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COMBINING ROUGH SETS AND BAYES’ RULE
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Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,
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In rough set theory with every decision rule two conditional probabilities, called certainty and
coverage factors, are associated. These two factors are closely related with the lower and the upper
approximation of a set, basic notions of rough set theory. It is shown that these two factors satisfy the
Bayes’ rule.

The Bayes’ rule in our case simply shows some relationship in the data, without referring to prior
and posterior probabilities intrinsically associated with Bayesian inference. This relationship can be used
to “invert” decision rules, i.e., to find reasons (explanation) for decisions thus providing inductive as well
as deductive inference in our scheme.
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1. INTRODUCTION

This paper contains an extended version of ideas presented in Pawlak (1998, 1999,
2000). In the paper relationship between rough set theory and Bayes’ rule is shown.
However, the meaning of Bayes’ rule in our case is different from that in statistical
inference.

Statistical inference grounded on the Bayes’ rule supposes that some prior knowl-
edge (prior probability) about some parameters, without knowledge about the data, is
given first. Next the posterior probability is computed, when the data is available. The
posterior probability is then used to verify the prior probability.

In the rough set philosophy with every decision rule two conditional probabilities,
called certainty and coverage factors, are associated. These two factors are closely related
with the lower and the upper approximation of a set, basic concepts of rough set theory.
It turns out that these two factors satisfy the Bayes’ rule. This property enables us
to explain decisions in terms of conditions, i.e., to compute certainty and coverage
factors of “inverse” decision rules, without referring to prior and posterior probabilities,
intrinsically associated with Bayesian reasoning.

2. BASIC NOTIONS

In this section we recall basic concepts of rough set theory needed in the sequel.
Starting point of rough set based data analysis is a data set, called an information
system.

An information system is a data table, whose columns are labelled by attributes,
rows are labelled by objects of interest and entries of the table are attribute values.

Formally, by an information system we will understand a pair S = (U, A), where U
and A are finite, nonempty sets called the universe, and the set of attributes, respectively.
With every attribute a € A we associate a set V,, of its values, called the domain of a.
Any subset B of A determines a binary relation /(B) on U, which will be called an
indiscernibility relation, and defined as follows: (x,y) € I(B) if and only if a(x) =
a(y) for every a € A, where a(x) denotes the value of attribute a for element x.
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Obviously /(B) is an equivalence relation. The family of all equivalence classes of 1(B),
i.e., a partition determined by B, will be denoted by U/I(B), or simply by U/B; an
equivalence class of I(B), i.e., block of the partition U/B, containing x will be denoted
by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible (indiscernible
with respect to B). Equivalence classes of the relation /(B) (or blocks of the partition
U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two disjoint classes of attributes, called
condition and decision attributes, respectively, then the system will be called a decision
table and will be denoted by S = (U, C, D), where C and D are disjoint sets of condition
and decision attributes, respectively.

A simple, tutorial example of an information system (a decision table) is shown in
Table 1.

In Table 1 six facts concerning a hundred cases of driving a car in various weather
conditions are presented. In the table W (weather), R (road) and T (time) are condition
attributes, representing driving conditions; A (accident), is a decision attribute, giving
information whether an accident has occurred or not. N is the number of similar cases.
Each row of the decision table determines a decision obeyed when specified conditions
are satisfied.

Suppose we are given an information system S = (U, 4), X € U, and B C A. Our
task is to describe the set X in terms of attribute values from B. To this end we define
two operations assigning to every X € U two sets B,(X) and B*(X) called the B-lower
and the B-upper approximation of X, respectively, and defined as follows:

B.(X) = U{B(x): B(x) € X},

xeU

B (X) = | J{B(x): B(x)N X # &}
xelU

Hence, the B-lower approximation of a set is the union of all B-granules that are

included in the set, whereas the B-upper approximation of a set is the union of all
B-granules that have a nonempty intersection with the set. The set

BNj(X) = B*(X) - B,(X)
will be referred to as the B-boundary region of X.

TaBLE 1.  An Example of an Information System

driving conditions consequence
F w R T A N
1 misty icy day yes 6
2 foggy icy night yes 8
3 misty not icy  night yes 5
4 sunny  icy day no 55
5  foggy not icy  dusk yes 11
6 misty not icy  night no 15
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If the boundary region of X is the empty set, i.e., BNz(X) = @, then X is crisp
(exact) with respect to B; in the opposite case, i.e., if BNg(X) # @, X is referred to as
rough (inexact) with respect to B.

3. DECISION RULES

Let S = (U, A) be an information system. With every B € A4 we associate a formal
language, i.e., a set of formulas F or (B). Formulas of F or (B) are built up from
attribute-value pairs (a, v) where a € B and v € V, by means of logical connectives A
(and), v (or), ~ (not) in the standard way.

