds attributes based on a heuristic measure. Additionally, a threshold

value is required as a stopping criterion to determine when a reduct candidate is “near
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enough” to being a reduct. On each iteration, those objects that are consistent with the

current reduct candidate are removed (an optimization that can be used with RSAR).

As the process starts with the core of the dataset, this has to be calculated beforehand.

Using the discernibility matrix for this purpose can be quite impractical for datasets

of large dimensionality. However, there are other methods that can calculate the core

in an efficient manner [125]. For example, this can be done by calculating the degree

of dependency of the full feature set and the corresponding dependencies of the fea-

ture set minus each attribute. Those features that result in a dependency decrease are

core attributes. There are also alternative methods available that allow the calculation

of necessary information about the discernibility matrix without the need to perform

operations directly on it [119].

select(C,D,O,ε).
C, the set of all conditional features;
D, the set of decision features;
O, the set of objects (instances);
ε, reduct threshold.

(1) R← calculateCore()
(2) while (γR(D) < ε)
(3) O← O−POSR(D) //optimization
(4) ∀a ∈C−R

(5) va = |POSR∪{a}(D)|
(6) ma = |largestEquivClass(POSR∪{a}(D))|
(7) Choosea with largestva ∗ma

(8) R← R∪{a}
(9) return R

Figure 3.4: Heuristic filter-based algorithm

Also worth mentioning are the approaches reported in [19, 187] which use genetic

algorithms to discover optimal or close-to-optimal reducts. Reduct candidates are en-

coded as bit strings, with the value in positioni set if theith attribute is present. The

fitness function depends on two parameters. The first is the number of bits set. The

function penalises those strings which have larger numbers of bits set, driving the pro-

cess to find smaller reducts. The second is the number of classifiable objects given this
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candidate. The reduct should discern between as many objects as possible (ideally all

of them).

Although this approach is not guaranteed to find minimal subsets, it may find many

subsets for any given dataset. It is also useful for situations where new objects are

added to or old objects are removed from a dataset - the reducts generated previously

can be used as the initial population for the new reduct-determining process. The main

drawback is the time taken to compute each bit string’s fitness, which is O(a ∗ o2),

wherea is the number of attributes ando the number of objects in the dataset. The

extent to which this hampers performance depends mainly on the population size.

3.6 Comparison of Crisp Approaches

In order to evaluate several of the mainstream approaches to rough set-based fea-

ture selection, an investigation into how these methods perform in terms of resulting

subset optimality has been carried out here. Several real and artificial datasets are

used for this purpose. In particular, it is interesting to compare those methods that

employ an incremental-based search strategy with those that adopt a more complex

stochastic/probabilistic mechanism.

3.6.1 Dependency Degree-based Approaches

Five techniques for finding crisp rough set reducts are tested here on 13 datasets. These

techniques are: RSAR (using QUICKREDUCT), EBR (using the same search mechan-

ism as QUICKREDUCT), GenRSAR (genetic algorithm-based), AntRSAR (ant-based)

and SimRSAR (simulated annealing-based).

3.6.1.1 Experimental Setup

Before the experiments are described, a few points must be made about the later three

approaches, GenRSAR, AntRSAR and SimRSAR.

GenRSAR employs a genetic search strategy in order to determine rough set re-

ducts. The initial population consists of 100 randomly generated feature subsets, the
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probabilities of mutation and crossover are set to 0.4 and 0.6 respectively, and the num-

ber of generations is set to 100. The fitness function considers both the size of subset

and its evaluated suitability, and is defined as follows:

f itness(R) = γR(D)∗ |C|− |R||C| (3.15)

AntRSAR follows the mechanism described in [76] and section 5.2. This demon-

strates that the general ant-based FS framework presented in this thesis can be applied

to crisp rough set-based selection. Here, the precomputed heuristic desirability of edge

traversal is the entropy measure, with the subset evaluation performed using the rough

set dependency heuristic (to guarantee that true rough set reducts are found). The num-

ber of ants used is set to the number of features, with each ant starting on a different

feature. Ants construct possible solutions until they reach a rough set reduct. To avoid

fruitless searches, the size of the current best reduct is used to reject those subsets

whose cardinality exceed this value. Pheromone levels are set at 0.5 with a small ran-

dom variation added. Levels are increased by only those ants who have found true

reducts. The global search is terminated after 250 iterations,α is set to 1 andβ is set

to 0.1.

SimRSAR employs a simulated annealing-based feature selection mechanism [76].

The states are feature subsets, with random state mutations set to changing three fea-

tures (either adding or removing them). The cost function attempts to maximize the

rough set dependency (γ) whilst minimizing the subset cardinality. For these experi-

ments, the cost of subsetR is defined as:

cost(R) =

[

γC(D)−γR(D)

γC(D)

]a

+

[ |R|
|C|

]b

(3.16)

wherea and b are defined in order to weight the contributions of dependency and

subset size to the overall cost measure. In the experiments here,a = 1 andb = 3. The

initial temperature of the system is estimated as 2∗ |C| and the cooling schedule is

T (t +1) = 0.93∗T (t).

The experiments were carried out on 3 datasets from [137], namelym-of-n, ex-

actly andexactly2. The remaining datasets are from the machine learning repository
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[20]. Those datasets containing real-valued attributes have been discretized to allow

all methods to be compared fairly.

3.6.1.2 Experimental Results

Table 3.4 presents the results of the five methods on the 13 datasets. It shows the size

of reduct found for each method, as well as the size of the optimal (minimal) reduct.

RSAR and EBR produced the same subset every time, unlike AntRSAR and SimRSAR

that often found different subsets and sometimes different subset cardinalities. On the

whole, it appears to be the case that AntRSAR and SimRSAR outperform the other

three methods. This is at the expense of the time taken to discover these reducts as can

be seen in Fig. 3.5 (results for RSAR and EBR do not appear as they are consistently

faster than the other methods). In all experiments the rough ordering of techniques with

respect to time is: RSAR< EBR≤ SimRSAR≤ AntRSAR≤ GenRSAR. AntRSAR

and SimRSAR perform similarly throughout - for some datasets, AntRSAR is better

(e.g. Vote) and for others SimRSAR is best (e.g. LED). The performance of these

two methods may well be improved by fine-tuning the parameters to each individual

dataset.
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Figure 3.5: Average runtimes for AntRSAR, SimRSAR and GenRSAR

From these results it can be seen that even for small and medium-sized datasets,
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Index Dataset Features Optimal RSAR EBR AntRSAR SimRSAR GenRSAR

0 M-of-N 13 6 8 6 6 6 6(6) 7(12)

1 Exactly 13 6 9 8 6 6 6(10) 7(10)

2 Exactly2 13 10 13 11 10 10 10(9) 11(11)

3 Heart 13 6 7 7 6(18) 7(2) 6(29) 7(1) 6(18) 7(2)

4 Vote 16 8 9 9 8 8(15) 9(15) 8(2) 9(18)

5 Credit 20 8 9 10 8(12) 9(4) 10(4) 8(18) 9(1) 11(1) 10(6) 11(14)

6 Mushroom 22 4 5 4 4 4 5(1) 6(5) 7(14)

7 LED 24 5 12 5 5(12) 6(4) 7(3) 5 6(1) 7(3) 8(16)

8 Letters 25 8 9 9 8 8 8(8) 9(12)

9 Derm 34 6 7 6 6(17) 7(3) 6(12) 7(8) 10(6) 11(14)

10 Derm2 34 8 10 10 8(3) 9(17) 8(3) 9(7) 10(2) 11(8)

11 WQ 38 12 14 14 12(2) 13(7) 14(11) 13(16) 14(4) 16

12 Lung 56 4 4 4 4 4(7) 5(12) 6(1) 6(8) 7(12)

Table 3.4: Subset sizes found for five techniques
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incremental hill-climbing techniques often fail to find minimal subsets. For example,

RSAR is misled early in the search for the LED dataset, resulting in it choosing 7 ex-

traneous features. Although this fault is due to the non-optimality of the guiding heur-

istic, a perfect heuristic does not exist rendering these approaches unsuited to problems

where a minimal subset is essential. However, for most real world applications, the

extent of reduction achieved via such methods is acceptable. For systems where the

minimal subset is required (perhaps due to the cost of feature measurement), stochastic

feature selection should be used.

3.6.2 Discernibility Matrix-based Approaches

Three techniques that use the discernibility matrix to locate reducts are evaluated here

on the same datasets used previously. HC is a simple hill climber that selects the

next attribute based on its frequency in the clauses appearing in the discernibility mat-

rix, following a similar strategy to that of the reduction method based on Johnson’s

algorithm given in the Rough Set Exploration System (RSES) [140]. NS follows a

similar strategy to HC, but also uses information about the size of the clauses in the

guiding heuristic.

Clause-based Search (CS), introduced here, performs search in a breadth-first man-

ner. The process starts with an empty list,Subsets, which keeps a record of all current

feature subsets. Clauses from the discernibility matrix are considered one at a time in

order of their size, with those of the smallest cardinality chosen first. When a clause

is selected, the features appearing within the clause are added to every set inSubsets.

For example, ifSubsets contains{a,b} and {c,d}, and the next considered clause

is {d ∨ e} then each appearing attribute is added. TheSubsets list will now contain

{a,b,d}, {a,b,e}, {c,d} and{c,d,e}. This guarantees that each set inSubsets satis-

fies all the clauses that have been encountered so far. If one of these subsets satisfies

all clauses the algorithm terminates as a reduct has been found. If not, then the process

continues by selecting the next clause and adding these features. This process will

result in a minimal subset, but has an exponential time and space complexity.

The results of the application of these three methods to the 13 datasets can be found

in Table 3.5. HC and NS perform similarly throughout, differing only in their results
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Dataset Features HC NS CS

M-of-N 13 6 6 6

Exactly 13 6 6 6

Exactly2 13 10 10 10

Heart 13 6 6 6

Vote 16 8 8 8

Credit 20 10 10 8

Mushroom 22 4 4 4

LED 24 5 5 5

Letters 25 9 10 8

Derm 34 6 6 6

Derm2 34 9 9 8

WQ 38 14 13 12

Lung 56 4 4 4

Table 3.5: Subset sizes found for discernibility matrix-based techniques

for the Letters and WQ datasets. CS will always find the smallest valid feature subset,

though is too costly to apply to larger datasets in its present form. On the whole, all

three methods perform as well as or better than the dependency-based methods. How-

ever, HC, NS and CS all require the calculation of the discernibility matrix beforehand.

3.7 Summary

Feature selection seeks to reduce data while retaining semantics by selecting attrib-

utes as opposed to transforming them. This aspect is particularly useful when feature

selection precedes other processes that require the original feature meanings to be in-

tact, for example rule induction where rules may need to be human-comprehensible.

This chapter focussed on some of the recent developments in rough set theory for the

purpose of feature selection.

Several approaches to discovering rough set reducts were experimentally evaluated

and compared. The results highlighted the shortcomings of conventional hill-climbing

approaches to feature selection. These techniques often fail to find minimal data re-
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ductions. Some guiding heuristics are better than others for this, but as no perfect

heuristic exists there can be no guarantee of optimality. From the experimentation, it

appears that the entropy-based measure is a more useful hill-climbing heuristic than

the rough set-based one. However, the entropy measure is a more costly operation

than that of dependency evaluation which may be an important factor when processing

large datasets. Due to the failure of hill-climbing methods and the fact that exhaust-

ive searches are not feasible for even medium-sized datasets, stochastic approaches

provide a promising feature selection mechanism.

Ultimately, conventional rough set methods are all unable to deal with real-valued

attributes effectively. This prompted research into the use of fuzzy-rough sets for fea-

ture selection.





Chapter 4

Fuzzy-Rough Feature Selection

The RSAR process described previously can only operate effectively with datasets

containing discrete values. Additionally, there is no way of handling noisy data. As

most datasets contain real-valued features, it is necessary to perform a discretization

step beforehand. This is typically implemented by standard fuzzification techniques

[157], enabling linguistic labels to be associated with attribute values. It also aids

uncertainty modelling by allowing the possibility of the membership of a value to

more than one fuzzy label. However, membership degrees of feature values to fuzzy

sets are not exploited in the process of dimensionality reduction. By usingfuzzy-rough

sets [43, 123], it is possible to use this information to better guide feature selection.

4.1 Fuzzy Equivalence Classes

In the same way that crisp equivalence classes are central to rough sets,fuzzy equival-

ence classes are central to the fuzzy-rough set approach [43, 179, 196]. An introduc-

tion to fuzzy set theory can be found in appendix A. For typical RSAR applications,

this means that the decision values and the conditional values may all be fuzzy. The

concept of crisp equivalence classes can be extended by the inclusion of a fuzzy sim-

ilarity relationS on the universe, which determines the extent to which two elements

are similar inS. For example, ifµS(x,y) = 0.9, then objectsx andy are considered to

be quite similar. The usual properties of reflexivity (µS(x,x) = 1), symmetry (µS(x,y)

79
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= µS(y,x)) and transitivity (µS(x,z) ≥ µS(x,y) ∧ µS(y,z)) hold.

Using the fuzzy similarity relation, the fuzzy equivalence class[x]S for objects close

to x can be defined:

µ[x]S(y) = µS(x,y) (4.1)

The following axioms should hold for a fuzzy equivalence classF [63]:

• ∃x, µF(x) = 1 (µF is normalised)

• µF(x) ∧ µS(x,y) ≤ µF(y)

• µF(x) ∧ µF(y) ≤ µS(x,y)

The first axiom corresponds to the requirement that an equivalence class is non-

empty. The second axiom states that elements iny’s neighbourhood are in the equival-

ence class ofy. The final axiom states that any two elements inF are related viaS.

Obviously, this definition degenerates to the normal definition of equivalence classes

whenS is non-fuzzy.

The family of normal fuzzy sets produced by a fuzzy partitioning of the universe of

discourse can play the role of fuzzy equivalence classes [43]. Consider the crisp parti-

tioning of a universe of discourse,U, by the attributes inQ: U/Q = {{1,3,6},{2,4,5}}.
This contains two equivalence classes ({1,3,6} and{2,4,5}) that can be thought of as

degenerated fuzzy sets, with those elements belonging to the class possessing a mem-

bership of one, zero otherwise. For the first class, for instance, the objects 2, 4 and

5 have a membership of zero. Extending this to the case of fuzzy equivalence classes

is straightforward: objects can be allowed to assume membership values, with respect

to any given class, in the interval [0,1].U/Q is not restricted to crisp partitions only;

fuzzy partitions are equally acceptable [109].

4.1.1 Fuzzy-Rough Sets

From the literature, the fuzzyP-lower andP-upper approximations are defined as [43]:

µPX(Fi) = in fxmax{1−µFi
(x),µX(x)} ∀i (4.2)
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µPX(Fi) = supxmin{µFi
(x),µX(x)} ∀i (4.3)

whereFi denotes a fuzzy equivalence class belonging toU/P. Note that although the

universe of discourse in feature selection is finite, this is not the case in general, hence

the use ofsup andin f . These definitions diverge a little from the crisp upper and lower

approximations, as the memberships of individual objects to the approximations are

not explicitly available. As a result of this, the fuzzy lower and upper approximations

are herein redefined as:

µPX(x) = sup
F∈U/P

min(µF(x), inf
y∈U

max{1−µF(y),µX(y)}) (4.4)

µPX(x) = sup
F∈U/P

min(µF(x),sup
y∈U

min{µF(y),µX(y)}) (4.5)

In implementation, not ally∈U need to be considered - only those whereµF(y) is non-

zero, i.e. where objecty is a fuzzy member of (fuzzy) equivalence classF. The tuple

< PX ,PX > is called afuzzy-rough set. For this particular feature selection method,

the upper approximation is not used, though this may be useful for other methods.

It can be seen that these definitions degenerate to traditional rough sets when all

equivalence classes are crisp. It is useful to think of the crisp lower approximation as

characterized by the following membership function:

µPX(x) =

{

1, x ∈ F, F ⊆ X

0, otherwise
(4.6)

This states that an objectx belongs to theP-lower approximation ofX if it belongs to

an equivalence class that is a subset ofX . Obviously, the behaviour of the fuzzy lower

approximation must be exactly that of the crisp definition for crisp situations. This is

indeed the case as the fuzzy lower approximation may be rewritten as

µPX(x) = sup
F∈U/P

min(µF(x), inf
y∈U
{µF(y)→ µX(y)}) (4.7)

where “→” stands for fuzzy implication (using the conventional min-max interpreta-

tion). In the crisp case,µF(x) andµX(x) will take values from{0, 1}. Hence, it is clear
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that the only timeµPX(x) will be zero is when at least one object in its equivalence

classF fully belongs toF but not toX . This is exactly the same as the definition for

the crisp lower approximation. Similarly, the definition for theP-upper approximation

can be established.

4.1.2 Rough-Fuzzy Sets

Also defined in the literature are rough-fuzzy sets [174], which can be seen to be a

particular case of fuzzy-rough sets. A rough-fuzzy set is a generalisation of a rough

set, derived from the approximation of a fuzzy set in a crisp approximation space. This

corresponds to the case where only the decision attribute values are fuzzy; the condi-

tional values are crisp. The lower and upper approximations incorporate the extent to

which objects belong to these sets, and are defined as:

µRX([x]R) = in f{µX(x)|x ∈ [x]R} (4.8)

µRX([x]R) = sup{µX(x)|x ∈ [x]R} (4.9)

whereµX(x) is the degree to whichx belongs to fuzzy equivalence classX , and each

[x]R is crisp. The tuple< RX ,RX > is called a rough-fuzzy set. It can be seen that in

the crisp case (whereµX(x) is 1 or 0), the above definitions become identical to that of

the traditional lower and upper approximations.

Rough-fuzzy sets can be generalised to fuzzy-rough sets [43], whereall equival-

ence classes may be fuzzy. When applied to dataset analysis, this means that both the

decision values and the conditional values may be fuzzy or crisp.

4.1.3 Fuzzy-Rough Hybrids

In addition to the fuzzy-rough definitions given previously, other generalizations are

possible [129]. In [12], the concepts of information theoretic measures are related to

rough sets, comparing these to established rough set models of uncertainty. This work

has been applied to the rough and fuzzy-rough relational database models, where an

alternative definition of fuzzy-rough sets which originates from the rough membership

function is chosen [125].
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Rough sets may be expressed by a fuzzy membership function to represent the

negative, boundary and positive regions [188]. All objects in the positive region have

a membership of one and those belonging to the boundary region have a membership

of 0.5. Those that are contained in the negative region (and therefore do not belong to

the rough set) have zero membership. In so doing, a rough set can be expressed as a

fuzzy set, with suitable modifications to the rough union and intersection operators.

The reason for integrating fuzziness into rough sets is to quantify the levels of

roughness in the boundary region by using fuzzy membership values. It is necessary,

therefore, to allow elements in the boundary region to have membership values in the

range of 0 to 1, not just the value 0.5. Hence, a fuzzy rough setY is defined (by this

approach) as a membership functionµY (x) that associates a grade of membership from

the interval [0,1] with every element ofU. For a rough setX and a crisp equivalence

relationR:

µY (RX) = 1,

µY (U−RX) = 0,

0 < µY (RX−RX) < 1

However, this is not a true hybridization of the two approaches, it merely assigns

a degree of membership to the elements depending on the crisp positive, boundary or

negative region they belong to. Fuzzy equivalence classes are not used and so this does

not offer a particularly useful approach for fuzzy-rough attribute reduction.

Another approach that blurs the distinction between rough and fuzzy sets has been

proposed in [129]. The research was fuelled by the concern that a purely numeric

fuzzy set representation may be too precise; a concept is described exactly once its

membership function has been defined. This seems as though excessive precision is

required in order to describe imprecise concepts.

The solution proposed is termed ashadowed set, which itself does not use exact

membership values but instead employs basic truth values and a zone of uncertainty

(the unit interval). A shadowed set could be thought of as an approximation of a

fuzzy set or family of fuzzy sets where elements may belong to the set with certainty
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(membership of 1), possibility (unit interval) or not at all (membership of 0). This can

be seen to be analogous to the definitions of the rough set regions: the positive region

(certainty), the boundary region (possibility) and the negative region (no membership).

Given a fuzzy set, a shadowed set can be induced by elevating those membership

values around 1 and reducing membership values around 0 until a certain threshold

level is achieved. Any elements that do not belong to the set with a membership of

1 or 0 are assigned a unit interval, [0,1], considered to be a non-numeric model of

membership grade. These regions of uncertainty are referred to as “shadows” (see

figure 4.1). In fuzzy set theory, vagueness is distributed across the entire universe of

discourse, but in shadowed sets this vagueness is localised in the shadow regions. As

with fuzzy sets, the basic set operations (union, intersection and complement) can be

defined for shadowed sets, as well as shadowed relations.

Shadowed sets have been applied to domains such as fuzzy clustering and image

processing with some success [129]. They are particularly useful in situations where

there is a trade-off between numerical precision and computational effort as they re-

duce the amount of processing involved compared to fuzzy sets. However, there is still

a need for a method that uses object membership values when dealing with equivalence

classes.

4.1.4 Fuzzy-Rough Reduction Process

Fuzzy-rough set-based Feature Selection (abbreviated FRFS hereafter) builds on the

notion of fuzzy lower approximation to enable reduction of datasets containing real-

valued features. As will be shown, the process becomes identical to the crisp approach

when dealing with nominal well-defined features.

The crisp positive region in traditional rough set theory is defined as the union of

the lower approximations. By the extension principle [201], the membership of an

objectx ∈U, belonging to the fuzzy positive region can be defined by

µPOSP(Q)(x) = sup
X∈U/Q

µPX(x) (4.10)

Objectx will not belong to the positive region only if the equivalence class it belongs
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Figure 4.1: A fuzzy set and corresponding shadowed set

to is not a constituent of the positive region. This is equivalent to the crisp version

where objects belong to the positive region only if their underlying equivalence class

does so. Similarly, the negative and boundary regions can be defined.

Using the definition of the fuzzy positive region, the new dependency function can

be defined as follows:

γ′P(Q) =
|µPOSP(Q)(x)|
|U| =

∑x∈U µPOSP(Q)(x)

|U| (4.11)

As with crisp rough sets, the dependency ofQ onP is the proportion of objects that

are discernible out of the entire dataset. In the present approach, this corresponds to

determining the fuzzy cardinality ofµPOSP(Q)(x) divided by the total number of objects
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in the universe.

The definition of dependency degree covers the crisp case as its specific instance.

This can be easily shown by recalling the definition of the crisp dependency degree

given in (3.6). If a functionµPOSP(Q)(x) is defined which returns 1 if the objectx

belongs to the positive region, 0 otherwise, then the above definition may be rewritten

as:

γP(Q) =
∑x∈U µPOSP(Q)(x)

|U| (4.12)

which is identical to (4.11).

If the fuzzy-rough reduction process is to be useful, it must be able to deal with mul-

tiple features, finding the dependency between various subsets of the original feature

set. For example, it may be necessary to be able to determine the degree of dependency

of the decision feature(s) with respect toP = {a,b}. In the crisp case,U/P contains

sets of objects grouped together that are indiscernible according to both featuresa and

b. In the fuzzy case, objects may belong to many equivalence classes, so the cartesian

product ofU/IND({a}) andU/IND({b}) must be considered in determiningU/P. In

general,

U/P =⊗{a ∈ P : U/IND({a})} (4.13)

where

A⊗B = {X ∩Y : ∀X ∈ A,∀Y ∈ B,X ∩Y 6= Ø} (4.14)

Each set inU/P denotes an equivalence class. For example, ifP = {a,b}, U/IND({a})
= {Na,Za} andU/IND({b}) = {Nb,Zb}, then

U/P = {Na∩Nb,Na∩Zb,Za∩Nb,Za∩Zb}

The extent to which an object belongs to such an equivalence class is therefore cal-

culated by using the conjunction of constituent fuzzy equivalence classes, sayFi,

i = 1,2, ...,n:

µF1∩...∩Fn
(x) = min(µF1(x),µF2(x), ...,µFn

(x)) (4.15)
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4.2 Fuzzy-Rough QUICKREDUCT

A problem may arise when this approach is compared to the crisp approach. In con-

ventional RSAR, a reduct is defined as a subsetR of the features which have the same

information content as the full feature setA. In terms of the dependency function

this means that the valuesγ(R) andγ(A) are identical and equal to 1 if the dataset is

consistent. However, in the fuzzy-rough approach this is not necessarily the case as

the uncertainty encountered when objects belong to many fuzzy equivalence classes

results in a reduced total dependency.

FRQUICKREDUCT(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R←{}; γ′best = 0; γ′prev = 0
(2) do

(3) T ← R

(4) γ′prev = γ′best

(5) ∀x ∈ (C−R)
(6) if γ′

R∪{x}(D) > γ′T (D)

(7) T ← R∪{x}
(8) γ′best = γ′T (D)
(9) R← T

(10) until γ′best == γ′prev

(11) return R

Figure 4.2: The fuzzy-rough QUICKREDUCT algorithm

A possible way of combatting this would be to determine the degree of dependency

of a set of decision featuresD upon the full feature set and use this as the denomin-

ator rather than|U| (for normalization), allowingγ′ to reach 1. With these issues in

mind, a new QUICKREDUCT algorithm has been developed as given in figure 4.2. It

employs the new dependency functionγ′ to choose which features to add to the current

reduct candidate in the same way as the original QUICKREDUCT process (see figure

3.1). The algorithm terminates when the addition of any remaining feature does not

increase the dependency (such a criterion could be used with the original QUICKRE-

DUCT algorithm).
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As the new degree of dependency measure is non-monotonic, it is possible that the

QUICKREDUCT-style search terminates having reached only a local optimum. The

global optimum may lie elsewhere in the search space. This motivates the adoption of

an alternative search mechanism, presented in section 5.2. However, the algorithm as

presented in figure 4.2 is still highly useful in locating good subsets quickly.

It is also possible to reverse the search process in a manner identical to that of

REVERSEREDUCT; that is, start with the full set of features and incrementally remove

the least informative features. This process continues until no more features can be

removed without reducing the total number of discernible objects in the dataset. Again,

this tends not to be applied to larger datasets as the cost of evaluating these larger

feature subsets is too great.

4.3 Complexity Analysis

Note that an intuitive understanding of QUICKREDUCT implies that, for a dimension-

ality of n, (n2 + n)/2 evaluations of the dependency function may be performed for

the worst-case dataset. However, as FRFS is used for dimensionality reduction prior

to any involvement of the system which will employ those features belonging to the

resultant reduct, this operation has no negative impact upon the run-time efficiency of

the system.

In fact, as feature selection can only take place whenn ≥ 2, the base case isn=2.

Suppose that the set of conditional features in this case is{a1,a2}, the QUICKREDUCT

algorithm makes two initial dependency evaluations (fora1 anda2) and a final evalu-

ation for{a1,a2} (in the worst case). Hence, the order of complexity of the algorithm

is 3 (or(n2+n)/2) for n=2.

Suppose that forn = k the order of complexity of the algorithm is

(k2+ k)

2
(4.16)

For k + 1 features,{a1, ...,ak,ak+1}, QUICKREDUCT makesk + 1 initial evaluations

of the dependency function to determine the best feature (call thisai). Onceai is

chosen, for the remaining features there are(k2 + k)/2 more evaluations in the worst
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case according to (4.16). Hence, the total number of evaluations forn = k +1 is:

k2+k
2 + (k +1) = k2+3k+2

2 = (k+1)2+(k+1)
2

The complexity of the algorithm is thereforeO((n2 + n)/2) in the worst case. In

the best case, the first feature considered results in the maximum degree of dependency

for the data, and hence only one heuristic evaluation is performed. In crisp RSAR, the

average complexity is seen to be close to linear with the inclusion of several optimiza-

tions [30].

4.4 Worked Examples

To illustrate the operation of FRFS, two small example datasets are considered. The

first contains real-valued conditional attributes with nominal decisions. In crisp RSAR,

the dataset would be discretized using the non-fuzzy sets. However, in the fuzzy-rough

approach membership degrees are used in calculating the fuzzy lower approximations

and fuzzy positive regions. The second dataset is defined by fuzzy membership values

only, with corresponding fuzzy decisions.

In addition to demonstrating the operation of FRFS, a further purpose of presenting

these two datasets is to show the applicability of the development to different types of

dataset. FRFS is equally applicable to datasets where the conditional values are crisp

and decisions are fuzzy, and also to the situation where both conditional and decision

attributes are crisp. In the latter case, the operation of FRFS is exactly that of the

original crisp RSAR.

4.4.1 Crisp Decisions

Table 4.1 contains three real-values conditional attributes and a crisp-valued decision

attribute. To begin with, the fuzzy-rough QUICKREDUCT algorithm initializes the

potential reduct (i.e. the current best set of attributes) to the empty set.
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Object a b c q

1 −0.4 −0.3 −0.5 no

2 −0.4 0.2 −0.1 yes

3 −0.3 −0.4 −0.3 no

4 0.3 −0.3 0 yes

5 0.2 −0.3 0 yes

6 0.2 0 0 no

Table 4.1: Example dataset: crisp decisions

N Z

1

0
0.50−0.5

0.8

−0.4

Figure 4.3: Fuzzifications for conditional features

Using the fuzzy sets defined in figure 4.3 (for all conditional attributes), and set-

ting A = {a}, B = {b}, C = {c} andQ = {q}, the following equivalence classes are

obtained:

U/A = {Na,Za}
U/B = {Nb,Zb}
U/C = {Nc,Zc}
U/Q = {{1,3,6},{2,4,5}}

The first step is to calculate the lower approximations of the setsA, B andC, using

equation (4.4) in section 4.1.1. To clarify the calculations involved, table 4.2 contains

the membership degrees of objects to fuzzy equivalence classes. For simplicity, only

A will be considered here; that is, usingA to approximateQ. For the first decision
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Object a b c q

Na Za Nb Zb Nc Zc {1,3,6} {2,4,5}
1 0.8 0.2 0.6 0.4 1.0 0.0 1.0 0.0

2 0.8 0.2 0.0 0.6 0.2 0.8 0.0 1.0

3 0.6 0.4 0.8 0.2 0.6 0.4 1.0 0.0

4 0.0 0.4 0.6 0.4 0.0 1.0 0.0 1.0

5 0.0 0.6 0.6 0.4 0.0 1.0 0.0 1.0

6 0.0 0.6 0.0 1.0 0.0 1.0 1.0 0.0

Table 4.2: Membership values of objects to corresponding fuzzy sets

equivalence classX = {1,3,6}, µA{1,3,6}(x) needs to be calculated:

µA{1,3,6}(x) = sup
F∈U/A

min(µF(x), inf
y∈U

max{1−µF(y),µ{1,3,6}(y)})

Considering the first fuzzy equivalence class ofA, Na:

min(µNa
(x), inf

y∈U
max{1−µNa

(y),µ{1,3,6}(y)})

For object 2 this can be calculated as follows. From table 4.2 it can be seen that the

membership of object 2 to the fuzzy equivalence classNa, µNa
(2), is 0.8. The remainder

of the calculation involves finding the smallest of the following values:

max(1-µNa
(1), µ{1,3,6}(1)) = max(0.2,1.0) = 1.0

max(1-µNa
(2), µ{1,3,6}(2)) = max(0.2,0.0) = 0.2

max(1-µNa
(3), µ{1,3,6}(3)) = max(0.4,1.0) = 1.0

max(1-µNa
(4), µ{1,3,6}(4)) = max(1.0,0.0) = 1.0

max(1-µNa
(5), µ{1,3,6}(5)) = max(1.0,0.0) = 1.0

max(1-µNa
(6), µ{1,3,6}(6)) = max(1.0,1.0) = 1.0

From the calculations above, the smallest value is 0.2, hence:

min(µNa
(x), inf

y∈U
max{1−µNa

(y),µ{1,3,6}(y)}) = min(0.8, inf{1,0.2,1,1,1,1})

= 0.2

Similarly for Za
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min(µZa
(x), inf

y∈U
max{1−µZa

(y),µ{1,3,6}(y)}) = min(0.2, inf{1,0.8,1,0.6,0.4,1}

= 0.2

Thus,

µA{1,3,6}(2) = 0.2

Calculating theA-lower approximation ofX = {1,3,6} for every object gives

µA{1,3,6}(1) = 0.2 µA{1,3,6}(2) = 0.2

µA{1,3,6}(3) = 0.4 µA{1,3,6}(4) = 0.4

µA{1,3,6}(5) = 0.4 µA{1,3,6}(6) = 0.4

The corresponding values forX = {2,4,5} can also be determined:

µA{2,4,5}(1) = 0.2 µA{2,4,5}(2) = 0.2

µA{2,4,5}(3) = 0.4 µA{2,4,5}(4) = 0.4

µA{2,4,5}(5) = 0.4 µA{2,4,5}(6) = 0.4

It is a coincidence here thatµA{2,4,5}(x) = µA{1,3,6}(x) for this example. Using these

values, the fuzzy positive region for each object can be calculated via using

µPOSA(Q)(x) = sup
X∈U/Q

µAX(x)

This results in:

µPOSA(Q)(1) = 0.2 µPOSA(Q)(2) = 0.2

µPOSA(Q)(3) = 0.4 µPOSA(Q)(4) = 0.4

µPOSA(Q)(5) = 0.4 µPOSA(Q)(6) = 0.4

The next step is to determine the degree of dependency ofQ onA:

γ′A(Q) =
∑x∈U µPOSA(Q)(x)

|U | = 2/6

Calculating forB andC gives:

γ′B(Q) =
2.4
6

, γ′C(Q) =
1.6
6

From this it can be seen that attributeb will cause the greatest increase in dependency

degree. This attribute is chosen and added to the potential reduct. The process iterates

and the two dependency degrees calculated are

γ′{a,b}(Q) =
3.4
6

, γ′{b,c}(Q) =
3.2
6
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{}

{b} {c}{a}

{a,b} {b,c}

2.0 2.4 1.6

3.4 3.2

Figure 4.4: Path taken by the fuzzy-rough QUICKREDUCT algorithm

Adding attributea to the reduct candidate causes the larger increase of dependency, so

the new candidate becomes{a,b}. Lastly, attributec is added to the potential reduct:

γ′{a,b,c}(Q) =
3.4
6

As this causes no increase in dependency, the algorithm stops and outputs the reduct

{a,b}. The steps taken by the fuzzy-rough QUICKREDUCT algorithm in reaching this

decision can be seen in figure 4.4. The dataset can now be reduced to only those

attributes appearing in the reduct. When crisp RSAR is performed on this dataset

(after using the same fuzzy sets to discretize the real-valued attributes), the reduct

generated is{a,b,c}, i.e. the full conditional attribute set [73]. Unlike crisp RSAR,

the true minimal reduct was found using the information on degrees of membership. It

is clear from this example alone that the information lost by using crisp RSAR can be

important when trying to discover the smallest reduct from a dataset.
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Object a b c Plan

A1 A2 A3 B1 B2 B3 C1 C2 X Y Z

1 0.3 0.7 0.0 0.2 0.7 0.1 0.3 0.7 0.1 0.9 0.0

2 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.8 0.2 0.0

3 0.0 0.3 0.7 0.0 0.7 0.3 0.6 0.4 0.0 0.2 0.8

4 0.8 0.2 0.0 0.0 0.7 0.3 0.2 0.8 0.6 0.3 0.1

5 0.5 0.5 0.0 1.0 0.0 0.0 0.0 1.0 0.6 0.8 0.0

6 0.0 0.2 0.8 0.0 1.0 0.0 0.0 1.0 0.0 0.7 0.3

7 1.0 0.0 0.0 0.7 0.3 0.0 0.2 0.8 0.7 0.4 0.0

8 0.1 0.8 0.1 0.0 0.9 0.1 0.7 0.3 0.0 0.0 1.0

9 0.3 0.7 0.0 0.9 0.1 0.0 1.0 0.0 0.0 0.0 1.0

Table 4.3: Example dataset containing fuzzy values

4.4.2 Fuzzy Decisions

Using the fuzzy-rough QUICKREDUCT algorithm, table 4.3 can be reduced in size.

First of all the lower approximations need to be determined. Consider the first feature

in the dataset; settingP = {a} produces the fuzzy partitioningU/P = {A1,A2,A3}.
Additionally, settingQ = {Plan} produces the fuzzy partitioningU/Q = {X ,Y,Z}. To

determine the fuzzyP-lower approximation of PlanX (µPX(x)), eachF ∈ U/P must

be considered. ForF = A1:

min(µA1(x), inf
y∈U

max{1−µA1(y), µX(y)}) = min(µA1(x),0.6)

Similarly, for F = A2, min(µA2(x),0.3) andF = A3, min(µA3(x),0.0). To calculate the

extent to which an objectx in the dataset belongs to the fuzzyP-lower approximation

of X , the union of these values is calculated. For example, object 1 belongs toPX with

a membership of:

sup{min(µA1(1),0.6), min(µA2(1),0.3), min(µA3(1),0.0)} = 0.3.

Likewise, forY andZ:

µPY (1) = 0.2 µPZ(1) = 0.3
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The extent to which object 1 belongs to the fuzzy positive region can be determined

by considering the union of fuzzyP-lower approximations:

µPOSP(Q)(1) = sup
S∈U/Q

µPS(1) = 0.3

Similarly, for the remaining objects,

µPOSP(Q)(2) = 0.6 µPOSP(Q)(3) = 0.3

µPOSP(Q)(4) = 0.6 µPOSP(Q)(5) = 0.5

µPOSP(Q)(6) = 0.3 µPOSP(Q)(7) = 0.6

µPOSP(Q)(8) = 0.3 µPOSP(Q)(9) = 0.3

Using these values, the new degree of dependency ofQ on P = {a} can be calcu-

lated:

γ′P(Q) =
∑x∈U µPOSP(Q)(x)

|{1,2,3,4,5,6,7,8,9}| = 3.8/9

The fuzzy-rough QUICKREDUCT algorithm uses this process to evaluate subsets

of features in an incremental fashion. The algorithm starts with an empty set and con-

siders the addition of each individual feature:

γ′{a}(Q) = 3.8/9

γ′{b}(Q) = 2.1/9

γ′{c}(Q) = 2.7/9

As featurea causes the greatest increase in dependency degree, it is added to the reduct

candidate and the search progresses:

γ′{a,b}(Q) = 4.0/9,

γ′{a,c}(Q) = 5.7/9

Here,c is added to the reduct candidate as the dependency is increased. There is only

one feature addition to be checked at the next stage, namely

γ′{a,b,c}(Q) = 5.7/9
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This causes no dependency increase, resulting in the algorithm terminating and out-

putting the reduct{a,c}. Hence, the original dataset can be reduced to these features

with minimal information loss (according to the algorithm).

4.5 Optimizations

There are several optimizations that can be implemented to speed up the FRFS process.

The original definition of the fuzzy positive region, given in equation (4.10), can be

more explicitly defined as:

µPOSP(Q)(x) = sup
X∈U/Q

{

sup
F∈U/P

min(µF(x), inf
y∈U

max{1−µF(y),µX(y)})
}

(4.17)

whereP is a subset of the conditional attributes,Q the decision attribute(s). In order to

speed up computation time, equation (4.17) can be rewritten as:

µPOSP(Q)(x) = sup
F∈U/P

{

min(µF(x), sup
X∈U/Q

{ inf
y∈U

max(1−µF(y),µX(y))})
}

(4.18)

This reformulation helps to speed up the calculation of the fuzzy positive region by

considering each fuzzy equivalence classF in U/P first. If the objectx is found not to

belong toF, the remainder of the calculations for this class need not be evaluated, due

to the use of themin operator. This can save substantial time, as demonstrated in table

4.4, where the two definitions of the positive region are used to determine reducts from

several small to large datasets. The times here are the times taken for each version

of FRFS to find a reduct. Each version of FRFS will follow exactly the same route

and will locate identical reducts, hence the results are comparable. All the datasets

are from the Machine Learning Repository [20] and contain real-valued conditional

features with nominal classifications.

Additionally in table 4.4, average runtimes are given for the optimized implement-

ation of the fuzzy-rough feature selector (labelled Opt. in the table). This includes the

use of the algorithm presented in figure 4.5, which is designed to result in the faster
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Dataset No. of Features Eq. (4.17) (s) Eq. (4.18) (s) Opt. (s)

Glass 10 29.5 26.7 7.18

Wine 14 5.41 3.05 2.20

Olitos 26 47.6 21.9 13.0

JobSat 27 19.2 5.75 2.72

Ionosphere 35 204.5 107.8 76.9

Selwood 54 57.5 15.9 5.64

Isolet 618 368.4 131.9 47.2

Phenetyl 629 740.7 145.0 70.3

Caco 714 2709.3 213.5 114.1

Table 4.4: Experimental comparison of the two formulations for the calculation of the

positive region

computation of the fuzzy-rough metric for small feature subsets. Excess computation

is avoided at lines (4) and (6) which exploit the nature of t-norms and s-norms.

CALCULATEGAMMA ’(P,Q).
P, the current feature subset;
Q, the set of decision features.

(1) mems[], γ′← 0
(2) ∀ F ∈ U/P

(3) deg = sup
X∈U/Q

({ inf
y∈U

max{1−µF(y),µX(y)}}

(4) if deg != 0
(5) ∀o ∈U

(6) if mems[o] != 1 && deg > mems[o]
(7) then mems[o] = max(min(µF(o),deg),mems[o])
(8) ∀ o ∈U, γ′ += mems[o]
(9) return γ′

Figure 4.5: Optimized γ’ calculation for small subsets

4.6 Evaluating the Fuzzy-Rough Metric

In order to evaluate the utility of the new fuzzy-rough measure of feature significance,

a series of artificial datasets were generated and used for comparison with 5 other
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leading feature ranking measures. The datasets were created by generating around 30

random feature values for 400 objects. Two or three features (referred to asx, y, or z)

are chosen to contribute to the final boolean classification by means of an inequality.

For example, in table 4.6, if the inequality(x + y)2 > 0.25 holds for an object then it

is classified as 1, with a classification of 0 otherwise. The task for the feature rankers

was to discover those features that are involved in the inequalities, ideally rating the

other irrelevant features poorly in contrast.

The tables presented in the metric comparison section show the ranking given to

the features that are involved in the inequality that determines the classification. The

final row indicates whether all the other features are given a ranking of zero. The full

results can be seen in appendix B. For the data presented in table 4.5, the first feature,

x, is used to determine the classification. The values of featuresy andz are derived

from x: y =
√

x, z = x2.

4.6.1 Compared Metrics

The metrics compared are: the fuzzy-rough measure (FR), Relief-F (Re), Information

Gain (IG), Gain Ratio (GR), OneR (1R) and the statistical measureχ2. Metrics other

than the fuzzy-rough measure were obtained from [186]. A brief description of each is

presented next.

4.6.1.1 Information Gain

The Information Gain (IG) [67] is the expected reduction in entropy resulting from

partitioning the dataset objects according to a particular feature. The entropy of a

labelled collection of objectsS is defined as:

Entropy(S) =
c

∑
i=1
−pilog2pi (4.19)

wherepi is the proportion ofS belonging to classi. Based on this, the Information

Gain metric is:

IG(S,A) = Entropy(S)− ∑
v∈values(A)

|Sv|
|S| Entropy(Sv) (4.20)
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wherevalues(A) is the set of values for featureA, S the set of training examples,Sv

the set of training objects whereA has the valuev. This metric is the one used in ID3

[134] for selecting the best feature to partition the data.

4.6.1.2 Gain Ratio

One limitation of the IG measure is that it favours features with many values. The Gain

Ratio (GR) seeks to avoid this bias by incorporating another term, split information,

that is sensitive to how broadly and uniformly the attribute splits the considered data:

Split(S,A) =−
c

∑
i=1

|Si|
|S| log2

|Si|
|S| (4.21)

where eachSi is a subset of objects generated by partitioningS with the c-valued

attributeA. The Gain Ratio is then defined as follows:

GR(S,A) =
IG(S,A)

Split(S,A)
(4.22)

4.6.1.3 χ2 Measure

In theχ2 method [101], features are individually evaluated according to theirχ2 stat-

istic with respect to the classes. For a numeric attribute, the method first requires its

range to be discretized into several intervals. Theχ2 value of an attribute is defined as:

χ2 =
m

∑
i=1

k

∑
j=1

(Ai j−Ei j)
2

Ei j
(4.23)

wherem is the number of intervals,k the number of classes,Ai j the number of samples

in theith interval, jth class,Ri the number of objects in theith interval,C j the number

of objects in thejth class,N the total number of objects, andEi j the expected frequency

of Ai j (Ei j = Ri * C j/N). The larger theχ2 value, the more important the feature.