For any @ € F or (B) by | ®| ¢ we denote the set of all objects x € U satisfying ®
in S and we refer to it as the meaning of ® in S.

The meaning ||P|l¢ of ® in S is defined inductively as follows: [|(a, v)|ls = {x €
U:aWw)=x}forallae Bandv € V,, |V Vg = |P|sgU|Pls, |PAY|g =
I@ls O Wlls, || ~ Pl = U — [®].

A formula ® is frue in S if |®| g = U.

A decision rule in S is an expression & — W, read if ® then ¥, where & € F
or (C),¥ € F or (D) and C, D are condition and decision attributes, respectively; ®
and W are referred to as conditions and decisions of the rule, respectively; we will also
say that ® is a condition for ¥ and ¥ is a decision for .

The number suppg(P, V) = card(||P A W|g) will be referred to as the support of
the decision rule & — ¥ in §, whereas the number

supps(P, ¥)

os(®, W) = card(U)

will be called the strength of the decision rule ® — V¥ in S.

A decision rule ® — W is true in § if |P|g < |P]s-

We consider a probability distribution py(x) = 1/card(U) for x € U where U is the
(non-empty) universe of objects of S; we have py(X) = card(X)/card(U) for X C U.
For any formula ® we associate its probability in S defined by

wg(P) = py(Plls)-

With every decision rule ® — ¥ we associate a conditional probability

ms(V|P) = py(IVlis] [1Plls)

that W is true in S given @ is true in S called the certainty factor, used first by Lukasiewicz
(1970) to estimate the probability of implications. We have

card(||® A Pl)
card(||P]ls)

m (VD) =

where ||®||g # 2.

This coefficient is now widely used in data mining and is called confidence coefficient.

Obviously, wg(W|®) =1 if and only if & — ¥ is true in S.

If wg(W|P) = 1, then ® — ¥ will be called a certain decision rule; if 0 < wg(V|P) <
1 the decision rule will be referred to as an uncertain decision rule.

Besides, we will also use a coverage factor (used e.g. by Tsumoto (1998) for estima-
tion of the quality of decision rules) defined by

ms(PIW) = py(IPlsl I'Wlls)-
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which is the conditional probability that @ is true in §, given W is true in S with the
probability w¢(W). Obviously we have

card(| D A Y5)

ms(P|V) = card(| V)

The certainty factors in S can be also interpreted as frequencies of objects having
the property ¥ in the set of objects having the property ® and the coverage factors—as
frequencies of objects having the property ® in the set of objects having the property V.

4. DECISION ALGORITHM

Let Dec(S) = {®;, - ¥;}'",, m > 2, be a set of decision rules in a decision table
S=(U,C,D).
If for every & — ¥, &’ — ¥’ € Dec(S) we have

1) =9 or [|[PAD|g=0,
and
2) v=Vor |VAV|s=2,

then we will say that Dec(S) is the set of mutually disjoint (independent) decision rules
in S.
If

() VL Pills =U and | VL, ¥ills =U

we will say that the set of decision rules Dec(S) covers U.

If® - W e Dec(S) and | A V¢ # @ we will say that the decision rule ® — ¥
is admissible in §.

It

(4) Uxeup C(X) = Il Voepects) Plls

where Dec™(S) is the set of all certain decision rules in S, we will say that the set of
decision rules Dec(S) preserves the consistency of the decision table S = (U, C, D).
Any set of decision rules Dec(S) that is independent, covers U, preserves the con-
sistency of S, and all decision rules ® — W € Dec(S) are admissible in S, will be called
a decision algorithm in S.
An example of decision algorithm in S is given below:

1) (W, misty) A (R, icy) — (A, yes)

2) (W, foggy) — (A, yes)

3) (W, misty) A (R, noticy) — (A, yes)
4) (W, sunny) — (A, no)

5) (W, misty) A (R, not icy) — (A, no)

Hence, if Dec(S) is a decision algorithm in S then the conditions of rules from
Dec(S) define in S a partition of U. Moreover, the positive region of D with respect to
C, i.e., the set

U cx)
XeU/D
is partitioned by the conditions of some of these rules, which are certain in S.
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TABLE 2.  An Example of Certainty and Coverage

Factors

rule no. strength ~ certainty  coverage
1 0.06 1.00 0.20
2 0.19 1.00 0.63

3 0.05 0.25 0.17

4 0.55 1.00 0.79

5 0.15 0.75 0.21

Often we are interested in explanation of decisions in terms of conditions, i.e., in giv-
ing reasons to decisions. To this end, we have to “invert” decision rules, i.e., to exchange
mutually conditions and decisions in a decision rule. The set of inverted decision rules
will be called an inverse decision algorithm. For example, the following inverse deci-
sion algorithm can be understood as explanation of car accidents in terms of weather
conditions:

1) (A, yes) — (R, icy) A (W, misty)