4.6.1.4 Relief-F

This is the Relief-F measure, based on the original Relief measure described in section

2.2.1.1. Relief evaluates the worth of an attribute by repeatedly sampling an instance
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and considering the value of the given attribute for the nearest instance of the same and

different class. Relief-F extends this idea to dealing with multi-class problems as well

as handling noisy and incomplete data.

4.6.1.5 OneR

The OneR classifier [65] learns a one-level decision tree, i.e. it generates a set of rules

that test one particular attribute. One branch is assigned for every value of a feature;

each branch is assigned the most frequent class. The error rate is then defined as the

proportion of instances that do not belong to the majority class of their correspond-

ing branch. Features with the higher classification rates are considered to be more

significant than those resulting in lower accuracies.

4.6.2 Metric Comparison

The tables presented here are summaries of those given in appendix B. From the

results in table 4.5, it can be observed that all metrics successfully rank the influential

features highest. IG, GR, 1R andχ2 rank these features equally, whereas Re and FR

rank featurez higher. Only FR, IG, GR andχ2 rate all the other features as zero.

Feature FR Re IG GR 1R χ2

x 0.5257 0.31758 0.997 1.0 99.5 200

y 0.5296 0.24586 0.997 1.0 99.5 200

z 0.5809 0.32121 0.997 1.0 99.5 200

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 4.5: Feature evaluation for x > 0.5, y =
√

x, z = x2

As can be seen from these results, feature rankers can discover the influential fea-

tures but on their own are incapable of determining multiple feature interactions. Table

4.5 could be reduced to one feature only (eitherx, y, or z) without any loss of inform-

ation as only these contribute to the classification. However, the rankers all rate these

features highly and would only provide enough information to reduce the data to at

least these three attributes. Here, the rankers have found the predictive (or relevant)

features but have been unable to determine which of these are redundant.
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Feature FR Re IG GR 1R χ2

x 0.2330 0.1862 0.2328 0.1579 86.75 128.466

y 0.2597 0.1537 0.1687 0.1690 87.75 71.971

others 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0

Table 4.6: Feature evaluation for (x+ y)2 > 0.25

Table 4.6 shows the results for the inequality(x + y)2 > 0.25. Both featuresx and

y are required for deciding the classification. All feature rankers evaluated detect this.

FR, IG, GR, 1R andχ2 also rank the tenth feature highly - probably due to a chance

correlation with the decision. The results in table 4.7 are for a similar inequality, with

all the feature rankers correctly rating the important features. FR, IG, GR andχ2

evaluate the remaining features as having zero significance.

Feature FR Re IG GR 1R χ2

x 0.2090 0.140067 0.241 0.156 79.0 119.562

y 0.2456 0.151114 0.248 0.165 78.25 122.336

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 4.7: Feature evaluation for (x+ y)2 > 0.5

In table 4.8, all metrics apart from 1R locate the relevant features. For this dataset,

1R chooses 22 features as being the most significant, whilst ranking featuresx andy

last. This may be due to the discretization process that must precede the application of

1R. If the discretization is poor, then the resulting feature evaluations will be affected.

Feature FR Re IG GR 1R χ2

x 0.2445 0.1486 0.134 0.134 87.75 57.455

y 0.2441 0.1659 0.159 0.164 87.25 73.390

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 4.8: Feature evaluation for (x+ y)3 < 0.125

Tables 4.9 shows the results for data classified byx ∗ y ∗ z > 0.125. All feature

rankers correctly detect these variables. However, in table 4.10 the results can be

seen for the same inequality but with the impact of variablez increased. All metrics
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determine thatz has the most influence on the decision, and almost all choosex andy

next. Again, the 1R measure fails and chooses features 15, 19 and 24 instead.

Feature FR Re IG GR 1R χ2

x 0.1057 0.0750547 0.169 0.123 64.25 73.653

y 0.0591 0.1079423 0.202 0.226 66.75 88.040

z 0.1062 0.0955878 0.202 0.160 67.50 84.283

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 4.9: Feature evaluation for x∗ y∗ z > 0.125

Feature FR Re IG GR 1R χ2

x 0.1511 0.0980 0.1451 0.0947 76.5 65.425

y 0.1101 0.0557 0.0909 0.1080 78.0 35.357

z 0.2445 0.1474 0.2266 0.2271 79.75 93.812

others = 0 6= 0 = 0 = 0 6= 0 = 0

Table 4.10: Feature evaluation for x∗ y∗ z2 > 0.125

Only the FR and Re metrics are applicable to datasets where the decision feature

is continuous. Results from the application of these two measures to such data can be

found in appendix C. Both methods find the features that are involved in generating

the decision values.

This short investigation into the utility of the new fuzzy-rough measure has shown

that it is comparable with the leading measures of feature importance. Indeed, its beha-

viour is quite similar to the information gain and gain ratio metrics. This is interesting

as both of these measures are entropy-based. As mentioned in section 2.2.1.5, a fea-

ture subset with a maximum (crisp) rough set dependency has a corresponding entropy

of 0. Unlike these metrics, the fuzzy-rough measure may also be applied to datasets

containing real-valued decision features.

4.7 Application to Financial Data

The comparisons carried out in section 4.6 concerning the fuzzy-rough metric used

artificial data, where the relevancy of features was known beforehand. To demonstrate
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the utility of the new measure in determining relevant features from real world data,

a financial dataset (the Trust Crisis Dataset) was chosen for analysis. An expert was

asked to define a ranking of feature importance for the data in order to compare this

with the automated ranking produced by the metrics.

4.7.1 The Trust Crisis Dataset

An investigation was carried out in [94] in an attempt to analyse the split capital in-

vestment trust crisis of 2001/2002. This analysis sought to examine what factors were

behind the failure of a number of these trusts. Many retail investors, thinking that they

were investing in low risk financial products, were left facing substantial losses in their

investments. This ultimately led to a hearing by the Treasury Select Committee. Al-

though trust managers apportioned blame to falling equity markets, leading analysts

contended that this was an accident waiting to happen.

In addition to other analyses, the study investigated the effects of 18 different

financial-related aspects (features) of the trusts to determine how these may have con-

tributed to trust failure. It is therefore interesting to compare an expert-defined ordering

of feature influence on failure with the automated ordering of feature ranking. The fea-

tures involved in the analysis are given in table 4.11, with their corresponding ordering

of importance. According to the expert, the most influential features are Split & High

Yielding Trusts, though Equities, Fixed Interest & Convertible Stock, and Cash are

correlated with this. Bank Debt is the next most influential feature. Although an or-

dering is given to Management Fees, Charge to Capital and Admin Fees, it is difficult

to differentiate between them.

4.7.2 Results

The results of the application of the feature rankers as discussed in section 4.6 can be

seen in table 4.12. All metrics rate features 8 (Equities) and 9 (Split & High Yielding

Trusts) highly. This is in agreement with the expert-supplied rank. All measures apart

from FR rank 9 first, with feature 8 second. However, only the FR metric correctly

rates features 10 (Fixed Interest & Convertible Stock) and 11 (Cash) highly. After
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Feature Feature Expert-defined

Number Name Ordering

0 Bank Debt 2

1 Bank Interest Rate 6

2 Zero Dividend Preference Shares (ZDPs) 6

3 Income Shares 6

4 Capital Shares 6

5 Ordinary Income & Residual Capital Shares 6

6 Other Share Classes 6

7 Gross Assets 6

8 Equities 1

9 Split & High Yielding Trusts 1

10 Fixed Interest & Convertible Stock 1

11 Cash (estimate) 1

12 Debtors less Creditors 6

13 Total Dividends 6

14 Management Fees 4

15 Charge to Capital 3

16 Admin Fees 5

17 SORP Compliance 6

Table 4.11: Features in the trust crisis dataset

these attributes, FR ranks Bank Debt next. In fact, this is the only measure to detect

the importance of this feature.

Spearman’s rank correlation coefficient, denotedρ, is often used to determine the

nature of a relationship between two variables. This is useful here to examine the

correlation of each metric ranking with that of the expert’s ranking. The valueρ is

calculated in the following way:

ρ = 1− 6∑d2

n(n2−1)
(4.24)

whered is the difference between the ranks of the corresponding values of the vari-

ables, andn is the number of pairs of values. The values ofρ for the rankings produced

by each metric can be found in table 4.13. From this it can be seen that all metrics
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Feature Expert FR Re IG GR 1R χ2

8 1 0.205 0.130 0.146 0.150 78.5 18.2

9 1 0.169 0.183 0.309 0.363 83.9 51.0

10 1 0.158 0.036 0.0 0.0 77.6 0.0

11 1 0.109 0.040 0.0 0.0 73.2 0.0

0 2 0.102 0.013 0.0 0.0 76.7 0.0

15 3 0.0 0.036 0.0 0.0 77.6 0.0

14 4 0.0 0.020 0.0 0.0 77.6 0.0

16 5 0.0 0.003 0.0 0.0 77.6 0.0

1 6 0.062 0.062 0.0 0.0 75.0 0.0

2 6 0.099 0.012 0.0 0.0 75.8 0.0

3 6 0.0 0.009 0.0 0.0 75.8 0.0

4 6 0.0 0.008 0.0 0.0 76.7 0.0

5 6 0.023 0.014 0.0 0.0 74.1 0.0

6 6 0.0 0.004 0.0 0.0 77.6 0.0

7 6 0.0 0.006 0.0 0.0 71.4 0.0

12 6 0.007 0.007 0.0 0.0 75.8 0.0

13 6 0.088 0.005 0.0 0.0 75.0 0.0

17 6 0.031 0.085 0.001 0.001 77.6 0.126

Table 4.12: Feature ranker results for the trust crisis dataset

exhibit a positive correlation, with the fuzzy-rough metric resulting in the strongest

correlation.

FR Re IG GR 1R χ2

ρ 0.61249 0.58566 0.58772 0.58772 0.55624 0.58772

Table 4.13: Spearman’s rank correlation results

To determine the significance of these values, they must be compared with the

critical values ofρ with (n−2) degrees of freedom. At the 0.01, 0.02 and 0.05 levels

of significance the critical values are 0.625, 0.564 and 0.475 respectively for this data.

To illustrate what this means, consider the following example. If the value ofρ for

a set of data containing the same number of samples is 0.75, then it can be observed

that this is larger than the critical value ofρ at the 0.01 level of significance (0.625).
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It could then be concluded that the obtained value ofρ is likely to occur by chance

less than one time in a hundred (i.e. it is highly significant). All the metrics are above

the 0.05 level, but only the 1R metric falls below the 0.02 significance level. There is

less confidence that the correlation has not occurred by chance for 1R. The remainder

of the metrics fall between the 0.01 and 0.02 significance levels, with the FR metric

closest to the 0.01 level.

These results show that the FR metric is a useful gauger of information, producing

results very much in line with the expert ranking. Out of all the methods, FR appears

to produce an ordering of the features closest to the expert’s.

4.8 Summary

In this chapter, a method for feature selection based on fuzzy-rough sets has been

presented. An algorithm for finding feature subsets, based on the new fuzzy-rough de-

pendency measure, was introduced and illustrated by means of two simple examples.

The examples were chosen to demonstrate the fact that FRFS can be applied to datasets

containing crisp or real-valued features or a mixture of both. Implemented optimiza-

tions were briefly discussed that can significantly improve the runtime of FRFS. This

was demonstrated by comparing the execution times of the different implementations

on real-world data. One real-world and several artificial datasets were also used to

evaluate the utility of the fuzzy-rough measure and provide comparisons with other

leading feature importance measures. The results show that the new metric presented

here is slightly better than the leading measures at locating the relevant features.



Chapter 5

Developments of FRFS

This chapter discusses several FRFS-based developments. Firstly, a new area in fea-

ture selection, fuzzy set-based feature grouping, is presented. Although the method

given here is used within fuzzy-rough feature selection, it can be used with any feature

selector that employs a suitable evaluation function. Indeed, it may also be applied to

the standard crisp rough set-based method, RSAR. Also in this chapter, a novel frame-

work for selecting features via Ant Colony Optimization [21, 40] is detailed. This is

applied to finding optimal fuzzy-rough subsets, but can replace the search mechanism

for most feature selection methods.

5.1 Feature Grouping

By its definition, the degree of dependency measure (whether using crisp or fuzzy-

rough sets) always lies in the range [0,1], with 0 indicating no dependency and 1 in-

dicating total dependency. For example, two subsets of the conditional attributes in a

dataset may have the following dependency degrees:

γ′{a,b,c}(D) = 0.54, γ′{a,c,d}(D) = 0.52

In traditional rough sets, it would be said that the attribute set{a,b,c} has a higher

dependency value than{a,c,d} and so would make the better candidate to produce a

minimal reduct. This may not be the case when considering real datasets that contain

107
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noise and other discrepancies. In fact, it is possible that{a,c,d} is the best candidate

for this and other unseen related datasets. By fuzzifying the output values of the de-

pendency function this problem may be successfully tackled. In addition to this, attrib-

utes may begrouped at stages in the selection process depending on their dependency

label, speeding up the reduct search.

5.1.1 Fuzzy Dependency

In order to achieve this, several fuzzy sets must be defined over the dependency range

(for example, Fig. 5.1). This leads to the next problem area: how are these sets to be

defined? There is also the problem of how many fuzzy sets should be used to produce

the most useful results. Initially, these may be defined beforehand by an expert and

refined through experimentation. However, to fit in with the rough set ideology, it

would be interesting to investigate how to automatically generate these sets purely

from the dataset itself. This could be achieved through fuzzy clustering techniques

such as fuzzy c-means [17, 45], for example. For the time being, it is assumed that

these fuzzy sets have already been defined.

Small Med Large

1

0 0.5 1

Figure 5.1: Possible fuzzification of dependency

The goal of FRFS and RSAR is to find a (possibly minimal) subset of the condi-

tional attributes for which the dependency metric is at a maximum (ideally the value

1). In the case of fuzzy equivalence classes, where an element of uncertainty is intro-

duced, the maximum degree of dependency may be substantially less than this. In fact,

the maximum dependency for different datasets may be quite different due to differing
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levels of uncertainty. The maximum for datasetA may be 0.9 whereas for datasetB the

maximum may be only 0.2. Given a degree of dependency of 0.19, for datasetA this

is quite a small value but for datasetB this is quite large, so some way of scaling the

dependency value depending on the dataset is required.

5.1.2 Scaled Dependency

The following is one potential way of achieving this for a subsetP of all conditional

attributesC:

γ′′P(D) =
γ′P(D)

γ′
C
(D)

In the example above, the scaled dependency degree for datasetA is now 0.21

(which fuzzifies toSmall) and for datasetB is 0.95 (which fuzzifies toLarge). How-

ever, a further problem is encountered as the search for a reduct nears its conclusion.

In this situation, almost all of the dependency values are mapped toLarge due to their

underlying closeness in value. This means that too large a group of attributes will be

selected every time. Additionally, if the data is noisy it may be the case thatγ′′P(D) > 1

as the dependency degree of the full set of conditional attributes may be greater than

that of a particular attribute subset. An alternative scaling approach to combat both

of these problems is to use the extreme values at each level of search. As soon as the

reduct candidates have been evaluated, the highest and lowest dependencies (γ′high(D)

andγ′low(D)) are used as follows to scale the dependency degree of subsetP:

γ′′P(D) =
γ′P(D)−γ′low(D)

γ′high(D)−γ′low(D)

This type of expression is also called anindex [16]. By this method, the attribute subset

with the highest dependency value will have a scaled dependency (γ′′P(D)) of 1. The

subset with the lowest will have a scaled dependency of 0. In so doing, the definition

of the fuzzy sets need not be changed for different datasets; one definition should be

applicable to all.

The next question to address is how to handle those scaled dependencies that fall at

the boundaries. For example, a value may partially belong to bothSmall andMedium.

A simple strategy is to choose the single fuzzy label with the highest membership
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value. However, this loses the potentially useful information of dual fuzzy set mem-

bership. Another strategy is to take both labels as valid, considering both possibilities

within the feature selection process. If, for example, a dependency value lies within

the labelsSmall andMedium then it is considered to belong to both groups.

5.1.3 The Feature Grouping Algorithm

The new fuzzy-rough QUICKREDUCT algorithm (FQR) which employs scaling and

fuzzy dependencies can be seen in Fig. 5.2. In this algorithm,Cands contains sets

of attributes and their corresponding dependency degrees when added to the current

reduct candidate. Once each remaining attribute has been evaluated, the dependencies

are scaled according toγ′high andγ′low. Next, the decision is made on which feature(s) to

add to the current reduct. In the previous fuzzy-rough QUICKREDUCT algorithm, this

would amount to selecting the feature providing the highest gain in dependency de-

gree. Here, other strategies may be employed; for example, attributes may be selected

individually or in groups. This is discussed in more detail next.

Note that, in addition to applying this method to fuzzy-rough feature selection,

it may also be applied to crisp RSAR. Given a dataset containing crisp values, the

dependency values may be fuzzified similarly (with scaling) so that groups of attributes

may be selected at one time. The algorithm for this is exactly the same as the one given

in figure 5.2, except the dependency function used is now based on crisp rough sets.

Additionally, this may be applied to any feature selector where the result of subset

evaluation is a value in the range[0,1].

5.1.4 Selection Strategies

When using fuzzy degrees of dependency, it is possible to change strategy at any stage

of the attribute selection process. The main distinction to make in the set of possible

strategies is whether features are chosen individually or in groups.
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FUZZYQUICKREDUCT(C,D).
C, the set of all conditional attributes;
D, the set of decision attributes.

(1) R←{}; γ′best = 0; γ′prev = 0
(2) do

(3) Cands←{}
(4) γ′prev = γ′best

(5) γ′high = 0; γ′low = 1
(5) ∀x ∈ (C−R)
(6) T ← R∪{x}
(7) Cands←Cands∪ (x,γ′T (D))
(8) if γ′T (D) > γ′high

(9) γ′high = γ′T (D)

(10) else if γ′T (D) < γ′low

(11) γ′low = γ′T (D)
(12) Cands← scale(Cands,γ′high,γ

′
low)

(13) R← R ∪ selectFeatures(Cands)
(14) γ′best = γ′R(D)
(15) until γ′best == γ′prev

(16) return R

Figure 5.2: The new fuzzy-rough QUICKREDUCT algorithm with fuzzy dependencies

5.1.4.1 Individuals

In this subset of strategies, attributes are chosen one at a time in a similar fashion

to that of FRFS. However, the choice of attribute depends on its corresponding lin-

guistic label(s) and membership obtained from the dependency degree. In the example

fuzzification of dependency given in Fig. 5.1, attributes are grouped into the categor-

iesSmall, Medium andLarge. A representative attribute of the required label can be

chosen randomly or based on the extent to which the attribute belongs to the fuzzy set

itself. Those individual attributes lying on set boundaries are assigned both fuzzy la-

bels. Other issues include which particular group of attributes to consider. Intuitively,

it would seem most appropriate to consider those belonging to theLarge group only,

however it may be worthwhile investigatingSmall andMedium-grouped attributes at

different stages of the search process.
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5.1.4.2 Grouping

To speed up the reduct search process, many attributes may be added to a reduct can-

didate at once, according to their label. For instance, selecting only those attributes

considered to beLarge would appear to be a suitable strategy. It may also be beneficial

to add different groups of attributes at various stages of the search. To include di-

versity, cross-group selection is a method that picks representative attributes from each

fuzzy label and adds them to the reduct candidate. Again, strategies may be changed

during search; for example, it might be worthwhile using the cross-group strategy first,

followed by selectingLarge-grouped attributes later.

One problem encountered in grouping attributes in this way is that in later stages,

there are sometimes too many attributes in the required label. Therefore, it is usu-

ally best to revert to individual selection when this becomes a problem, making the

search more accurate. Alternatively, taking suitableα-cuts will limit the total number

selected.

5.1.5 Algorithmic Complexity

The complexity of this algorithm is the same as that of QUICKREDUCT, O((n2+n)/2).

This is because, in the worst case, the algorithm will add individual features (and not

groups), following the same route as the standard algorithm. However, when groups

of features are selected, certain areas of the QUICKREDUCT search space are avoided,

decreasing the time taken to find a reduct.

5.2 FRFS with Ant Colony Optimization

Swarm Intelligence (SI) is the property of a system whereby the collective behaviours

of simple agents interacting locally with their environment cause coherent functional

global patterns to emerge [21]. SI provides a basis with which it is possible to explore

collective (or distributed) problem solving without centralized control or the provi-

sion of a global model. For example, ants are capable of finding the shortest route

between a food source and their nest without the use of visual information and hence
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possess no global world model, adapting to changes in the environment. Those SI

techniques based on the behaviour of real ant colonies used to solve discrete optimiza-

tion problems are classed as Ant Colony Optimization (ACO) techniques [21]. These

have been successfully applied to a large number of difficult combinatorial problems

like quadratic assignment [107] and the travelling salesman [40] problem, to routing

in telecommunications networks, scheduling, and others.

ACO is particularly attractive for feature selection as there seems to be no heuristic

that can guide search to the optimal minimal subset every time. Additionally, it can be

the case that ants discover the best feature combinations as they proceed throughout

the search space. This section discusses how ant colony optimization may be applied

to the difficult problem of finding optimal feature subsets.

5.2.1 Ant Colony Optimization

The ability of real ants to find shortest routes is mainly due to their depositing of pher-

omone as they travel; each ant probabilistically prefers to follow a direction rich in

this chemical. The pheromone decays over time, resulting in much less pheromone on

less popular paths. Given that over time the shortest route will have the highest rate

of ant traversal, this path will be reinforced and the others diminished until all ants

follow the same, shortest path (the “system” has converged to a single solution). It is

also possible that there are many equally short paths - this situation can be handled by

ACO as well. In this situation, the rates of ant traversal over the short paths will be

roughly the same, resulting in these paths being maintained while others are ignored.

Additionally, if a sudden change to the environment occurs (e.g. a large obstacle ap-

pears on the shortest path), the system responds to this and will eventually converge to

a new solution. Further details on ACO algorithms and their evaluation can be found

in [21, 40]. In general, an ACO algorithm can be applied to any combinatorial problem

as far as it is possible to define:

• Appropriate problem representation. A description of the problem as a graph

with a set of nodes and edges between nodes.
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• Heuristic desirability (η) of edges. A suitable heuristic measure of the “good-

ness” of paths from one node to every other connected node in the graph.

• Construction of feasible solutions. A mechanism to efficiently create possible

solutions.

• Pheromone updating rule. A suitable method of updating the pheromone levels

on edges with a corresponding evaporation rule. Typical methods involve select-

ing then best ants and updating the paths they chose.

• Probabilistic transition rule. A mechanism for the determination of the probab-

ility of an ant traversing from one node in the graph to the next.

Each ant in the artificial colony maintains a memory of its history - remembering

the path it has chosen so far in constructing a solution. This history can be used in

the evaluation of the resulting created solution and may also contribute to the decision

process at each stage of solution construction.

Two types of information are available to ants during their graph traversal, local

and global, controlled by the parametersβ andα respectively. Local information is

obtained through a problem-specific heuristic measure. The extent to which this influ-

ences an ant’s decision to traverse an edge is controlled by the parameterβ. This will

guide ants towards paths that are likely to result in good solutions. Global knowledge is

also available to ants through the deposition of artificial pheromone on the graph edges

by their predecessors over time. The impact of this knowledge on an ant’s traversal

decision is determined by the parameterα. Good paths discovered by past ants will

have a higher amount of associated pheromone. How much pheromone is deposited,

and when, is dependent on the characteristics of the problem. No other local or global

knowledge is available to the ants in the standard ACO model. However, the inclusion

of such information by extending the ACO framework has been investigated [21] with

some success.
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5.2.2 Travelling Salesman Problem - An Example

To illustrate how this may be applied to artificial systems, the application of ACO to the

travelling salesman problem (TSP) [98] is presented here. The TSP is a combinatorial

optimization problem where, givenN cities and a distance functiond between cities, a

minimal tour that goes through every city exactly once is to be found.

The TSP is represented as a graph, with nodes representing cities and edges rep-

resenting journies between cities. The heuristic desirability of edge(i, j) is the inverse

of the distance between those cities (1/d(i, j)), wherei 6= j. Pheromone is increased

proportional to the inverse of the tour length. These two measures can be thought of

as providing different information about the problem: the heuristic measure provides

local information and pheromone global information. These are combined to form

the so-called probabilistic transition rule, denoting the probability of an ant in cityi

choosing to travel to cityj at timet:

pk
i j(t) =

[τi j(t)]
α.[ηi j]

β

∑l∈Jk
i
[τil(t)]α.[ηil]β

(5.1)

wherek is the number of ants,Jk
i the set ofk’s possible next cities,ηi j is the heuristic

desirability of choosing cityj when at cityi andτi j(t) is the amount of virtual pher-

omone on edge(i, j). The choice ofα andβ is determined experimentally. Typically,

several experiments are performed, varying each parameter and choosing the values

that produce the best results.

With this representation, a number of ants may be placed at nodes (cities) in the

graph and traverse edges to form a tour. The pheromone of the edges corresponding to

the best tours are reinforced, and a new set of ants make their way through the graph.

This process continues until an optimum has been discovered or a certain number of

generations of ants has been tried.

5.2.3 Ant-based Feature Selection

By following similar principles, the feature selection task may be reformulated into

an ACO-suitable problem. ACO requires a problem to be represented as a graph -

here nodes represent features, with the edges between them denoting the choice of the
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next feature. The search for the optimal feature subset is then an ant traversal through

the graph where a minimum number of nodes are visited that satisfies the traversal

stopping criterion. Figure 5.3 illustrates this setup - the ant is currently at nodea and

has a choice of which feature to add next to its path (dotted lines). It chooses featureb

next based on the transition rule, thenc and thend. Upon arrival atd, the current subset

{a,b,c,d} is determined to satisfy the traversal stopping criterion (e.g. a suitably high

classification accuracy has been achieved with this subset). The ant terminates its

traversal and outputs this feature subset as a candidate for data reduction.

b

d

a

e

f

c {a,b,c,d}

Figure 5.3: ACO problem representation for FS

A suitable heuristic desirability of traversing between features could be any subset

evaluation function - for example, an entropy-based measure [135] or the fuzzy-rough

set dependency measure [79]. Depending on how optimality is defined for the par-

ticular application, the pheromone may be updated accordingly. For instance, subset

minimality and “goodness” are two key factors so the pheromone update should be

proportional to “goodness” and inversely proportional to size. The transition rule is

the same as that given in equation (5.1), howeverJk
i in this case is the set of antk’s un-

visited features. There is also the possibility of allowing the removal of features here.

If featureh has been selected already, an alternative transition rule may be applied to

determine the probability of removing this attribute. However, this is an extension of

the approach and is not necessary to perform feature selection.
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5.2.3.1 Selection Process

The overall process of ACO feature selection can be seen in figure 5.4. The process

begins by generating a number of ants,k, which are then placed randomly on the graph

(i.e. each ant starts with one random feature). Alternatively, the number of ants to

place on the graph may be set equal to the number of features within the data; each ant

starts path construction at a different feature. From these initial positions, they traverse

edges probabilistically until a traversal stopping criterion is satisfied. The resulting

subsets are gathered and then evaluated. If an optimal subset has been found or the

algorithm has executed a certain number of times, then the process halts and outputs

the best feature subset encountered. If neither condition holds, then the pheromone is

updated, a new set of ants are created and the process iterates once more.

5.2.3.2 Complexity Analysis

The time complexity of the ant-based approach to feature selection isO(IAk), whereI

is the number of iterations,A the number of original features, andk the number of ants.

This can be seen from figure 5.4. In the worst case, each ant selects all the features. As

the heuristic is evaluated after each feature is added to the reduct candidate, this will

result inA evaluations per ant. After one iteration in this scenario,Ak evaluations will

have been performed. AfterI iterations, the heuristic will be evaluatedIAk times.

This method is attractive for feature selection as there seems to be no heuristic that

can guide search to the optimal minimal subset every time. Additionally, it should be

the case that ants will discover best feature combinations as they traverse the graph.

This information will be reflected in the pheromone matrix, used by other ants to guide

their own local search.

5.2.3.3 Pheromone Update

Depending on how optimality is defined for the particular application, the pheromone

may be updated accordingly. For instance, subset minimality and “goodness” are two

key factors so the pheromone update must be proportional to “goodness” and inversely

proportional to size.
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To tailor this mechanism to find fuzzy-rough set reducts, it is necessary to use the

dependency measure given in equation (4.11) as the stopping criterion. This means that

an ant will stop building its feature subset when the dependency of the subset reaches

the maximum for the dataset (the value 1 for consistent datasets). The dependency

function may also be chosen as the heuristic desirability measure, but this is not ne-

cessary. In fact, it may be of more use to employ a non-rough set related heuristic for

this purpose to avoid the pitfalls of a QUICKREDUCT style search. By using an altern-

ative measure such as an entropy-based heuristic [135], the method may avoid feature

combinations that may mislead the fuzzy-rough set-based heuristic. Again, the time

complexity of this fuzzy-rough ant-based method will be the same as that mentioned

earlier,O(IAk).

The pheromone on each edge is updated according to the following formula:

τi j(t +1) = (1−ρ).τi j(t)+∆τi j(t) (5.2)

where

∆τi j(t) =
n

∑
k=1

(γ′(Sk)/|Sk|) (5.3)

This is the case if the edge(i, j) has been traversed;∆τi j(t) is 0 otherwise. The value

ρ is a decay constant used to simulate the evaporation of the pheromone,Sk is the

feature subset found by antk. The pheromone is updated according to both the fuzzy-

rough measure of the “goodness” of the ant’s feature subset (γ′) and the size of the

subset itself. By this definition, all ants update the pheromone. Alternative strategies

may be used for this, such as allowing only the ants with the best feature subsets to

proportionally increase the pheromone.

5.2.3.4 Approach Comparison

Upon inspection, a number of similarities and differences can be observed between

the approaches described previously. In the genetic and ant-based FS, a population

of potential solutions are considered on each algorithmic cycle. In the genetic case,

this population is evaluated and then used to produce the next population. However
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in the ant-based case, each population is erased after generation; the only lasting ef-

fect the population has is in the updated pheromone levels which are used in the next

generation cycle. Simulated annealing-based FS (discussed in section 2.2.4) considers

an individual solution candidate only. New candidates are produced by mutating the

current solution, in a similar manner to genetic FS. The extent of mutation decreases

with time, allowing convergence to a single, hopefully optimal, solution. All of these

approaches employ a certain degree of randomness in their search for optimal subsets.

5.3 Summary

This chapter has presented a new direction in feature selection, namely feature group-

ing. It was shown how fuzzifying particular evaluation functions, the fuzzy-rough or

crisp rough set dependency degree, can lead to group and individual selection based

on linguistic labels - more closely resembling human reasoning. In fact, this can be

applied to most FS algorithms that use an evaluation function that returns values in

[0,1] . Choosing grouped features instead of individuals also decreases the time taken

to reach potentially optimal subsets.

Conventional hill-climbing approaches to feature selection often fail to find min-

imal data reductions. Some guiding heuristics are better than others for this, but as no

perfect heuristic exists there can be no guarantee of optimality. When minimal data

reductions are required, other search mechanisms must be employed. Although these

methods also cannot ensure optimality, they provide a means by which the best feature

subsets might be found. This chapter has presented a new method for feature selec-

tion based on ant colony optimization for this purpose. Unlike semantics-destroying

approaches, clearly this approach maintains the underlying semantics of the feature

set, thereby ensuring that the resulting models are interpretable and the inference ex-

plainable. This is evident from the application of FRFS to the problem domains. In

particular, for complex systems monitoring (chapter 7) where fuzzy rule induction is

performed, the resulting ruleset is highly comprehensible.



Chapter 6

Application to Web Content

Categorization

Due to the explosive growth of electronically stored information, automatic methods

must be developed to aid users in maintaining and using this abundance of inform-

ation effectively. Sorting through even a fraction of the available data by hand can

be very difficult. In particular, the sheer volume of redundancy present must be dealt

with, leaving only the information-rich data to be processed. Information filtering and

retrieval systems are therefore acquiring increasing prominence as automated aids in

quickly sifting through web-based information. This chapter focuses on the application

of FRFS to this task of automatic web data classification. Two tasks are considered:

bookmark categorization and web page categorization.

6.1 Text Categorisation

Text categorisation (TC) has often been defined as the content-based assignment of

one or more predefined categories to text. As stated in [117], it has become important

from two points of view. Firstly, it is important from the Information Retrieval (IR)

viewpoint because of the rapid growth of textual information sources, which requires a

greater amount of information processing. Text categorisation can be used as a means

to efficiently classify this textual data, or to provide support to further IR processes by

121



122 Chapter 6. Application to Web Content Categorization

performing such tasks as document filtering or information extraction. Secondly, it is

important from the Machine Learning (ML) viewpoint as text categorisation provides

ML with an application field. The approach that ML takes in automatic categorisation

is to generate a means of classification by the use of induction over examples that have

been categorised previously (a form of supervised learning).

The categorisation of textual documents involves two main phases: training and

classification. The training phase involves examining sample documents and retrieving

those keywords deemed important. These sets of keywords are large, rendering most

text classifiers intractable, so a feature selection step is performed. Induction is carried

out, and a means of classifying future data is the output. The classification phase uses

the classification means from the training process to classify new documents. Several

methods exist for this purpose. An outline of these is given below; details can be found

in [77, 183].

6.1.1 Rule-based

For rule-based approaches to classification, a set of rules and an appropriate classifier

are required. Each individual rule has a set of preconditions and an associated decision.

If a document matches the preconditions, then it is classified according to the decision

value.

A simple form of this is the Boolean Exact Model [145] which employs exact

boolean existential rules. The problem with this is that it is inflexible - only documents

for which the rule returns true match the rule. The Boolean Inexact Model (BIM)

[145, 146] bypasses this problem by providing a scoring mechanism so that the rule

with the highest score classifies the document. If a term exists in a document and is

also present in the corresponding rule, then the score for that rule is increased. If there

is more than one rule that fires then all rules must agree on the classification. If there

is a conflict, then the classification is undecidable.

The main advantage of BIM is that it is fast (the computations involved are simple).

It can also be quite accurate. A drawback is that words can have many meanings -

something that the BIM cannot differentiate.

Fuzzy classifiers are another rule-based technique for classification. These follow
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the usual approach for the construction of fuzzy rule-based systems [128]. All precon-

dition memberships are evaluated, and the necessary logical conjunctions integrated

using the conventional minimum operator to derive classifications of new data.

6.1.2 Vector-based

The Vector Space Model (VSM) [183, 144] considers document representatives as bin-

ary vectors embedded in ann-dimensional Euclidean space (n is the total number of

keywords). As there tends to be a large number of keywords involved, the dimension-

ality is also very high.

Each document and query is represented as a point in the space. To obtain the

document vector, the keywords contained in the document are obtained and ranked

according to their weight in the document. They are then converted to a vector. Any

missing keywords (according to the universal keyword set) are marked as absent.

The procedure itself can be divided into three stages. The first stage is document in-

dexing, where content bearing terms are extracted from the document text. The second

stage is the weighting of the indexed terms to enhance retrieval of documents relevant

to the user. The last stage ranks the document with respect to the query according to the

similarity measure. The similarity measure used here is the cosine coefficient, which

measures the angle between the rule vectorx and the query vectorq, and is defined as:

Sim(x,q) =
∑|C|i=1xi ·qi

√

∑|C|i=1(xi)2 ·∑|C|i=1(qi)2
(6.1)

There are a number of disadvantages with the VSM. There is the lack of justifica-

tion for some of the vector operations (for example, the choice of similarity function

and the choice of term weights). It is barely a retrieval model as it does not explicitly

model relevance. There is also the assumption that a query and a document can be

treated the same. However, the simplicity of the model is attractive - probably why it

is the most popular retrieval model today.
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6.1.3 Latent Semantic Indexing

Latent Semantic Indexing is a variant of the vector retrieval model outlined above

which takes into account the dependencies between terms [44, 37]. Unlike other mod-

els, LSI treats words as if they are not independent of each other; it attempts to auto-

matically derive and model inter-relationships between them.

The term-document matrix can be considered to be a “bag of documents” and is

split into a set ofk orthogonal factors. Similarity is computed in the following way:

1. Choosek (not greater than the number of terms or documents),

2. Add the weighted vectors for each term - multiply each vector by term weight -

sum each element separately,

3. Repeat for query or second document, and

4. Compute inner product - multiply corresponding elements and add.

An advantage that LSI has is that it reduces the original number of dimensions.

Vectors that are similar are assigned to similar terms. This composite term is then

mapped to a single dimension. However, as with most retrieval models, words with

similar meanings confound LSI. Also, the computations required are expensive but a

lot of this is carried out in advance.

6.1.4 Probabilistic

Another classic retrieval and classification method is the probabilistic retrieval tech-

nique [55], where the probability that a specific document will be judged relevant to a

specific query, is based on the assumption that the terms are distributed differently in

relevant and non relevant documents. The probability formula is usually derived from

Bayes’ theorem. Given a particular documentx and a set of categories, the probabil-

ity of x belonging to each category in the category set is calculated. The document is

classified into the category that produced the highest probability.
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6.1.5 Term Reduction

In text categorisation, the high dimensionality of the term space can be problematic,

so some form of DR is employed. This can also be beneficial as it tends to reduce

overfitting, where a classifier is tuned also to the contingent, rather than just the neces-

sary characteristics of the training data [151]. It is quite often the case that the training

data undergoesseveral stages of feature reduction, the final one being feature subset

selection. The following measures and techniques are the main DR pre-processors to

subset selection:

• Stop Word Removal. This is a simple technique for removing very information-

poor terms. Stop words are connectives such as articles (’the’,’a’,’an’, etc.) and

contribute very little (if anything) to the classification of documents. Care must

be taken when adopting this approach as it is feasible that some information-rich

words might be mistakenly viewed as stop words.

• Document Frequency. Again, this is a simple and effective reduction strategy

[3]. It has been shown that the most informative terms are those with low to

medium document frequency. By removing those attributes that occur the most

(and to some extent those that occur rarely), the dimensionality of the document

is reduced with no or little loss in information. To make this effective stop words

should be removed beforehand, otherwise only topic-neutral words may remain

after reduction.

• Word Stemming. Word suffixes are removed, leaving only the root of the word.

This is an attempt to reduce words with similar meanings to the same root, for

exampleretailing andretailer both contain the same root, namelyretail. This is

not guaranteed to work, however, as many words with different meanings share

a common root.

• Other Functions. There has been much research into using sophisticated information-

theoretic term selection functions, such as chi-square [160] and correlation coef-

ficient [118]. These functions have been shown to produce better results than

document frequency.
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Most text classification systems use one or more of the above DR techniques. For

example, in the studies presented here, document frequency and stop word removal

were implemented in performing a degree of initial data reduction. However, the use

of this alone is insufficient to provide the extent of reduction required for efficient

keyword search. Further reduction must take place by the use of feature selectors in

order to remove the many remaining information-poor features.

6.2 System Overview

The World Wide Web (WWW) is an information resource, whose full potential may

not be realised unless its content is adequately organised and described. This not only

applies to the vast network of web pages, but also to users’ personal repositories of

web page bookmarks. However, due to the immense size and dynamicity of the web,

manual categorization is not a practical solution to this problem. There is a clear need

for automated classification of web content.

To demonstrate the applicability of the described fuzzy-rough methods, two relev-

ant domains of interest regarding the web were selected, namely bookmark classifica-

tion and website classification. However, these domains are quite distinct, possessing

features and problems that must be independently addressed. This section will initially

present those features that are common to both before focusing on domain-dependent

issues.

Both applications employ a similar general system architecture in order to reduce

dimensionality and perform categorization. A key issue in the design of the system was

that of modularity; it should be modelled in such a way as to enable the straightfor-

ward replacement of existing techniques with new methods. The current implement-

ations allow this flexibility by dividing the overall process into several independent

sub-modules (see figure 6.1):

• Splitting of Training and Testing Datasets. Datasets were generated from large

textual corpora and separated randomly into training and testing sets. Each data-

set is a collection of documents, either bookmarks or web pages depending on

the application.



6
.2

.
S

y
s
te

m
O

ve
rv

ie
w

1
2

7

TRAINING

TESTING

DatasetAcquisition

Keyword Keyword

Filtering

Keyword

Reduced

Keywords

Dataset

Reduced

Classifier

Acquisition Dataset

KeywordKeyword

Dataset

Reduced

Selection

Keyword

New

Data

Data

Training

Figure 6.1: Modular decomposition of the classification system



128 Chapter 6. Application to Web Content Categorization

• Keyword Acquisition. Given the output from the previous module, keywords/terms

are extracted and weighted according to their perceived importance in the doc-

ument, resulting in a new dataset of weight-term pairs. Note that in this work,

no sophisticated keyword acquisition techniques are used as the current focus of

attention is on the evaluation of attribute reduction. However, the use of more

effective keyword acquisition techniques recently built in the area of information

retrieval would help improve the system’s overall classification performance fur-

ther.

• Keyword Selection. As the newly generated datasets can be too large, mainly due

to keyword redundancy, to perform classification at this stage, a dimensionality

reduction step is carried out using FRFS. If this step is preceded by a discretiza-

tion phase, RSAR may also be applied to the data.

• Keyword Filtering. Used only in testing, this simple module filters the keywords

obtained during acquisition, using the reduct generated in the keyword selection

module.

• Classification. This final module uses the reduced dataset to perform the actual

categorization of the test data. More efficient and effective classifiers can be

employed for this, but for simplicity only conventional classifiers are adopted

here to show the power of attribute reduction. Better classifiers are expected to

produce more accurate results, though not necessarily enhance the comparisons

between classifiers that use reduced or unreduced datasets.

6.3 Bookmark Classification

As the use of the World Wide Web becomes more prevalent and the size of personal

repositories grows, adequately organising and managing bookmarks becomes crucial.
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Several years ago, in recognition of this problem, web browsers included support for

tree-like folder structures for organising bookmarks. These enable the user to browse

through their repository to find the necessary information. However manual Uniform

Resource Locater (URL) classification and organisation can be difficult and tedious

when there are more than a few dozen bookmarks to classify - something that goes

against the whole grain of the bookmarking concept.

Many usability studies (e.g. [96]) indicate that a deep hierarchy results in less effi-

cient information retrieval as many traversal steps are required, so users are more likely

to make mistakes. Users also do not have the time and patience to arrange their collec-

tion into a well-ordered hierarchy. The present work can help extract information from

this relatively information-poor domain in order to classify bookmarks automatically.

6.3.1 Existing Systems

As this area of research is relatively new, there has been very little research carried out.

Most bookmark utilities provide no means of automatic classification; the systems

outlined here are the only ones known with such functionality.

6.3.1.1 Bookmark Organiser

Bookmark Organiser (BO) [106] is an application that attempts to provide automatic

assistance in organising bookmark repositories by their conceptual categories. It can

operate in two modes:

1. Fully Automatic: If the user does not know which category the bookmark be-

longs to, they can request BO to insert it in the relevant folder by applying an

automatic clustering technique to the document to which it refers.

2. Semi Automatic: In this case, the user specifies the node into which to insert

the new bookmark. They can now request the bookmarks to be re-organised

automatically.

Bookmarks are organised by applying the Hierarchical Agglomerative Clustering

(HAC) technique to the text contained within the document the bookmark refers to.

This is outlined below:
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• Start with a set of singleton clusters, each contains one object

• Repeat the following steps iterativelyuntil there is only one cluster

– Identify the two clusters that are the most similar

– Merge them together into a single cluster

This system constructs folders based on the text in the document, which should give

a clear indication as to the category to which it belongs, and also enables automatic and

semi-automatic classification (a useful feature). However, the automatically-generated

folder titles are quite unclear and often meaningless to the user.