2’) (A, yes) — (W, foggy)

3) (A, yes) — (R, not icy) A (W, misty)
4) (A, no) — (W, sunny)

5) (A, no) — (R, noticy) A (W, misty)

The certainty and the coverage factors for decision rules 1)-5) are shown in Table 2.
From decision rules 1)-5) and the certainty and the coverage factors we can draw
the following conclusions:

1) Misty weather and icy road always caused accidents

2) Foggy weather always caused accidents

3) Misty weather and not icy road caused accidents in 25% of cases
4) Sunny weather and icy road always caused safe driving

5) Misty weather and not icy road caused safe driving in 75% of cases

From inverse decision rules 1’)-5") we get the following explanations:

1’) 20% of accidents occurred when the weather was misty and the road icy

2’) 63% of accidents occurred when the weather was foggy

3’) 17% of accidents occurred when the weather was misty and the road not icy

4’y 79% of safe driving took place when the weather was sunny

5’) 21% of safe driving took place when the weather was misty and the road not icy

5. DECISION ALGORITHMS AND APPROXIMATIONS

There is an interesting relationship between decision algorithms and approxima-
tions, which is discussed below. Let Dec(S) be a decision algorithm in § and let
® — V¥ e Dec(S). By C(¥) we will denote the set of all conditions of ¥ in Dec(S) and
by D(®P)—the set of all decisions of @ in Dec(S).
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Then the following relationships are valid:

a) C.([V]g) = \/ o,
P eC(V), w(VP)=1 |g

b) C*(I¥ ) = \/ o,
P'eC(V), 0<m(V|D)<l | g
I [I

¢) BN(|[¥ls) =| @'
|

| &'eC(P), 0<Tr(«1f\<1>/)<1 s

The above properties enable us to introduce the following definitions:

i)
ii)

iii)

If |®|ls = C.(I'P]lg), then the formula ® will be called the C-lower approximation
of the formula ¥ and it will be denoted by C,(¥);

If |®P|lg = C*(II'V|ls), then the formula ® will be called the C-upper approximation
of the formula @ and it will be denoted by C*(V);

If |®|lg = BN:(|V]s), then ® will be called the C-boundary of the formula ¥
and it will be denoted by BN (V).

From the above considerations it follows that any decision ¥ € Dec(S) can be

uniquely described by the following certain and uncertain decision rules respectively:

C. (V) > V¥,
BN (V) — V.
Thus for the considered example we can get the following decision rules:

Certain rules describing accidents (the lower approximation of the set of facts
{1,2,3,5})

1) (W, misty) A (R, icy) — (A, yes)
2) (W, foggy) — (4, yes)

Uncertain rule describing accidents (the boundary region {3, 6} of the set of facts
{1,2,3,5})

3) (W, misty) A (R, not icy) — (A, yes)

Certain rule describing lack of accidents (the lower approximation of the set of facts

{4,6})
4) (W, sunny) — (A, no)

Uncertain rule describing lack of accidents (the boundary region {3, 6} of the set of
facts {4, 6})

5) (W, misty) A (R, not icy) — (A, no)

This coincides with the idea given by Ziarko (1998) to represent decision tables by
means of three types of decision rules corresponding to the positive region, the bound-

ary

region, and the negative region of a decision.
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6. SOME PROPERTIES OF DECISION ALGORITHMS

Let Dec(S) be a decision algorithm and let ® — W € Dec(S). Then the following
properties are valid:

Y mg(PY) =1 1)
'eC(¥)
Y. m(VP) =1 (2)
WeD(d)
(V) = Z ms(V[D) - mg(P') = Z og(P', W) 3)
'eC(V) D'eC(V)
_ mg(V|D) - mg(P) _og(P, W)
ms(PIV) = ZCD’GC(\P) mg(V|P') - mg (D) B (V) ®

That is, any decision algorithm satisfies (1), (2), (3), and (4). Let us observe that
(3) is the well known fotal probability formula and (4) is the Bayes’ rule.

The Bayes’ rule explains the relationships between the certainty and coverage fac-
tors and can be used to explain decisions in terms of conditions.

The Bayes’ rule (4) enables us to compute in a very simple way, employing only the
strength of decision rules, the certainty and the coverage factors.

Let us notice that we do not refer to prior and posterior probabilities, inherently
associated with Bayesian inference. In our case the Bayes’ rule simply reveals some
relationships in the data.

7. CONCLUSIONS

This paper shows that any decision algorithm is closely associated with approxima-
tions, moreover it satisfies Bayes’ rule. This enables us to apply Bayes’ rule to “invert”
decision rules without referring to prior and posterior probabilities, inherently asso-
ciated with “classical” Bayesian inference philosophy, using only strength of decision
rules. The inverse decision rules can be used to explain decisions in terms of condi-
tions, i.e., to give reasons for decisions.
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