6.3.1.2 PowerBookmarks

This semi-structured database application (as reported in [99]) aims to provide person-

alised organisation and management of bookmarks in a multi-user environment.

POWERBOOKMARKS automatically classifies documents by content; it parses metadata

from bookmarked URLs to index and classify them. The metadata in this case is auto-

matically generated from the document that the bookmark refers to, essentially a sum-

mary of the information the document contains. It avoids the verbose labelling problem

encountered in BO by using existing classifiers with manually selected labels (for ex-

ample “Sports/Football”). Significant keywords are extracted from documents accord-

ing to the word frequency analysis. Queries are then issued to an external classifier,

the results of which are processed to ensure consistency with existing classifications.

6.3.2 The Implemented System

A large set of bookmarks was used as the training dataset. This database was gen-

erated by collating various online bookmark lists into one uniform collection. Each

bookmark is pre-classified into a relevant category (for example, “Sports” or “Com-

puting/Java”). An additional testing dataset of “unseen” bookmarks was also compiled

from online resources. To clarify the operation of the system, an example is included.

The following bookmark is one of many contained in the database of bookmarks under
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the categoryProgramming/Java:

<A HREF="http://java.sun.com/Performance/">

Ways to Increase Java Performance</A>

The two previously outlined methods require information in addition to that stored

in the bookmark database. Both require further processing of the documents referred

to by the bookmarks. The sorting system developed here relies solely on the inform-

ation contained within the bookmark database itself - no other information is used to

determine the feature reductions or classifications. The system is modular in structure,

allowing various sub-components to be replaced with alternative implementations if

the need arises. The main modules areKeyword Acquisition, Feature Selection and

Classification.

6.3.2.1 Keyword Acquisition

To retain as much information as possible, all fields residing within the bookmark data-

base are considered. For every bookmark, the URL is divided into its slash-separated

parts, with each part regarded as a keyword. In a similar fashion, the bookmark title is

split into terms with stop words removed.

In order to compare the similarity of bookmarks, a suitable representation must

be chosen. Each bookmark is considered to be a vector where theith element is the

weight of termi according to some weighting method (a metric). The size of the vector

is equal to the total number of keywords determined from the training documents.

This module produces weight-term pairs given a dataset. Each encountered word in

a URL or title field is assigned a weight according to the metric used. Several metrics

were implemented for this purpose:

• Boolean Existential Metric. All keywords that exist in the document are given a

weight of 1, those that are absent are assigned 0 [145].

• Frequency Count Metric. The normalized frequency of the keywords in the doc-

ument is used as the weight [146].
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• TF-IDF. The Term Frequency-Inverse Document Frequency Metric [147] as-

signs higher weights to those keywords that occur frequently in the current

document but not in most others. It is calculated using the formula:w(t, i) =

Fi(t)× log N
Nt

whereFi(t) is the frequency of termt in documenti, N is the num-

ber of documents in the collection, andNt is the total number of documents that

containt.

For the example bookmark, the keywords{java,sun,com,performance} are ob-

tained from the URL, and the keywords{ways,increase,java,performance} from the

title field. Using the simple boolean existential metric, the vector elements relating to

these keywords will each contain the value 1, the remainder 0.

The resulting sets of weight-term pairs, no matter which keyword acquisition met-

ric is adopted, are large in size and need to be greatly reduced to be of any practical

use for classification. Hence, the next step: dimensionality reduction.

6.3.2.2 Dimensionality Reduction

Given the weight-term sets, this module aims to significantly reduce their size whilst

retaining their information content and preserving the semantics of those remaining

keywords. FRFS is applied here to achieve this goal. Once a reduct has been calcu-

lated, the dataset can then be reduced by deleting those attributes that are absent from

the reduct. The reduced dataset is now in a form that can be used by the classification

module.

Returning to the example, it may be decided by this module that the term “com”

provides little or no useful information. The column relating to this term is removed

from the main dataset. This process is repeated for all keywords deemed by FRFS to

be information-poor.

6.3.2.3 Classification

This module attempts to classify a given bookmark or bookmarks using the reduced

keyword datasets obtained by the feature selection stage. Each bookmark has been

transformed into a weight-term vector by the keyword acquisition process. For in-
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vestigation purposes, two different inference techniques were implemented to perform

classification: the Boolean Inexact Model and the Vector Space Model.

To illustrate the operation of the classification methods, consider the training and

testing vectors presented in figure 6.2. The training data consists of two objects, one

classified to the “Sport” category, the other classified to “News”. Values in the vector

represent the frequency of occurrence of terms in the training item.

??

Training

Testing

NewsNews

SportSport0 1 0 0 1 1 0 0 1

01111

0 1 1 0 1

1 0 1

1 1 0 1000

1 0 0 1 1 0 0

Figure 6.2: Training and testing vectors

For BIM classification, the training data (viewed as rules) is used to classify the

new object by comparing term values in the vectors and incrementing a score if they

are the same. Classifying using the first object results in a score of 10/12, as 10 of

the term values match this training object. With the second object, a score of 7/12 is

produced. Hence, for this example, the test object is classified to the “Sport” category.

In VSM, the similarity measure defined in equation (6.1) is used to determine the

closeness of the test object to the training examples. For the first training item, the

computed similarity is(5/
√

6 ·6) = 0.83. For the second item, the similarity is cal-

culated to be(4/
√

7 ·6) = 0.62. Again, the test object is determined to belong to the

“Sport” category.
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6.3.3 Results

The experiments presented here attempt to test whether FRFS is a useful tool for re-

ducing data whilst retaining the information content. For this domain, the FRFS ap-

proach produces exactly the same results as the crisp RSAR approach as all equival-

ence classes are crisp. Random-reduct (RR) generation (i.e. generating reducts ran-

domly) was used to compare the results. This method deletes random attributes from

the dataset, but is constrained to leave the same number of attributes present as the

FRFS method. The results of these approaches can be found in table 6.2.

Attributes Attributes

Dataset (URL) (Title)

Unreduced 1397 1283

FRFS-reduced 514 424

Table 6.1: Comparison of the original number of features (Unreduced) with those res-

ulting from FRFS reduction

It can be seen from table 6.1 that using the present work, the amount of attributes

was reduced to around 35% of the original. This demonstrates the large amount of

redundancy present in the original datasets. In light of the fact that bookmarks contain

very little useful information, the results are a little better than anticipated.

Dataset VSM BIM

Unreduced 55.6% 49.7%

FRFS-reduced 49.1% 47.3%

RR-reduced 37.3% 34.9%

Table 6.2: Comparison of reduction strategies with the unreduced dataset

A comparison of the performance of the dimensionality reduction techniques is

presented in table 6.2. The table shows that the overall accuracy is poor (obviously, the

random reduction gives worst results). The main point to make here is that the ability

of the system to classify new data depends entirely on the quality (and to a certain

extent the quantity) of the training data. It cannot, in general, be expected that the
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FRFS-reduced experiments should perform much better than the original unreduced

dataset, which itself only allows a rather low classification rate.

In light of the fact that bookmarks contain very little useful information, the results

are unsurprising and perhaps a little better than anticipated. As stated earlier, the goal

is to investigate how useful fuzzy-rough feature selection is in reducing the training

dataset.

It is interesting to compare how the use of reduced datasets may affect the classific-

ation accuracy as compared to that of the unreduced dataset. Importantly, the perform-

ance of the reduced dataset is almost as good as the original. Although a very small

amount of important information may have been lost in the attribute reduction, this in-

formation loss is not significant enough to reduce classification accuracy significantly,

while the reduction of dimensionality is substantial.

Results clearly show that FRFS (and RSAR) can be used to significantly reduce

the dimensionality of the training dataset without much loss in information content.

The measured drop in classification accuracy was 2.4% (using BIM) and 6.5% (using

VSM) for the training dataset, which is within acceptable bounds.

6.4 Website Classification

There are an estimated 1 billion web pages available on the WWW with around 1.5

million web pages being added every day [68]. The task to find a particular web page,

which satisfies a user’s requirements by traversing hyper-links, is very difficult. To

aid this process, many web directories have been developed - some rely on manual

categorization whilst others make decisions automatically. However, as web page con-

tent is vast and dynamic, manual categorization is becoming increasingly impractical.

Automatic web site categorization is therefore required to deal with these problems.

6.4.1 Existing Systems

Very recently, research has been carried out into this complex text classification area.

In fact, it has given rise to specific techniques for problems such as indexing, term

selection etc as web pages can be considered to be a special kind of document. Web



136 Chapter 6. Application to Web Content Categorization

pages contain text much like any other document, but the fact that they contain pointers

to other documents makes them an interesting area for research.

An indexing technique specific to these documents has been proposed by [5]. A

web page tends to have many other pages pointing towards it. The authors reason that

these documents can be combined forming an artificial document which can be con-

sidered to be a compilation of “short reviews” of the Web page. It is this compilation

that is used in classification, not the original document.

Another indexing technique has been put forward [56], where a document repres-

entation is obtained by the combined indexing of both the original document and its

children (the documents that it points to). This is of interest for Web site classification,

as often the children of a document contain relevant information for the site as a whole.

The topic of indexing is not the only one to have been investigated - different meth-

ods of classifier induction have been proposed. In [26], a web page categorisation

approach was developed based on the hypothesis that for each document-classification

pair(d,c), two values can be associated; the authoritya(d,c) and the hub valueh(d,c).

The authority value is a measure of the “authoritativeness” ofd on c in terms of the

number ofc-related pages pointing to it. The hub value measures the “informative-

ness” ofd on c in terms of how manyc-related documents it pointsto. Therefore, the

purpose of this system is to identify then most authoritative and then most informative

documents that are associated with the document, given a classificationc. By issuing

a queryc to ALTAV ISTA, an initial set of relevant documents is obtained, giving a

starting point for the induction algorithm.

A method for the induction of classifiers for hierarchical category sets was de-

veloped in [142], using neural networks to achieve this. The system is composed of

two networks:gating andexpert. A gating network for a categoryci is a neural net-

work that decides if a documentd j might be a plausible candidate for categorisation

under any child categories ofci. Documentd j is propagated to all child nodes ofci if

the decision is positive, otherwise no propagation takes place. An expert network for

ci simply decides whether documentd j should be classified toc j. A classification tree

consisting of gating or expert networks is used for document classification; leaf nodes

are expert networks, internal nodes may be gating or expert. This allows a document
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to be classified under internal nodes and leaf nodes simultaneously.

6.4.2 The Implemented System

There is usually much more information contained in a web document than a book-

mark. Additionally, information can be structured within a web page that may indicate

a relatively higher or lower importance of the contained text. For example, terms ap-

pearing within a<TITLE> tag would be expected to be more informative than the ma-

jority of those appearing within the document body at large. Because of this, keywords

are weighted not only according to their statistical occurrence but also to their location

within the document itself. These weights are almost always real-valued, which can be

a problem for most feature selectors unless data discretisation takes place (a source of

information loss). This motivates the application of FRFS to this domain.

Keywords/Features

Figure 6.3: Keyword extraction

The training and testing datasets were generated using Yahoo [192]. Five classi-

fication categories were used, namely Art & Humanity, Entertainment, Computers &

Internet, Health, Business & Economy. A total of 280 web sites were collected from

Yahoo categories and classified into these categories, 56 sites per category resulting

in a balanced dataset. From this collection of data, the keywords, weights and corres-

ponding classifications were collated into a single dataset (see figure 6.3).
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6.4.3 Results

For this set of experiments, FRFS is compared with the crisp RSAR approach. As

the unreduced dataset exhibits high dimensionality (2557 attributes), it is too large to

evaluate (hence the need for keyword selection). Using crisp RSAR the original attrib-

ute set was reduced to 29 (1.13% of the full set of attributes). However, using FRFS

the number of selected attributes was only 23 (0.90% of the full attribute set). It is

interesting to note that the FRFS reduct and crisp RSAR reduct share four attributes in

common. With such a large reduction in attributes, it must be shown that classification

accuracy does not suffer in the FRFS-reduced system.

In addition to the classification accuracy, the precision of the system is also presen-

ted. Precision is defined here to be the ratio of the number of correctly classified docu-

ments to the total number of correctly and incorrectly classified documents (expressed

as a percentage). This differs from the classification accuracy, in that the accuracy also

considers documents that have not been able to be classified by the system.

To see the effect of dimensionality reduction, the system was tested on the original

training data first and the results are summarised in table 6.3. The results are averaged

over all the classification categories. Clearly, the fuzzy method exhibits better precision

and accuracy rates. This performance was achieved using fewer attributes than the

crisp approach.

Method Attributes Average Precision Average Accuracy

Original 2557 - -

Crisp 29 73.7% 76.2%

Fuzzy 23 78.1% 83.3%

Table 6.3: Performance: training data (using VSM)

Table 6.4 contains the results for experimentation on 140 previously unseen web

sites. For the crisp case, the average precision and accuracy are both rather low. With

FRFS there is a significant improvement in both the precision and classification accur-

acy. Again, this more accurate performance is achieved while using fewer attributes.

It must be pointed out here that although the testing accuracy is rather low, this is
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Method % Original Classifier Average Average

Attributes Precision Accuracy

Crisp 1.13 BIM 23.3% 11.7%

VSM 45.2% 50.3%

Fuzzy 0.90 BIM 16.7% 20.0%

VSM 74.9% 64.1%

Table 6.4: Performance: unseen data

largely to do with the poor performance of the simple classifiers used. The fact that

VSM-based results are much better than those using BIM-based classifiers shows that

when a more accurate classification system is employed, the accuracy can be consider-

ably improved with the involvement of the same attributes. Nevertheless, the purpose

of the present experimental studies is to compare the performance of the two attribute

reduction techniques, based on the common use of any given classifier. Thus, only

the relative accuracies are important. Also, the FRFS approach requires a reasonable

fuzzification of the input data, whilst the fuzzy sets are herein generated by simple

statistical analysis of the dataset with no attempt made at optimizing these sets. A

fine-tuned fuzzification will certainly improve the performance of FRFS-based sys-

tems [109].

Finally, it is worth noting that the classifications were checked automatically. Many

websites can be classified to more than one category, however only the designated

category is considered to be correct here.

6.5 Summary

This chapter has presented a fuzzy-rough method to aid the classification of web con-

tent, with promising results. In many text categorisation problems, feature weights

within datasets are real-valued, posing a problem for many feature selection methods.

FRFS can handle this type of data without the need for a discretising step beforehand.

In particular, whilst retaining less attributes than the conventional crisp rough set-based

technique, the work resulted in an overall higher classification accuracy.





Chapter 7

Application to Complex Systems

Monitoring

The ever-increasing demand for dependable, trustworthy intelligent diagnostic and

monitoring systems, as well as knowledge-based systems in general, has focused much

of the attention of researchers on the knowledge-acquisition bottleneck. The task

of gathering information and extracting general knowledge from it is known to be

the most difficult part of creating a knowledge-based system. Complex application

problems, such as reliable monitoring and diagnosis of industrial plants, are likely to

present large numbers of features, many of which will be redundant for the task at

hand [130, 152]. Additionally, inaccurate and/or uncertain values cannot be ruled out.

Such applications typically require convincing explanations about the inference per-

formed, therefore a method to allow automated generation of knowledge models of

clear semantics is highly desirable.

The most common approach to developing expressive and human readable rep-

resentations of knowledge is the use of if-then production rules [93]. Yet, real-life

problem domains usually lack generic and systematic expert rules for mapping fea-

ture patterns onto their underlying classes. The present work aims to induce low-

dimensionality rulesets from historical descriptions of domain features which are often

of high dimensionality. In particular, a recent fuzzy rule induction algorithm (RIA), as

first reported in [28], is taken to act as the starting point for this. The premise attributes

141
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of the induced rules are represented by fuzzy variables, facilitating the modelling of

the inherent uncertainty of the knowledge domain. It should be noted, however, that

the flexibility of the system discussed here allows the incorporation of almost any rule

induction algorithm that uses descriptive set representation of features. The choice

of the current RIA is largely due to its recency and the simplicity in implementation.

Provided with sets of continuous feature values, the RIA is able to induce classification

rules to partition the feature patterns into underlying categories.

There exists a number of approaches relevant to the rule induction task at hand,

both from the point of view of applications and that of computational methods. For

example, the FAPACS (Fuzzy Automatic Pattern Analysis and Classification System)

algorithm documented in [6, 27] is able to discover fuzzy association rules in rela-

tional databases. It works by locating pairs of features that satisfy an ‘interestingness’

measure that is defined in terms of an adjusted difference between the observed and

expected values of relations. This algorithm is capable of expressing linguistically

both the regularities and the exceptions discovered within the data. Modifications to

the Fuzzy ID3 (itself an augmentation of Quinlan’s original ID3 [135]) rule induction

algorithm have been documented [61] to better support fuzzy learning. In a similar

attempt, [69] has proposed modifications to decision trees to combine traditional sym-

bolic decision trees with approximate reasoning, offered by fuzzy representation. This

approach redefines the methodology for knowledge inference, resulting in a method

best suited to relatively stationary problems.

A common disadvantage of these techniques is their sensitivity to high dimension-

ality. This may be remedied using conventional work such as Principal Components

Analysis (PCA) [38, 50]. As indicated previously, although efficient, PCA irrevers-

ibly destroys the underlying semantics of the feature set. Further reasoning about the

derivation from transformed principal features is almost always humanly impossible.

Most semantics-preserving dimensionality reduction (or feature selection) approaches

tend to be domain specific, however, relying on the use of well-known features of the

particular application domains.

In order to speed up the RIA and reduce rule complexity, a preprocessing step is

required. This is particularly important for tasks where learned rulesets need regular
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updating to reflect the changes in the description of domain features. This step re-

duces the dimensionality of potentially very large feature sets while minimising the

loss of information needed for rule induction. It has an advantageous side-effect in

that it removes redundancy from the historical data. This also helps simplify the design

and implementation of the actual pattern classifier itself, by determining what features

should be made available to the system. In addition, the reduced input dimensionality

increases the processing speed of the classifier, leading to better response times. Most

significant, however, is the fact that fuzzy-rough feature selection (FRFS) preserves

the semantics of the surviving features after removing any redundant ones. This is

essential in satisfying the requirement of user readability of the generated knowledge

model, as well as ensuring the understandability of the pattern classification process.

This chapter is structured as follows. The first section describes the operation of

the fuzzy RIA adopted here, with a simple example of how FRFS can aid this process.

Next, the problem domain is described, with the key factors that motivate the use of

feature selection detailed. Additionally, key areas that need to be addressed within

the monitoring system are discussed. Experimental analysis, including comparisons

with other feature selection methods and RIAs, is presented next. The application of

feature grouping and ACO-based fuzzy-rough feature selection to this domain is also

investigated.

7.1 Fuzzy Rule Induction and Feature Selection

For self-containedness, a brief overview of the RIA given in [28] is provided here.

For simplicity in outlining this induction procedure the dataset given in section 4.4.2

is used. There are three features each with corresponding linguistic terms, e.g.a has

termsA1, A2 andA3. The decision featurePlan is also fuzzy, separated into three

linguistic decisionsX , Y andZ.

The algorithm begins by organising the dataset objects into subgroups according

to their highest decision value. Within each subgroup, the fuzzy subsethood [88, 199]

is calculated between the decisions of the subgroup and each feature term. Fuzzy

subsethood is defined as follows:
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S(A,B) =
M(A∩B)

M(A)
=

∑u∈U min(µA(u),µB(u))

∑u∈U µA(u)
(7.1)

From this, the subsethood values listed in table 7.1 can be obtained.

Plan Linguistic term

A1 A2 A3 B1 B2 B3 C1 C2

X 1 0.1 0 0.71 0.43 0.14 0.52 0.76

Y 0.33 0.58 0.29 0.42 0.58 0.04 0.13 0.92

Z 0.14 0.64 0.29 0.32 0.61 0.14 0.82 0.25

Table 7.1: Subsethood values between conditional feature terms and the decision terms

For instance,S(X ,A1) = 1 is obtained by examining the subgroup of objects that be-

long to the decisionX in table 4.3. The objects concerned are 2, 4 and 7:

Object A1 X

2 1.0 0.8

4 0.8 0.6

7 1.0 0.7

Using these values, the necessary components of equation 7.1 can be calculated as

follows:

M(X ) = 0.8 + 0.6 + 0.7 = 2.1

M(X ∩ A1) = min(0.8,1) + min(0.6,0.8) + min(0.7,1)

= 0.8 + 0.6 + 0.7 = 2.1

These subsethood values are an indication of the relatedness of the individual terms of

the conditional features (or values of the features) to the decisions. This measure is

central to the fuzzy RIA [28]. A suitable level threshold,α ∈ [0,1], must be chosen

beforehand in order to determine whether terms are close enough or not. At most, one

term is selected per feature. For example, settingα = 0.9 means that the term with the

highest fuzzy subsethood value (or its negation) above this threshold will be chosen.

Applying this process to the first two decision valuesX andY generates the rules:

Rule 1: IF a is A1 THEN Plan is X
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Rule 2: IF b is NOT B3 AND c is C2 THENPlan is Y

A problem is encountered here when there are no suitably representative terms for

a decision (as is the case for decisionZ). In this situation, a rule is produced that

classifies cases to the decision value if the other rules do not produce reasonable clas-

sifications, in order to entail full coverage of the learned rules over the entire problem

domain. This requires another threshold value,β ∈ [0,1], which determines whether a

classification is reasonable or not. For decisionZ, the following rule is produced:

Rule 3: IF MF(Rule1) < β AND MF(Rule2) < β THEN Plan is Z

where MF(Rulei) = MF(condition part of Rulei) and MF means the membership

function value. The use of thresholdsα andβ pose a problem for the RIA, as it is not

clear how to acquire such information. Typically, these are estimated from repeated

experimentation over the threshold range, but this procedure is not guaranteed to find

the optimum values.

Object Classified Actual

X Y Z X Y Z

1 0.3 0.7 0.0 0.1 0.9 0.0

2 1.0 0.3 0.0 0.8 0.2 0.0

3 0.0 0.4 1.0 0.0 0.2 0.8

4 0.8 0.7 0.0 0.6 0.3 0.1

5 0.5 1.0 0.0 0.6 0.8 0.0

6 0.0 1.0 0.0 0.0 0.7 0.3

7 1.0 0.8 0.0 0.7 0.4 0.0

8 0.1 0.3 1.0 0.0 0.0 1.0

9 0.3 0.0 1.0 0.0 0.0 1.0

Table 7.2: Classified plan with all features and the actual plan

The classification results when using these rules on the example dataset can be

found in table 7.2. It shows the membership degrees of the cases to each classification

for the classified plan and the underlying plan present in the training dataset. Clearly,
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the resulting classifications are the same when themin t-norm is used.

This technique has been shown to produce highly competitive results [28] in terms

of both classification accuracy and number of rules generated. However, as is the case

for most rule induction algorithms, the resultant rules may be unnecessarily complex

due to the presence of redundant or misleading features. Fuzzy-Rough Feature Selec-

tion may be used to significantly reduce dataset dimensionality, removing redundant

features that would otherwise increase rule complexity and reducing the time for the

induction process itself.

Rule 1: IF a is A1 THEN Plan is X

Rule 2: IF c is C2 THEN Plan is Y

Rule 3: IF MF(Rule1) < β AND MF(Rule2) < β THEN Plan is Z

Figure 7.1: Generated rules using the reduced dataset

As has been demonstrated previously, the example dataset may be reduced by

the removal of featureb with little reduction in classification accuracy (according to

FRFS). Using this reduced dataset, the RIA generates the rules given in figure 7.1.

From this, it can be seen that rule 2 has been simplified due to the redundancy of fea-

tureb. Although the extent of simplification is small in this case, with larger datasets

the effect can be expected to be greater.

Object Classified Actual

X Y Z X Y Z

1 0.3 0.7 0.0 0.1 0.9 0.0

2 1.0 0.3 0.0 0.8 0.2 0.0

3 0.0 0.4 1.0 0.0 0.2 0.8

4 0.8 0.8 0.0 0.6 0.3 0.1

5 0.5 1.0 0.0 0.6 0.8 0.0

6 0.0 1.0 0.0 0.0 0.7 0.3

7 1.0 0.3 0.0 0.7 0.4 0.0

8 0.1 0.3 1.0 0.0 0.0 1.0

9 0.3 0.0 1.0 0.0 0.0 1.0

Table 7.3: Classified plan with reduced features and the actual plan
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The results using the FRFS-reduced dataset are provided in table 7.3. The dif-

ferences between the classifications of the reduced and unreduced approaches have

been highlighted (objects 4 and 7). In object 4, only the membership degree forY has

changed. This value has increased from 0.7 to 0.8, resulting in an ambiguous clas-

sification. Again, for case 7, the membership degree forY is the only value to have

changed; this time it more closely resembles the classification present in the training

dataset.

7.2 The Application

In order to evaluate further the utility of the FRFS approach and to illustrate its domain-

independence, a challenging test dataset was chosen, namely the Water Treatment

Plant Database [20] (in addition to the experimental evaluation carried out in the last

chapter).

7.2.1 Problem Case

The dataset itself is a set of historical data charted over 521 days, with 38 different

input features measured daily. Each day is classified into one of thirteen categories

depending on the operational status of the plant. However, these can be collapsed into

just two or three categories (i.e.Normal and Faulty, or OK, Good and Faulty) for

plant monitoring purposes as many classifications reflect similar performance. This is

also performed to balance the class distributions present in the data. Because of the

efficiency of the actual plant the measurements were taken from, all faults appear for

short periods (usually single days) and are dealt with immediately. This does not allow

for a lot of training examples of faults, which is a clear drawback if a monitoring system

is to be produced. Note that this dataset has been utilised in many previous studies,

including that reported in [157] (to illustrate the effectiveness of applying crisp RSAR

as a pre-processing step to rule induction, where a different RIA is adopted from here).

The thirty eight conditional features account for the following five aspects of the

water treatment plant’s operation (see figure 7.2):

1. Input to plant (9 features)
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Primary Settler Secondary Settler

Secondary Settler Gauges (7)

Overall Performance Gauges (9)

Output Gauges (7)Primary Settler Gauges (6)Input Gauges (9)

Figure 7.2: Water treatment plant, with number of measurements shown at different

points in the system

2. Input to primary settler (6 features)

3. Input to secondary settler (7 features)

4. Output from plant (7 features)

5. Overall plant performance (9 features)

The original dataset was split into 75% training and 25% testing data, maintaining

the proportion of classifications present. It is likely that not all of the 38 input features

are required to determine the status of the plant, hence the dimensionality reduction

step. However, choosing the most informative features is a difficult task as there will

be many dependencies between subsets of features. There is also a monetary cost

involved in monitoring these inputs, so it is desirable to reduce this number.

7.2.2 Monitoring System

This work follows the original approach for complex systems monitoring developed

in [157]. The original monitoring system consisted of several modules as shown in

figure 7.3. It is this modular structure that allows the new FRFS technique to replace

the existing crisp method.
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Ruleset

Dataset

+ fuzzy sets

Dataset

Reduced dataset

+ fuzzy sets

Classification

Feature Selection

Rule Induction

Pre−categorization

Figure 7.3: Modular decomposition of the implemented system

Originally, a precategorization step preceded feature selection where feature val-

ues were quantized. To reduce potential loss of information, the original use of just the

dominant symbolic labels of the discretized fuzzy terms is now replaced by a fuzzific-

ation procedure. This leaves the underlying feature values unchanged but generates a

series of fuzzy sets for each feature. These sets are generated entirely from the data

while exploiting the statistical data attached to the dataset (in keeping with the rough

set ideology in that the dependence of learning upon information provided outside of

the training dataset is minimized). This module may be replaced by alternative fuzzifi-

ers, or expert-defined fuzzification if available. Based on these fuzzy sets and the ori-

ginal real-valued dataset, FRFS calculates a reduct and reduces the dataset accordingly.

Finally, fuzzy rule induction is performed on the reduced dataset using the modelling

algorithm given in section 7.1. Note that this algorithm is not optimal, nor is the fuzzi-

fication. Yet the comparisons given below are fair due to their common background.

Alternative fuzzy modelling techniques can be employed for this if available.
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7.3 Experimental Results

This section first provides the results for the FRFS-based approach compared with the

unreduced approach. Next, a comparative experimental study is carried out between

various dimensionality reduction methods; namely FRFS, entropy-based feature selec-

tion, PCA and a random reduction technique.

The experiments were carried out over a tolerance range (with regard to the em-

ployment of the RIA), in steps of 0.01. As mentioned earlier, a suitable value for the

thresholdα must be chosen before rule induction can take place. However, the se-

lection of α tends to be an application-specific task; a good choice for this threshold

that provides a balance between a resultant ruleset’s complexity and accuracy can be

found by experiment. It should be noted here that due to the fuzzy rule induction

method chosen, all approaches generate exactly the same number of rules (as the num-

ber of classes of interest), but the arities in different rulesets differ. This helps avoid

a potential complexity factor in the comparative studies due to the need otherwise of

considering the sizes of learned rulesets. Only the complexity in each learned rule

needs to be examined,

7.3.1 Comparison with Unreduced Features

First of all, it is important to show that, at least, the use of features selected does not

significantly reduce the classification accuracy as compared to the use of the full set of

original features. For the 2-class problem, the fuzzy-rough set-based feature selector

returns 10 features out of the original 38.

Figure 7.4 compares the classification accuracies of the reduced and unreduced

datasets on both the training and testing data. As can be seen, the FRFS results are

almost always better than the unreduced accuracies over the tolerance range. The

best results for FRFS were obtained whenα is in the range 0.86 to 0.90, producing

a classification accuracy of 83.3% on the training set and 83.9% for the test data.

Compare this with the optimum for the unreduced approach, which gave an accuracy

of 78.5% for the training data and 83.9% for the test data.

By using the FRFS-based approach, rule complexity is greatly reduced. Figure 7.5
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Figure 7.4: Training and testing accuracies for the 2-class dataset over the tolerance

range

charts the average rule complexity over the tolerance range for the two approaches.

Over the range ofα values, FRFS produces significantly less complex rules while

having a higher resultant classification accuracy. The average rule arity of the FRFS

optimum is 1.5 (α ∈ (0.86,0.9)) which is less than that of the unreduced optimum, 6.0.

The 3-class dataset is a more challenging problem, reflected in the overall lower

classification accuracies produced. The fuzzy-rough method chooses 11 out of the

original 38 features. The results of both approaches are presented in figure 7.6. Again,

it can be seen that FRFS outperforms the unreduced approach on the whole. The best

classification accuracy obtained for FRFS was 70.0% using the training data, 71.8%
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Figure 7.5: Average rule arities for the 2-class dataset

for the test data (α = 0.81). For the unreduced approach, the best accuracy obtained

was 64.4% using the training data, 64.1% for the test data (α = 0.88).

Figure 7.7 compares the resulting rule complexity of the two approaches. It is

evident that rules induced using FRFS as a preprocessor are simpler, with little loss

in classification accuracy. In fact, the simple rules produced regularly outperform the

more complex ones generated by the unreduced approach. The average rule arity of

the FRFS optimum is 4.0 which is less than that of the unreduced optimum, 8.33.

These results show that FRFS is useful not only in removing redundant feature

measures but also in dealing with the noise associated with such measurements. To

demonstrate that the resulting rules are comprehensible, two sets of rules produced

by the induction mechanism are given in figure 7.8. The rules produced are reason-

ably short and understandable. However, when semantics-destroying dimensionality

reduction techniques are applied, such readability is lost.

7.3.2 Comparison with Entropy-based Feature Selection

To support the study of the performance of FRFS for use as a pre-processor to rule

induction, a conventional entropy-based technique is herein used for comparison. This

approach utilizes the entropy heuristic employed by machine learning techniques such
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Figure 7.6: Training and testing accuracies for the 3-class dataset over the tolerance

range

as C4.5 [135] and EBR (described in section 2.2.1.5). Those features that provide the

most gain in information are selected. A summary of the results of this comparison

can be seen in table 7.4.

For both the 2-class and 3-class datasets, FRFS selects three fewer features than

the entropy-based method. FRFS has a higher training accuracy and the same test-

ing accuracy for the 2-class data using less features. However, for the 3-class data,

the entropy-based method produces a very slightly higher testing accuracy. Again,

it should be noted that this is obtained with three additional features over the FRFS

approach.
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Approach No. of Selected No. of Training Testing

Classes Features Features Accuracy Accuracy

FRFS 2 {0,2,6,10,12,15,22,24,26,37} 10 83.3% 83.9%

Entropy 2 {1,5,6,7,9,12,15,16,20,22,29,30,33} 13 80.7% 83.9%

FRFS 3 {2,3,6,10,12,15,17,22,27,29,37} 11 70.0% 71.8%

Entropy 3 {6,8,10,12,17,21,23,25,26,27,29,30,34,36} 14 70.0% 72.5%

Table 7.4: Comparison of FRFS and entropy-based feature selection
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Figure 7.7: Average rule arities for the 3-class dataset

7.3.3 Comparison with PCA and Random Reduction

The previous comparisons ensured that little information loss is incurred due to FRFS.

The question now is whether any other feature sets of a dimensionality 10 (for the

2-class dataset) and 11 (for the 3-class dataset) would perform similarly. To avoid a

biased answer to this, without resorting to exhaustive computation, 70 sets of random

reducts were chosen of size 10 for the 2-class dataset, and a further 70 of size 11 for the

3-class dataset to see what classification results might be achieved. The classification

accuracies for each tolerance value are averaged.

The effect of using a different dimensionality reduction technique, namely PCA,

is also investigated. To ensure that the comparisons are fair, only the first 10 principal

components are chosen for the 2-class dataset (likewise, the first 11 for the 3-class data-

set). As PCA irreversibly destroys the underlying dataset semantics, the resulting rules

are not human-comprehensible but may still provide useful automatic classifications

of new data.

The results of FRFS, PCA and random approaches can be seen in figure 7.9 for the

2-class dataset. On the whole, FRFS produces a higher classification accuracy than

both PCA-based and random-based methods over the tolerance range. In fact, FRFS

results in the highest individual classification accuracy for training and testing data
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AND PH-S IS NOT High THEN Situation IS Good

IF PH-E IS NOT High AND SSV-E IS Low AND SSV-P IS NOT Medium

AND PH-D IS NOT High AND DQO-D IS NOT Medium

IF SED-S IS Medium THEN Situation IS Normal

Rules from FRFS-reduced data

Rules from unreduced data

DQO-D IS NOT High AND SED-S IS Medium THEN

IF PH-E IS NOT High AND SSV-E IS Low AND SSV-P IS Low AND

IF ZN-E IS NOT High AND SS-E IS NOT High AND SED-E IS NOT High

IF ZN-E IS Low AND PH-E IS NOT High AND SSV-E IS NOT High AND

Situation IS Faulty

AND SSV-D IS NOT High AND DBO-S IS Low AND

SS-S IS NOT High AND SED-S IS Low THEN

Situation IS Normal

PH-P IS NOT High AND SSV-P IS NOT High AND

PH-D IS NOT High AND DBO-D IS NOT Medium AND

SSV-D IS NOT High AND SS-S IS NOT High THEN

Situation IS Good

IF SSV-E IS NOT High AND SSV-P IS Low AND DQO-D IS NOT High

AND SSV-D IS NOT High AND SED-D IS NOT High

AND DBO-S IS Low AND SS-S IS NOT High AND

 Situation IS Faulty

SSV-S IS NOT High AND SED-S IS Low THEN

Figure 7.8: A selection of generated rulesets

(see table 7.5).

For the 3-class dataset, the results of FRFS, PCA and random selection are shown

in figure 7.10. The individual best accuracies can be seen in table 7.6. Again, FRFS

produces the highest classification accuracy (71.8%), and is almost always the best

over the tolerance range. Although PCA produces a comparatively reasonable accuracy

of 70.2%, this is at the expense of incomprehensible rules.
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Figure 7.9: Training and testing accuracies for the 2-class dataset: comparison with

PCA and random-reduction methods

7.3.4 Alternative Fuzzy Rule Inducer

As stated previously, many fuzzy rule induction algorithms exist and can be used to

replace the RIA adopted in the present monitoring system. Here, an example is given

using Lozowski’s algorithm as presented in [105]. This method extracts linguistically

expressed fuzzy rules from real-valued features as with the subsethood-based RIA.

Provided with training data, it induces approximate relationships between the char-

acteristics of the conditional features and their underlying classes. However, as with

many RIAs, this algorithm exhibits high computational complexity due to its generate-

and-test nature. The effects of this become evident where high dimensional data needs

to be processed. Indeed, for this particular domain, feature selection is essential as
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Approach Training Testing

Accuracy Accuracy

FRFS 83.3% 83.9%

Random 66.4% 68.1%

PCA 76.7% 70.3%

Table 7.5: Best individual classification accuracies (2-class dataset) for FRFS, PCA and

random approaches

Approach Training Testing

Accuracy Accuracy

FRFS 70.0% 71.8%

Random 55.7% 54.3%

PCA 67.7% 70.2%

Table 7.6: Best resultant classification accuracies (3-class dataset) for FRFS, PCA and

random approaches

running the RIA on all conditional features would be computationally prohibitive.

The results presented here compare the use of fuzzy-rough set based feature selec-

tion with the crisp rough set-based method. For RSAR, the data is discretised using

the supplied fuzzy sets and reduction performed on the resulting dataset. The exper-

iments were carried out over a tolerance range, required by the fuzzy RIA. This is a

different threshold from those required in the subsethood-based approach. The toler-

ance here indicates the minimal confidence gap in the decision between a candidate

rule and other competing contradictory rules. Again, the threshold is incremented in

steps of 0.01.

Method Attributes Attributes

2-class 3-class

FRFS 10 11

RSAR 11 11

Table 7.7: Extent of dimensionality reduction

As can be seen from table 7.7, FRFS selects fewer attributes than the crisp method

for the 2-class dataset and results in a higher classification accuracy over the entire
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Figure 7.10: Training and testing accuracies for the 3-class dataset: comparison with

PCA and random-reduction methods

tolerance range (figure 7.11). Both results show that there is a lot of redundancy in the

dataset which may be removed with little loss in classification accuracy. For the 3-class

dataset the approaches perform similarly, with the FRFS method generally outperform-

ing the other two, using the same number of attributes (but notidentical attributes). The

classification results can be seen in figure 7.12.

7.3.5 Results with Feature Grouping

The experiments were carried out over a tolerance range (with regard to the employ-

ment of the RIA). It is worth reiterating here that due to the fuzzy rule induction method

chosen (see section 7.1), all approaches generate exactly the same number of rules (as
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Figure 7.11: Classification accuracies for the 2-class dataset

the number of classes of interest), but the arities in different rulesets will differ. In all

experiments here, FQR employs the strategy where all attributes belonging toLarge

(as defined in section 5.1) are selected at each stage.

For the 2-class problem, the FRFS feature selector returns 10 features out of the ori-

ginal 38, whereas FQR returns 12. Figure 7.13 compares the classification accuracies

of the reduced and unreduced datasets on both the training and testing data. As can

be seen, both the FRFS and FQR results are almost always better than the unreduced

accuracies over the tolerance range. The best results for FQR were obtained in the

range 0.85 to 0.88, producing a classification accuracy of 82.6% on the training set

and 83.9% for the test data. For FRFS, the best accuracies were 83.3% (training) and

83.9% (testing). Compare this with the optimum for the unreduced approach, which

gave an accuracy of 78.5% for the training data and 83.9% for the test data.

The 3-class dataset is a more challenging problem, reflected in the overall lower

classification accuracies produced. Both fuzzy-rough methods, FQR and FRFS, choose

11 out of the original 38 features (but not thesame features). The results of these ap-

proaches can be seen in figure 7.14. Again, the results show that both FQR and FRFS

outperform the unreduced approach on the whole. The best classification accuracy ob-

tained for FQR was 72.1% using the training data, 74.8% for the test data. For FRFS

the best results were 70.0% (training) and 71.8% (testing). In this case, FQR has found

a better reduction of the data. For the unreduced approach, the best accuracy obtained
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Figure 7.12: Classification accuracies for the 3-class dataset

was 64.4% using the training data, 64.1% for the test data.

7.3.6 Results with Ant-based FRFS

The results from various comparative studies regarding ant-based FRFS are presented

here. The first set of experiments compares the hill-climbing and ant-based fuzzy-

rough methods. An investigation into another feature selector based on the entropy

measure is then presented. This is followed by comparisons with PCA and support

vector classifiers [131].

7.3.6.1 Comparison of Fuzzy-Rough Methods

Three sets of experiments were carried out on both the (collapsed) 2-class and 3-class

datasets. The first bypasses the feature selection part of the system, using the original

water treatment dataset as input to C4.5, with all 38 conditional attributes. The second

method employs FRFS to perform the feature selection before induction is carried out.

The third uses the ant-based method described in section 5.2.3 (antFRFS) to perform

feature selection over a number of runs, and the results averaged.

The results for the 2-class dataset can be seen in table 7.8. Both FRFS and ant-

FRFS significantly reduce the number of original attributes with antFRFS producing

the greatest data reduction on average. As well as generating smaller reducts, antFRFS
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Figure 7.13: Classification accuracies for the 2-class dataset

finds reducts of a higher quality according to the fuzzy-rough dependency measure.

This higher quality is reflected in the resulting classification accuracies for both the

training and testing datasets, with antFRFS outperforming FRFS.

Table 7.9 shows the results for the 3-class dataset experimentation. The hill-

climbing fuzzy-rough method chooses 11 out of the original 38 features. The ant-based

method chooses fewer attributes on average, however this is at the cost of a lower de-

pendency measure for the generated reducts. Again the effect of this can be seen in the

classification accuracies, with FRFS performing slightly better than antFRFS. For both

fuzzy methods, the small drop in accuracy as a result of feature selection is acceptable.

By selecting a good feature subset from data it is usually expected that the applied
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Figure 7.14: Classification accuracies for the 3-class dataset

learning method should benefit, producing an improvement in results. However, when

the original training (and test) data is very noisy, selected features may not necessarily

be able to reflect all the information contained within the original entire feature set.

As a result of removing less informative features, partial useful information may be

lost. The goal of selection methods in this situation is to minimise this loss, while

reducing the number of features to the greatest extent. Therefore, it is not surprising

that the classification performance for this challenging dataset can decrease upon data

reduction, as shown in table 7.9. However, the impact of feature selection can have

different effects on different classifiers. With the use of an alternative classifier in

section 7.3.6.4, performance can be seen to improve for the test data.
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Method Attributes γ’ value Training accuracy Testing accuracy

Unreduced 38 - 98.5% 80.9%

FRFS 10 0.58783 89.2% 74.8%

antFRFS 9.55 0.58899 93.5% 77.9%

Table 7.8: Results for the 2-class dataset

Method Attributes γ’ value Training accuracy Testing accuracy

Unreduced 38 - 97.9% 83.2%

FRFS 11 0.59479 97.2% 80.9%

antFRFS 9.09 0.58931 94.8% 80.2%

Table 7.9: Results for the 3-class dataset

The results here also show a marked drop in classification accuracy for the test

data. This could be due to the problems encountered when dealing with datasets of

small sample size. Overfitting can occur, where a learning algorithm adapts so well

to a training set, that the random disturbances present are included in the model as

being meaningful. Consequently, as these disturbances do not reflect the underlying

distribution, the performance on the test data will suffer. Although such techniques

as cross-validation and bootstrapping have been proposed as a way of countering this,

these still often exhibit high variance in error estimation [22].

7.3.6.2 Comparison with Entropy-based Feature Selection

As with the experimental studies carried out in chapter 6, and in section 7.3.2, to sup-

port the investigation of the performance of the fuzzy-rough methods, a conventional

entropy-based technique is herein used again for comparison. A summary of the results

of this comparison can be seen in table 7.10.

For both the 2-class and 3-class datasets, FRFS and antFRFS select at least three

fewer features than the entropy-based method. However, the entropy-based method

outperforms the other two feature selectors with the resulting C4.5 classification ac-

curacies. This is probably due to the fact that C4.5 uses exactly the same entropy

measure in generating decision trees. In this case, the entropy-based measure will fa-

vour those attributes that will be the most influential in the decision tree generation
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Approach No. of No. of Training Testing

Classes Features Accuracy Accuracy

FRFS 2 10 89.2% 74.8%

antFRFS 2 9.55 93.5% 77.9%

Entropy 2 13 97.7% 80.2%

FRFS 3 11 97.2% 80.9%

antFRFS 3 9.09 94.8% 80.2%

Entropy 3 14 98.2% 80.9%

Table 7.10: Results for the three selection methods

process.

7.3.6.3 Comparison with the use of PCA

The effect of using PCA [38] is also investigated. Again, PCA is applied to the dataset

and the firstn principal components are used. A range of values is chosen forn to in-

vestigate how the performance varies with dimensionality. The results are summarised

in table 7.11.

No. of Features

Accuracy Class 5 6 7 8 9 10 11 12 13

Training (%) 2 80.0 80.0 80.0 80.0 80.380.3 80.3 80.8 82.1

Testing (%) 2 72.5 72.5 72.5 72.5 73.373.3 73.3 35.1 34.4

Training (%) 3 73.6 73.6 73.6 73.6 73.675.9 75.9 75.9 76.4

Testing (%) 3 80.9 80.9 80.9 80.9 80.980.9 80.9 80.9 80.2

Table 7.11: Results for the 2-class and 3-class datasets using PCA

Both antFRFS and FRFS significantly outperform PCA on the 2-class dataset. Of

particular interest is when 10 principal components are used as this is roughly the same

number chosen by antFRFS and FRFS. The resulting accuracy for PCA is 80.3% for

the training data and 73.3% for the test data. For antFRFS the accuracies were 93.5%

(training) and 77.9% (testing), and for FRFS 89.2% (training) and 74.8% (testing). In

the 3-class dataset experimentation, both fuzzy-rough methods produce much higher

classification accuracies than PCA for the training data. For the test data, the perform-
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ance is about the same, with PCA producing a slightly higher accuracy than antFRFS

on the whole.

7.3.6.4 Comparison with the use of a support vector classifier

A possible limitation of employing C4.5 in this context is that it performs a degree of

feature selection itself during the induction process. The resulting decision trees do

not necessarily contain all the features present in the original training data. As a result

of this, it is beneficial to evaluate the use of an alternative classifier that uses all the

given features. For this purpose, a support vector classifier [149] is used, trained by the

sequential minimal optimization (SMO) algorithm [131]. The results of the application

of this classifier can be found in table 7.12.

Approach No. of No. of Training Testing

Classes Features Accuracy Accuracy

Unreduced 2 38 80.0% 71.8%

FRFS 2 10 80.0% 72.5%

antFRFS 2 9.55 80.0% 72.5%

Unreduced 3 38 74.6% 80.9%

FRFS 3 11 73.6% 80.2%

antFRFS 3 9.09 73.6% 80.9%

Table 7.12: Results for the 2-class and 3-class datasets using SMO

For the 2-class dataset, the training accuracy for both FRFS and antFRFS is the

same as that of the unreduced approach. However, this is with significantly fewer

attributes. Additionally, the resulting testing accuracyis increased with these feature

selection methods. With the more challenging 3-class problem, the training accuracies

are slightly worse (as seen with the C4.5 analysis). The antFRFS method performs

better than FRFS for the test data and is equal to the unreduced method, again using

fewer features.
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7.4 Summary

Automated generation of feature pattern-based if-then rules is essential to the suc-

cess of many intelligent pattern classifiers, especially when their inference results are

expected to be directly human-comprehensible. This chapter has evaluated such an

approach which integrates a recent fuzzy rule induction algorithm with a fuzzy-rough

method for feature selection. Unlike semantics-destroying approaches such as PCA,

this approach maintains the underlying semantics of the feature set, thereby ensuring

that the resulting models are interpretable and the inference explainable. The method

alleviates important problems encountered by traditional RSAR such as dealing with

noise and real-valued features.

Overall, the experimental results presented in this chapter have shown the utility

of employing FRFS, ant-based FRFS and FQR as pre-processors to fuzzy rule induc-

tion. The work has demonstrated the potential benefits of using fuzzy dependencies

and attribute grouping in the search for reducts. Not only are the runtimes of the in-

duction and classification processes improved by this step (which for some systems are

important factors), but the resulting rules are less complex.

In all experimental studies there has been no attempt to optimize the fuzzifications

or the classifiers employed. It can be expected that the results obtained with optimiza-

tion would be even better than those already observed. The generality of this approach

should enable it to be applied to other domains. The ruleset generated by the RIA was

not processed by any post-processing tools so as to allow its behaviour and capabil-

ities to be revealed fully. By enhancing the induced ruleset through post-processing,

performance should improve.





Chapter 8

Supplementary Developments and

Investigations

This chapter presents other developments that have been initiated and future work in

the areas of feature selection and rule induction, arising from some of the issues dis-

cussed in this thesis. For feature selection, RSAR-SAT is proposed based on the dis-

cernibility matrix approach to finding reducts and employing techniques from proposi-

tional satisfiability. Additionally, the concept of fuzzy universal reducts is proposed as

a way of enabling more accurate data reductions. Finally, a new decision tree induction

method based on the fuzzy-rough metric is suggested.

8.1 RSAR-SAT

The Propositional Satisfiability (SAT) problem [35] is one of the most studied NP-

complete problems because of its significance in both theoretical research and practical

applications. Given a boolean formula (typically in conjunctive normal form (CNF)),

the SAT problem requires an assignment of variables/features so that the formula eval-

uates to true, or a determination that no such assignment exists. In recent years search

algorithms based on the well-known Davis-Logemann-Loveland algorithm (DPLL)

[36] are emerging as some of the most efficient methods for complete SAT solvers.

Such solvers can either find a solution or prove that no solution exists.

169
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Stochastic techniques have also been developed in order to reach a solution quickly.

These pick random locations in the space of possible assignments and perform limited

local searches from them. However, as these techniques do not examine the entire

search space, they are unable to prove unsatisfiability.

A CNF formula onn binary variablesx1, ...,xn is the conjunction ofm clauses

C1, ...,Cm each of which is the disjunction of one or more literals. A literal is the

occurrence of a variable or its negation. A formula denotes a uniquen-variable boolean

function f (x1, ...,xn). Clearly, a functionf can be represented by many equivalent

CNF formulas. The satisfiability problem is concerned with finding an assignment to

the arguments off (x1, ...,xn) that makes the function equal to 1, signalling that it is

satisfiable, or proving that the function is equal to 0 and hence unsatisfiable [202].

The problem of finding the smallest feature subsets using rough set theory can

be formulated as a SAT problem. Rough sets allows the generation from datasets of

clauses of features in conjunctive normal form. If after assigning truth values to all

features appearing in the clauses the formula is satisfied, then those features set to true

constitute a valid subset for the data. The task is to find the smallest number of such

features so that the CNF formula is satisfied. In other words, the problem here concerns

finding a minimal assignment to the arguments off (x1, ...,xn) that makes the function

equal to 1. There will be at least one solution to the problem (i.e. allxis set to 1) for

consistent datasets. Preliminary work has been carried out in this area [7], though this

does not adopt a DPLL-style approach to finding solutions.

The DPLL algorithm for finding minimal subsets can be found in figure 8.1, where

a search is conducted in a depth-first manner. The key operation in this procedure is the

unit propagation step in lines (6) and (7). Clauses in the formula that contain a single

literal will only be satisfied if that literal is assigned the value 1 (for positive literals).

These are called unit clauses. Unit propagation examines the current formula for unit

clauses and automatically assigns the appropriate value to the literal they contain. The

elimination of a literal can create new unit clauses, and thus unit propagation eliminates

variables by repeated passes until there is no unit clause in the formula.

Branching occurs at lines (9) to (12). Here, the next variable is chosen heuristically

from the current formula, assigned the value 1, and the search continues. If this branch
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eventually results in unsatisfiability, the procedure will assign the value 0 to this vari-

able instead and continue the search. A degree of pruning can take place in the search

by remembering the size of the currently considered subset and the smallest optimal

subset encountered so far. If the number of variables currently assigned 1 equals the

number of those in the presently optimal subset, and the satisfiability ofF is still not

known, then any further search down this branch will not result in a smaller optimal

subset.

DPLL(F ).
F, the formula containing the current set of clauses.

(1) if (F contains an empty clause)
(2) return unsatisfiable
(3) if (F is empty)
(4) output current assignment
(5) return satisfiable
(6) if (F contains a unit clause{l})
(7) F ′← unitPropagate(F)
(8) return DPLL(F ′)
(9) x← selectLiteral(F)
(10) if ( DPLL(F ∪{x}) is satisfiable)
(11) return satisfiable
(12) else return DPLL(F ∪{−x})

Figure 8.1: The definition of the DPLL algorithm

Although stochastic methods [153, 66] have been applied to SAT problems, these

are not applicable here as they provide no guarantee of solution minimality. The

DPLL-based algorithm will always find the minimal optimal subset. However, this

will come at the expense of time taken to find it. Initial experimentation has been car-

ried out using the algorithm outlined previously; the average times are presented in

table 8.1. The time taken for RSAR-SAT is split into two columns. The first indicates

the average length of time taken to find the minimal subset, the second how long it

takes to verify that this is indeed minimal. For RSAR, an asterisk next to the time

indicates that it found a non-minimal reduct.

The results show that RSAR-SAT is comparable to RSAR in the time taken to
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Dataset No. of RSAR SAT: Minimal SAT: Full

Features (s) (s) (s)

M-of-N 13 0.171* 0.001 0.007

Exactly 13 0.304* 0.001 0.008

Exactly2 13 0.823* 0.001 0.008

Heart 13 0.207* 0.002 0.009

Vote 16 0.170* 0.004 0.009

Credit 20 1.988* 0.077 0.094

Mushroom 22 0.744* 0.006 0.022

LED 24 0.097* 0.041 0.051

Letters 25 0.067* 0.024 0.116

Derm 34 0.758* 0.094 0.456

Derm2 34 0.897* 0.104 0.878

WQ 38 9.590* 0.205 116.1

Lung 56 0.059 0.023 0.786

DNA 58 1.644* 0.227 53.81

Table 8.1: Runtimes for RSAR and RSAR-SAT

find reducts. However, RSAR regularly fails to find the smallest optimal subset, being

misled in the search process. For larger datasets, the time taken for RSAR-SAT veri-

fication exceeds that of RSAR. There are ways in which the DPLL-based search can

be made more effective and less time-consuming.

DPLL resorts to chronological backtracking if the current assignment of variables

results in the unsatisfiability ofF. Much research has been carried out in developing

solution techniques for SAT that draws on related work in solvers for constraint satis-

faction problems (CSPs) [9, 184]. Indeed the SAT problem can be translated to a CSP

by retaining the set of boolean variables and their{0,1} domains, and to translate the

clauses into constraints. Each clause becomes a constraint over the variables in the

constraint. Unit propagation can be seen to be a form of forward checking.

In CSPs, more intelligent ways of backtracking have been proposed such as back-

jumping, conflict-directed backjumping and dynamic backtracking. Many aspects of

these have been adapted to the SAT problem solvers. In these solvers, whenever a

conflict (dead-end) is reached, a new clause is recorded to prevent the occurrence of
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the same conflict again during the subsequent search. Non-chronological backtrack-

ing backs up the search tree to one of the identified causes of failure, skipping over

irrelevant variable assignments.

With the addition of intelligent backtracking, RSAR-SAT should be able to handle

datasets containing large numbers of features. As seen in the preliminary results, the

bottleneck in the process is the verification stage - the time taken to confirm that the

subset is indeed minimal. This requires an exhaustive search of all subtrees containing

fewer variables than the current best solution. Much of this search could be avoided

through the use of more intelligent backtracking. This would result in a selection

method that can cope with many thousands of features, whilst guaranteeing resultant

subset minimality - something that is particularly sought after in feature selection.

8.2 Fuzzy Universal Reducts

A single given dataset may contain more than one optimal feature subset. For the

simple example given in section 3.1, there are two minimal subsets. For larger prob-

lems, there may be many more. Typically, only one of these subsets is chosen to

perform the necessary dataset reduction. The problem here is how to discern between

reducts in order to choose the best one to reduce the data.

A solution to this problem may befuzzy universal reducts. Instead of committing

to a single reduct, a fuzzy universal reduct captures the frequency information of fea-

tures within all reducts for a dataset. Those features that appear often in subsets are

determined to be more significant than those that appear less frequently. It is thought

that by capturing this information, a better subset of features can be selected for redu-

cing data. The techniques suggested here can be applied to the fuzzy-rough as well as

the crisp rough set problem.

The set of all reducts,T , for a dataset can be calculated in the following way:

T = {X : X ⊆ C,γX(D) = γC(D)} (8.1)

A fuzzy universal reductR for a dataset is defined(∀x ∈C) as:
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µR(x) =
|{x|x ∈ S,∀S ∈ T}|

|T | (8.2)

An attributea belongs fully to the reduct (µR(a) = 1) if it appears in all reducts

(a member of thecore). By applyingα-cuts, subsets of the attributes may be selected

for dataset reduction. However, to calculate all reducts for non-trivial datasets is not

feasible. Therefore, some way is needed to approximate these memberships. It is

thought that the use of pheromone in ant colony optimization-based feature selection

might act as such an approximater.

The basic idea is that during the course of their search, ants traverse the graph

of nodes (features) depositing artificial pheromone. The amount of pheromone on an

edge is an indicator of the utility of that edge in previous searches for optimal subsets.

A useful node will have high amounts of pheromone on edges connected to it. By

combining the values of the pheromone levels on edges connected to a node, a measure

of that node’s significance can be obtained.

Another means of estimating memberships to a fuzzy universal reduct could be

obtained through a genetic algorithm-based feature selection process. As the algorithm

searches for optimal reducts, it encounters and evaluates many subsets along the way.

By recording the information concerning the frequency of occurrence of features (and

how ’good’ the subset is), an estimate of feature importance can be determined.

8.3 Fuzzy-Rough Decision Trees

A decision tree can be viewed as a partitioning of the instance space. Each partition,

represented by a leaf, contains the objects that are similar in relevant respects and thus

are expected to belong to the same class. The partitioning is carried out in a data-

driven manner, with the final output representing the partitions as a tree. An important

property of decision tree induction algorithms is that they attempt to minimize the size

of the tree at the same time as they optimize a certain quality measure.

The general decision tree induction algorithm is as follows. The significance of

features is computed using a suitable measure (in C4.5 this is the information gain

metric [135]). Next, choose the most significant feature according to this measure and
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partition the dataset into sub-tables according to the values this feature may take. The

chosen feature is represented as a node in the currently constructed tree. For each sub-

table, repeat the above procedure, i.e. determine the most significant feature and split

the data into further sub-tables according to its values.

This is a similar process in the fuzzy case. However, a measure capable of handling

fuzzy terms (instead of crisp values) must be used. Data is partitioned according to the

selected feature’s set of fuzzy terms. There must also be a way of calculating the

number of examples that belong to a node. In the crisp case, this is clear; objects either

contain a specific attribute value or they do not. In the fuzzy case this distinction can

no longer be made, as objects may belong to several fuzzy terms.

Clearly, one important aspect of this procedure is the choice of feature significance

measure. It would therefore be interesting to see how an induction algorithm based on

the fuzzy-rough measure would compare with standard algorithms such as fuzzy ID3

[69, 182], both in terms of the complexity of the trees constructed and the resulting

accuracy. A suitable stopping condition must also be chosen that will limit the number

of nodes expanded.

x ∈U Inc Emp ⇒ Cred

0 0.20 0.15 0.0

1 0.35 0.25 0.0

2 0.90 0.20 0.0

3 0.60 0.50 0.0

4 0.90 0.50 1.0

5 0.10 0.85 1.0

6 0.40 0.90 1.0

7 0.85 0.85 1.0

Table 8.2: A simple dataset (taken from [69])

For example. consider the data given in table 8.2. This contains two conditional

features, Income (Inc) and Employment (Emp), and one binary decision feature, Credit

(Cred). The fuzzy sets used for both conditional features can be seen in figure 8.2.

Figure 8.3 depicts the data in a more visual manner. The data objects (numbered
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Figure 8.2: Corresponding feature fuzzifications

1 to 8) are plotted according to their values for the two attributes, Income and Em-

ployment. Objects classified to “0.0” are coloured black, objects classified to “1.0”

are white. The extent to which objects belong to the fuzzy sets is indicated by the

degree of blue: light blue indicates full set membership, darker blue indicates partial

membership.

From this, it can be seen that using the feature “Employment” to partition the data

via its fuzzy terms provides better class separability than “Income”. In other words

(from the visualization perspective) horizontal splits are more useful than vertical. Us-

ing “Employment”, objects{0,1,2} and{5,6,7} can be distinguished. Using “In-

come”, no such distinctions can be made.

Applying the fuzzy-rough metric to this dataset results in:

γ′{Inc}({Cred}) = 0.0 (8.3)

γ′{Emp}({Cred}) = 0.71875 (8.4)

The fuzzy-rough metric again finds the most useful feature and determines that the “In-

come” feature provides no class separability at this stage. Incidentally, the dependency

of the entire dataset is 0.96875. This is less than 1 due to the extra uncertainty caused

by object 1, which can be seen in the data visualization. From this initial examination,

it appears to be the case that the fuzzy-rough metric could indeed be used in a new

fuzzy decision tree induction method.

Fuzzy-rough sets might also be used in fuzzy rule induction. Crisp rule induction
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Figure 8.3: Data visualization

based on crisp rough sets has been an area of much interest and success within the

rough set community [139, 140, 175]. By extending these approaches, or developing

an entirely new mechanism suited to fuzzy-rough sets, it should be possible to develop

fuzzy-rough rule induction methods.

8.4 Summary

This chapter has presented several potential directions for crisp and fuzzy-rough set

based approaches to feature selection. One particular area of interest is that of re-

formulating the search for a reduct as a propositional satisfiability problem. Solution

techniques from this domain can then be applied to locate the smallest reducts. In ad-

dition to this and other areas of further research in feature selection, the possibility of

inducing decision trees using the fuzzy-rough metric was discussed.





Chapter 9

Conclusion

This chapter concludes the thesis. A summary of the research presented in this disser-

tation is given, with a focus on the main contribution, fuzzy-rough feature selection,

and its applications. Based on a critical survey of the existing literature, it was seen

to be the case that many feature selection methods rely on a preliminary discretization

procedure in an attempt to deal with noisy and real-valued data. This is particularly

the case with rough set-based approaches which depend entirely on crisp datasets. Al-

though this provides a makeshift solution to the problem, it is reliant upon a good

discretization that incorporates noise-elimination to produce a useful resulting data re-

duction. In fact, there may be situations where a dataset contains both nominal and

real-valued conditional features.

9.1 Fuzzy-Rough Feature Selection

This thesis has been chiefly concerned with the utility of fuzzy-rough feature selection

as a way of combatting the problems of noisy and real-valued data, as well as handling

mixtures of nominal and continuous valued features. FRFS achieves this by the use

of fuzzy-rough sets, and the new measure of feature significance: the fuzzy-rough

degree of dependency. The properties of fuzzy-rough sets allow greater flexibility

when handling noisy and real-valued data. A particular issue for feature selectors is

the problem of real-valued decision attributes. FRFS can deal with this whereas many
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FS techniques cannot.

The new fuzzy-rough metric was experimentally evaluated against other leading

metrics for use in feature ranking. The results confirmed that the fuzzy-rough measure

performs comparably to these metrics, and better than them in several cases. When

applied to a real world dataset, the new metric was able to identify the significant

features as defined by a human expert. All of this required no threshold information or

additional input from a user, which is not the case for most conventional approaches.

Two new areas for research within feature selection were also presented. The first,

feature grouping, introduced the concept of fuzzifying the evaluation function in fea-

ture selectors for use in a more transparent selection process. Also, by grouping fea-

tures according to their linguistic label and selecting them simultaneously, the time

taken for the search process could be reduced. The second development proposed an

ant colony optimization-based framework to perform feature selection. This was intro-

duced in an attempt to tackle the problem of the non-minimal subsets often generated

by the greedy hill-climbing search strategy. Both of these developments can be used

for feature selectors in general and not just for crisp and fuzzy-rough selection.

To demonstrate the applicability of the developments presented in this thesis, two

very different problem domains were chosen: web content categorisation and complex

systems monitoring.

9.2 Web Content Categorisation

With the explosive growth of available information on the web, it is essential that

applications devoted to its organization and management can effectively handle this

abundance of data. For machine learning tasks in particular, the sheer size of the

datasets involved can be prohibitive. In the area of text categorisation, datasets are

of the order of thousands, and sometimes tens of thousands, of features. This makes

effective categorisation an extremely difficult problem unless the task is simplified.

This is typically achieved through the use of feature selectors. This thesis presented

an approach that incorporated a fuzzy-rough feature selection stage for the automated

classification of web content. Two specific areas were targetted in the web domain,
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namely bookmark categorisation and web page categorisation.

Although techniques exist for organising bookmark databases, these always use the

content of the referred-to document to generate classifications. The system developed

here seeks to categorise bookmarks using only the information stored locally in the

bookmark database. Given that there is very little information stored in a bookmark,

this task is a particularly challenging one. However, this still results in the generated

training datasets containing over a thousand features. FRFS was shown to be effect-

ive at greatly reducing this dimensionality with little resulting impact on the overall

classification ability of the system.

Another important area is that of web page categorisation. The need for automated

classification of web pages is demonstrated by the popularity of web directories such as

Yahoo [192]. Many of these are developed and maintained manually which is becom-

ing increasingly impractical due to the dynamicity and evolution of the web. There-

fore, an automated means of deriving correct categories from text contained within

web pages is required. Again, the dimensionality of the datasets involved are of the or-

der of thousands to tens of thousands. FRFS was used to tackle this restrictive amount

of data successfully within a web page categorisation system. In fact, the extent of data

reduction was several orders of magnitude, making the categorisation task manageable.

9.3 Complex Systems Monitoring

The knowledge acquisition bottleneck is a significant problem that hinders the build-

ing of intelligent monitoring systems. The generation of good knowledge bases for this

task is notoriously difficult. This is particularly the case where experts are not read-

ily available. Machine learning techniques (especially rule induction methods) can

be of great benefit to this area by providing strategies to automatically extract useful

knowledge, given enough historical data.

For many of these techniques, the high dimensionality of the domain attributes can

be too restrictive. In addition, when applying rule inducers that can cope with this size

of data, the resulting knowledge in the form of rules can be extremely difficult to inter-

pret. The control system itself then has to operate using complex rules, degrading the
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overall performance. Dimensionality reduction is required to alleviate this problem.

In particular, a semantics-preserving approach must be used in order to ensure that the

resulting ruleset is readable.

FRFS was applied to this domain to show how not only rule clarity can be signi-

ficantly improved with feature selection, but also that the reduced knowledge base can

achieve competitive results in terms of monitoring accuracy. The fuzzy-rough method

was shown to perform very well against other feature selector methods for this task.

Additionally, the new feature grouping and ant-based FRFS techniques were applied

with promising results.

9.4 Future Work

Much consideration has been given to future work in the area of feature selection

(and also decision tree induction) as outlined in chapter 8. These initial investiga-

tions demonstrate several interesting possibilities for future research. Particularly the

use of a DPLL-style search, in a propositional satisfiability setting, for finding minimal

feature subsets (section 8.1) appears to be a promising area. With the use of more intel-

ligent backtracking techniques, the method should be able to cope with datasets con-

taining many thousands of features, locating the smallest feature subset rapidly. This

technique also guarantees that the final subset found is indeed the smallest - something

that most rough set-based methods are unable to demonstrate.

There are many other areas that benefit from a data reduction step (as discussed

in chapter 1). It would be highly beneficial to investigate how FRFS may be applied

to other domains such as image recognition, gene expression analysis, and fuzzy clus-

tering; particularly where the learning algorithms themselves involve fuzzy sets. For

clustering itself, it would be interesting to see how a fuzzy-rough set-based approach

compares with other techniques in this area. There has been some research in applying

crisp rough sets to the task of clustering with promising results [62, 100]. A method

based on fuzzy-rough sets should be better equipped to deal with the uncertainty and

vagueness present in real world data.

In conclusion, it is worth reiterating that the topic of feature selection is highly
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important, particularly given the explosive growth of available information. Through

this series of investigations and experiments, the potential utility of the fuzzy-rough

method for feature selection has been demonstrated. Important issues affecting feature

selection in general requiring further research have been highlighted and discussed. It

is hoped that these developments presented in the thesis are of benefit to those working

in feature selection and related areas.





Appendix A

A Brief Introduction to Fuzzy Sets

The use of fuzzy set theory is one way of capturing the vagueness present in the real

world, which would otherwise be difficult using conventional set theory. This appendix

starts with a quick introduction to classical set theory, using a simple example to illus-

trate the concept. Then, an introduction to fuzzy sets is given, covering the essentials

required for a basic understanding of their use. There are many useful introductory

resources regarding fuzzy set theory, for example [32, 128].

A.1 Classical Sets

In classical set theory, elements can belong to a set or not at all. For example, in the

set of old people, defined here as{Rod, Jane, Freddy}, the elementRod belongs to this

set whereas the elementGeorge does not. No distinction is made within a set between

elements; all set members belong fully. This may be considered to be a source of

information loss for certain applications. Returning to the example,Rod may be older

thanFreddy but by this formulation both are considered to be equally old.

More formally, letU be a space of objects, referred to as the universe of discourse,

and x an element ofU. A classical (crisp) setA, A ⊆ U, is defined as a collection

of elementsx ∈ U, such that each elementx can belong to the set or not belong. A

classical setA can be represented by a set of ordered pairs (x, 0) or (x, 1) for each

element, indicatingx 6∈ A or x ∈ A respectively.
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A.2 Fuzzy Sets

This concept is extended by fuzzy set theory, which allows degrees of membership

of elements to sets. Previously, elements could belong fully (i.e. have a membership

of 1) or not at all (a membership of 0). Fuzzy set theory relaxes this restriction by

allowing memberships to take values anywhere in the range [0,1]. A fuzzy set can be

defined as a set of ordered pairsA = {x,µA(x)|x ∈U}. The functionµA(x) is called the

membership function forA, mapping each element of the universeU to a membership

degree in the range [0.1]. The universe may be discrete or continuous. Any fuzzy set

containing at least one element with a membership degree of 1 is callednormal.
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Figure A.1: Fuzzy Set representing the concept Old

Returning to the example, it may be better to represent the set of old people as a

fuzzy set,Old. The membership function for this set is given in figure A.1, defined over

a range of ages (the universe). Given that the age ofRod is 74, it can be determined

that this element belongs to the setOld with a membership degree of 0.95. Similarly,

if the age ofFreddy is 38 the resulting degree of membership is 0.26. Here, bothRod

andFreddy belong to the (fuzzy) set of old people, butRod has a higher degree of

membership to this set.

The specification of membership functions is typically subjective, as can be seen in

this example. There are many justifiable definitions of the conceptOld. Indeed, people

of different ages may define this concept quite differently.
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A.3 Fuzzy Set Operators

The most basic operators on fuzzy sets are the union, intersection and complement.

These are fuzzy extensions of their crisp counterparts, ensuring that if they are applied

to crisp sets, the results of their application will be identical to crisp union, intersection

and complement.

A.3.1 Fuzzy Intersection

The intersection (t-norm) of two fuzzy sets,A andB, is specified by a binary operation

on the unit interval; that is, a function of the form:

t : [0,1]× [0,1]→ [0,1] (A.1)

For each elementx in the universe, this function takes as its arguments the member-

ships ofx in the fuzzy setsA andB, and yields the membership grade of the element in

the set constituting the intersection ofA andB:

µA∩B(x) = t[µA(x),µB(x)] (A.2)

The following axioms must hold for the operatort to be considered a t-norm, for all

x,y andz in the range [0,1]:

• t(x,1) = x (boundary condition)

• y≤ z→ t(x,y)≤ t(x,z) (monotonicity)

• t(x,y) = t(y,x) (commutativity)

• t(x, t(y,z)) = t(t(x,y),z) (associativity)

The following are examples of t-norms that are often used as fuzzy intersections:

t(x,y) = min(x,y) (standard intersection)

t(x,y) = x.y (algebraic product)

t(x,y) = max(0,x+ y−1) (bounded difference)
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A.3.2 Fuzzy Union

The fuzzy union (t-conorm or s-norm) of two fuzzy setsA and B is specified by a

function:

s : [0,1]× [0,1]→ [0,1] (A.3)

µA∪B(x) = s[µA(x),µB(x)] (A.4)

A fuzzy unions is a binary operation that satisfies at least the following axioms for all

x,y andz in [0,1]:

• s(x,0) = x (boundary condition)

• y≤ z→ s(x,y)≤ s(x,z) (monotonicity)

• s(x,y) = s(y,x) (commutativity)

• s(x,s(y,z)) = s(s(x,y),z) (associativity)

The following are examples of t-conorms that are often used as fuzzy unions:

s(x,y) = max(x,y) (standard union)

s(x,y) = x+ y− x.y (algebraic sum)

s(x,y) = min(1,x+ y) (bounded sum)

The most popular interpretation of fuzzy union and intersection is the max/min

interpretation, primarily due to its ease of computation. This particular interpretation

is used in the thesis.



Appendix B

Metric Comparison Results:

Classification Datasets

This section contains the full results for the tables in section 4.6.2. The datasets were

created by generating around 30 random feature values for 400 objects. Two or three

features (referred to asx, y, or z) are chosen to contribute to the final boolean classific-

ation by means of an inequality. The tables show the rating given to the features from

the corresponding metric. For the data presented in the first table, the first feature,x, is

used to determine the classification. The values of featuresy andz are derived fromx:

y =
√

x, z = x2. Table cells are shaded to highlight the top ranked features determined

by the feature metrics. Darker shading indicates a higher ranking.

189



190 Appendix B. Metric Comparison Results: Classification Datasets

Feature FR Re IG GR 1R χ2

x 0.5257 0.31758 0.997 1 99.5 200

y 0.5296 0.24586 0.997 1 99.5 200

z 0.5809 0.32121 0.997 1 99.5 200

3 0.0 −0.00276 0 0 55.5 0

4 0.0 0.00148 0 0 47.5 0

5 0.0 −0.00268 0 0 44.5 0

6 0.0 −0.00221 0 0 58.5 0

7 0.0 −0.01002 0 0 52.5 0

8 0.0 −0.00649 0 0 57.5 0

9 0.0 0.00889 0 0 49.0 0

10 0.0 −0.00222 0 0 53.0 0

11 0.0 0.00182 0 0 59.5 0

12 0.0 0.00144 0 0 42.5 0

13 0.0 0.00475 0 0 50.0 0

14 0.0 0.01006 0 0 65.5 0

15 0.0 0.00613 0 0 55.5 0

16 0.0 0.00488 0 0 47.0 0

17 0.0 0.00563 0 0 56.5 0

18 0.0 0.01427 0 0 50.0 0

19 0.0 −0.00467 0 0 53.5 0

20 0.0 −0.01785 0 0 54.5 0

21 0.0 0.00327 0 0 50.0 0

22 0.0 0.00350 0 0 48.5 0

23 0.0 0.01339 0 0 51.5 0

24 0.0 0.00464 0 0 49.5 0

25 0.0 0.01334 0 0 59.0 0

26 0.0 0.01715 0 0 48.5 0

27 0.0 −0.01742 0 0 49.0 0

28 0.0 0.00685 0 0 60.5 0

29 0.0 −0.00206 0 0 53.5 0

30 0.0 0.00164 0 0 51.5 0

31 0.0 0.00171 0 0 49.0 0

32 0.0 −0.00325 0 0 51.0 0

Table B.1: Feature evaluation for x > 0.5, y =
√

x, z = x2
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Feature FR Re IG GR 1R χ2

x 0.2330 0.1862 0.2328 0.1579 86.75 128.47

y 0.2597 0.1537 0.1687 0.169 87.75 71.97

2 0.0 0.0132 0 0 84.5 0

3 0.0 0.0307 0 0 85.25 0

4 0.0 0.0320 0 0 86.0 0

5 0.0 0.0112 0 0 85.5 0

6 0.0 0.0127 0 0 86.0 0

7 0.0 0.0248 0 0 86.0 0

8 0.0 0.0219 0 0 86.0 0

9 0.0 0.0364 0 0 85.5 0

10 0.012 0.0345 0.0344 0.0576 86.5 23.638

11 0.0 0.0180 0 0 85.5 0

12 0.0 0.0246 0 0 85.75 0

13 0.0 0.0312 0 0 86.0 0

14 0.0 0.0182 0 0 86.0 0

15 0.0 0.0216 0 0 86.0 0

16 0.0 0.0245 0 0 86.0 0

17 0.0 0.0188 0 0 85.25 0

18 0.0 0.0145 0 0 85.5 0

19 0.0 0.0292 0 0 86.0 0

20 0.0 0.0132 0 0 86.0 0

21 0.0 0.0148 0 0 84.5 0

22 0.0 0.0116 0 0 86.0 0

23 0.0 0.0248 0 0 86.0 0

24 0.0 0.0190 0 0 86.0 0

25 0.0 0.0290 0 0 85.25 0

26 0.0 0.0222 0 0 86.0 0

27 0.0 0.0292 0 0 85.75 0

28 0.0 0.0307 0 0 84.75 0

29 0.0 0.0255 0 0 86.0 0

30 0.0 0.0163 0 0 86.0 0

31 0.0 0.0221 0 0 84.5 0

Table B.2: Feature evaluation for (x+ y)2 > 0.25
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Feature FR Re IG GR 1R χ2

x 0.209 0.140067 0.241 0.156 79.0 119.56

y 0.2456 0.151114 0.248 0.165 78.25 122.34

2 0.0 0.008450 0 0 76.0 0

3 0.0 0.009063 0 0 73.75 0

4 0.0 0.005004 0 0 70.25 0

5 0.0 0.013202 0 0 74.75 0

6 0.0 0.011766 0 0 72.25 0

7 0.0 0.029141 0 0 73.5 0

8 0.0 0.007746 0 0 74.25 0

9 0.0 0.007245 0 0 73.5 0

10 0.0 0.018969 0 0 76.25 0

11 0.0 0.008741 0 0 75.5 0

12 0.0 0.012712 0 0 72.5 0

13 0.0 0.009962 0 0 72.25 0

14 0.0 −0.000115 0 0 75.0 0

15 0.0 0.003541 0 0 73.5 0

16 0.0 0.012629 0 0 75.0 0

17 0.0 0.019661 0 0 73.75 0

18 0.0 0.013886 0 0 76.0 0

19 0.0 0.011437 0 0 73.25 0

20 0.0 0.008366 0 0 74.25 0

21 0.0 0.017771 0 0 72.25 0

22 0.0 0.003630 0 0 74.5 0

23 0.0 0.013811 0 0 75.5 0

24 0.0 0.017560 0 0 74.5 0

25 0.0 0.003648 0 0 73.5 0

26 0.0 0.013574 0 0 72.75 0

27 0.0 0.009583 0 0 73.75 0

28 0.0 −0.000367 0 0 75.25 0

29 0.0 −0.000397 0 0 75.25 0

30 0.0 0.011544 0 0 76.25 0

31 0.0 0.007605 0 0 74.75 0

Table B.3: Feature evaluation for (x+ y)2 > 0.5
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Feature FR Re IG GR 1R χ2

x 0.2445 0.1486 0.134 0.134 87.75 57.46

y 0.2441 0.1659 0.159 0.164 87.25 73.39

2 0.0 0.0229 0 0 88.5 0

3 0.0 0.0232 0 0 89.0 0

4 0.0 0.0322 0 0 88.25 0

5 0.0 0.0301 0 0 89.0 0

6 0.0 0.0252 0 0 89.0 0

7 0.0 0.0203 0 0 89.0 0

8 0.0 0.0341 0 0 89.0 0

9 0.0 0.0289 0 0 89.0 0

10 0.0 0.0339 0 0 88.5 0

11 0.0 0.0313 0 0 89.0 0

12 0.0 0.0287 0 0 89.0 0

13 0.0 0.0545 0 0 89.0 0

14 0.0 0.0458 0 0 89.0 0

15 0.0 0.0378 0 0 89.0 0

16 0.0 0.0289 0 0 89.0 0

17 0.0 0.0332 0 0 89.0 0

18 0.0 0.0306 0 0 89.0 0

19 0.0 0.0397 0 0 88.25 0

20 0.0 0.0247 0 0 89.0 0

21 0.0 0.0163 0 0 89.0 0

22 0.0 0.0330 0 0 89.0 0

23 0.0 0.0276 0 0 89.0 0

24 0.0 0.0189 0 0 88.75 0

25 0.0 0.0279 0 0 88.75 0

26 0.0 0.0252 0 0 88.75 0

27 0.0 0.0157 0 0 89.0 0

28 0.0 0.0304 0 0 89.0 0

29 0.0 0.0285 0 0 89.0 0

30 0.0 0.0315 0 0 88.75 0

31 0.0 0.0290 0 0 89.0 0

Table B.4: Feature evaluation for (x+ y)3 < 0.125
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Feature FR Re IG GR 1R χ2

x 0.1057 0.0750547 0.169 0.123 64.25 73.65

y 0.0591 0.1079423 0.202 0.226 66.75 88.04

z 0.1062 0.0955878 0.202 0.160 67.5 84.28

3 0.0 0.0031390 0 0 56.75 0

4 0.0 −0.0156922 0 0 60.75 0

5 0.0 0.0088234 0 0 58.5 0

6 0.0 −0.0076636 0 0 53.25 0

7 0.0 0.0050098 0 0 57.5 0

8 0.0 0.0006841 0 0 55.75 0

9 0.0 −0.0015287 0 0 54 0

10 0.0 0.0031223 0 0 53 0

11 0.0 0.0021915 0 0 57.75 0

12 0.0 0.0027260 0 0 61.75 0

13 0.0 0.0108794 0 0 57.75 0

14 0.0 0.0008456 0 0 59.25 0

15 0.0 −0.0002930 0 0 60 0

16 0.0 −0.0018220 0 0 57.5 0

17 0.0 0.0019899 0 0 61.75 0

18 0.0 0.0090028 0 0 57.5 0

19 0.0 0.0043929 0 0 60.25 0

20 0.0 0.0006062 0 0 53.75 0

21 0.0 −0.0075626 0 0 53.75 0

22 0.0 0.0185202 0 0 57.0 0

23 0.0 −0.0056034 0 0 59.25 0

24 0.0 0.0116144 0 0 57.75 0

25 0.0 0.0001139 0 0 55.75 0

26 0.0 −0.0010561 0 0 56.25 0

27 0.0 0.0002921 0 0 54.5 0

28 0.0 0.0062014 0 0 51.75 0

29 0.0 −0.0092218 0 0 59.25 0

30 0.0 0.0000525 0 0 61.75 0

31 0.0 −0.0011460 0 0 57.0 0

32 0.0 −0.0059597 0 0 57.0 0

Table B.5: Feature evaluation for x∗ y∗ z > 0.125
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Feature FR Re IG GR 1R χ2

x 0.1511 0.09800 0.1451 0.0947 76.5 65.43

y 0.1101 0.05571 0.0909 0.1080 78.0 35.36

z 0.2445 0.14736 0.2266 0.2271 79.75 93.81

3 0.0 0.00725 0 0 77.5 0

4 0.0 0.00652 0 0 78.5 0

5 0.0 0.01793 0 0 77.75 0

6 0.0 0.00716 0 0 78.0 0

7 0.0 0.02053 0 0 76.5 0

8 0.0 0.00339 0 0 78.25 0

9 0.0 0.01114 0 0 77.0 0

10 0.0 0.00409 0 0 77.75 0

11 0.0 0.01595 0 0 77.75 0

12 0.0 0.01640 0 0 77.75 0

13 0.0 0.01224 0 0 78.5 0

14 0.0 0.00170 0 0 75.5 0

15 0.0 0.00735 0 0 78.75 0

16 0.0 0.00575 0 0 78.0 0

17 0.0 0.01831 0 0 78.25 0

18 0.0 0.00508 0 0 76.0 0

19 0.0 0.01943 0 0 79.0 0

20 0.0 0.00929 0 0 78.5 0

21 0.0 0.00493 0 0 77.75 0

22 0.0 0.00579 0 0 75.75 0

23 0.0 0.01252 0 0 76.25 0

24 0.0 0.01957 0 0 79.0 0

25 0.0 0.01700 0 0 78.25 0

26 0.0 0.01175 0 0 76.5 0

27 0.0 0.01055 0 0 76.5 0

28 0.0 0.01405 0 0 78.0 0

29 0.0 0.02123 0 0 77.75 0

30 0.0 0.00884 0 0 77.5 0

31 0.0 0.01270 0 0 77.75 0

32 0.0 0.00806 0 0 77.5 0

Table B.6: Feature evaluation for x∗ y∗ z2 > 0.125





Appendix C

Metric Comparison Results:

Regression Datasets

This section contains the full results for 3 regression datasets. The datasets were cre-

ated by generating around 30 random feature values for 400 objects. The decision

value is created by means of a function involving 2 or more variables denotedx, y and,

optionally,z if there is a third variable in the function. The tables show the rating given

to the features from the corresponding metric.
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Feature FR Re

x 0.156714 0.075208

y 0.183391 0.113038

2 0 −0.009917

3 0 −0.005152

4 0 0.002461

5 0 −0.000395

6 0 0.002699

7 0 0.003785

8 0 0.001662

9 0 −0.004740

10 0 0.001569

11 0 0.001495

12 0 −0.011035

13 0 −0.002583

14 0 −0.001381

15 0 −0.008143

16 0 −0.006520

17 0 −0.006878

18 0 −0.007850

19 0 −0.010232

20 0 −0.012889

21 0 −0.002477

22 0 −0.006587

23 0 −0.013506

24 0 −0.002338

25 0 −0.005290

26 0 −0.010280

27 0 −0.008658

28 0 −0.013362

29 0 0.000171

30 0 −0.006342

31 0 −0.012110

32 0 −0.006963

Table C.1: Feature evaluation for f (x,y) = x∗ y
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Feature FR Re

x 0.227428 0.076988

y 0.165914 0.036674

z 0.203991 0.046234

3 0 −0.017056

4 0 0.004989

5 0.027450 −0.006416

6 0 −0.006045

7 0 0.003952

8 0 −0.001892

9 0 −0.010275

10 0 0.002356

11 0 −0.002328

12 0 −0.008287

13 0 −0.002969

14 0 −0.000050

15 0 0.002246

16 0 −0.006986

17 0 −0.001557

18 0 −0.007045

19 0 −0.002284

20 0 −0.006091

21 0 −0.015512

22 0.014446 −0.002249

23 0 −0.003250

24 0 0.000463

25 0 −0.010833

26 0 −0.002515

27 0 0.003845

28 0 −0.006644

29 0 −0.004005

30 0 −0.004674

31 0 −0.002399

32 0 0.001246

Table C.2: Feature evaluation for f (x,y,z) = x∗ y∗ z
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Feature FR Re

x 0.128874 0.042855

y 0.123908 0.046120

z 0.170640 0.087663

3 0 −0.003307

4 0 0.000906

5 0 −0.005428

6 0 −0.009834

7 0 −0.014792

8 0 −0.006332

9 0 −0.008469

10 0 −0.000288

11 0 −0.005352

12 0 0.002245

13 0 −0.009150

14 0 −0.011524

15 0 −0.010116

16 0 −0.003124

17 0.005709 0.009794

18 0 −0.002233

19 0.005229 −0.011230

20 0 −0.005987

21 0 0.003280

22 0.011279 −0.010511

23 0 −0.004181

24 0.003855 −0.005324

25 0 0.000940

26 0 0.008235

27 0.019171 −0.013884

28 0 −0.006893

29 0 −0.011087

30 0 −0.011827

31 0 −0.007989

32 0 −0.018503

Table C.3: Feature evaluation for f (x,y,z) = x∗ y∗ z2
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