
Combining RTSJ with Fork/Join

A Priority-based Model

Cláudio Maia, Luís Nogueira, Luís Miguel Pinho

JTRES 2011, York, United Kingdom

September, 27, 2011

Agenda

 Motivation

 Challenges & Research Direction

 Framework Proposal & Related work

 Fork/Join Model & Work Stealing

 System Model & Integration Challenges

 Future Work

2

JTRES 2011, September 27 Combining RTSJ with Fork/Join

Motivation

 Embedded systems are starting to incorporate multiple
processor architectures

 Uniprocessor architectures are not efficient to implement
anymore

 Reduction in the production costs and improved energy efficiency

 Stringent operation requirements, such as

 low memory footprint

 low power consumption

 timing constraints

3

JTRES 2011, September 27 Combining RTSJ with Fork/Join

Motivation

 OSes and Java VMs running on uniprocessor systems are
multiprogrammed environments

 Applications execute concurrently in order to maximise the
utilisation of system resources

 Evolution from uniprocessor systems to multiprocessor
systems

 It is not sufficient to migrate or adapt current sequential
programming models or tools

 Penalty: underutilisation of system resources

 Natural Evolution

 Applications need to be parallelised so that system throughput is
increased, through the efficient management of system resources.

4

JTRES 2011, September 27 Combining RTSJ with Fork/Join

Challenges

5

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Creation of new parallel programming models

 Efficiently take advantage of parallel platforms and architectures

 Requires

 data structures

 algorithms and

 code generation tools

 Programming models should be independent on the number of
processors

 Particularly as the number of cores largely increases

 Nº tasks < nº of processors

Research Direction

6

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Explore new programming models that combine

 parallel systems

 embedded real-time systems

 Solve the limitations of current embedded real-time OS and
VM environments

 Lack of programming models and tools to handle the parallel
execution of applications

Framework Proposal

7

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Parallel execution of dynamic real-time applications

 Objective of optimising resource utilisation

 Applications are composed by a set of complex tasks that can be
divided into smaller units of execution

 Integrates RTSJ with the Fork/Join model

 Goal is to execute on top of a real-time Java virtual machine

 Advantages

 Open-source nature, platform-independence, and
application’s portability

 RTSJ

 Drawback: performance

Related Work

8

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 RTSJ

 Limitations concerning multiprocessor support

 Mapping of schedulable objects to processors

 A fixed priority scheduler with a single run queue per
priority level (global, partitioned and mixed require
adaptation)

 ...

 Garbage collection on multiprocessors

 Has to be further studied

 Parallel Systems

 Cilk, Java Fork/Join, OpenMP

 Encourage programmers to divide their applications into
parallel blocks which are assigned to processors

Fork/Join Model Concepts

9

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Principle of divide and conquer

 Fork tasks into subtasks in a recursive manner

 Join to wait until subtasks complete (blocking point)

 Examples: Fibonacci, Image processing

 Implementations rely on work-stealing

 Worker Thread (WT) per processor with its own scheduling
double-ended queue (deque)

 Deques support LIFO and FIFO operations

 LIFO

 WT processing their own deques

 FIFO

 WT steals work from other worker threads

 Subtasks generated by tasks are pushed into that WT deque

 WT become idle when there’s no work to do

Work-Stealing (Visual Representation)

10

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Work-Stealing (Visual Representation)

11

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

 Work Threads process work from the bottom of the queue

Work-Stealing (Visual Representation)

12

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

 Work Threads process work from the bottom of the queue

Work-Stealing (Visual Representation)

13

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Child Task

Forking Task

Parent Task

 If a task spawns a new child, then the parent is pushed to the
bottom of the deque and the processor executes the child task

Work-Stealing (Visual Representation)

14

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Child Task

Forking Task

Parent Task

 If a task spawns a new child, then the parent is pushed to the
bottom of the deque and the processor executes the child task

Work-Stealing (Visual Representation)

15

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Child Task

Forking Task

Parent Task

 If a deque is empty, the Worker Thread steals work (the
topmost task) from other processor’s deque

Work-Stealing (Visual Representation)

16

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Child Task

Forking Task

Parent Task

 If a deque is empty, the Worker Thread steals work (the
topmost task) from other processor’s deque

Work Stealing Advantages

17

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Reducing task contention

 LIFO

 WT Processing own tasks

 FIFO

 WT stealing from the opposite side of the deque

 Initial tasks generate more work, which affect

 Amount of stealing operations

 Task decompositions

System Model

JTRES 2011, September 27 Combining RTSJ with Fork/Join

18

 Sporadic and independent tasks on m identical processors

 Tasks release jobs at sporadic time intervals and the execution
requirements are only known at runtime

 Jobs may spawn a set of parallel jobs (FJ tasks)

 p-Jobs – work units that can be executed in different
processors at the same time instant

System Model

JTRES 2011, September 27 Combining RTSJ with Fork/Join

19

 Jobs are scheduled according to its priority and placed in a
global submission queue

 p-Jobs inherit the timing properties of the job that spawn it

 Each processor has its own worker thread and deque where
p-Jobs will be pushed/popped according to a WS policy

WS Priority-Inversion

20

JTRES 2011, September 27 Combining RTSJ with Fork/Join

  Two cores execute two threads

 Tm in Core 1 (medium priority)

 Th in Core 2 (high priority)

 Tm generates p-Jobs (placed in Core 1 deque)

 Meanwhile, Th2 (high priority) is ready and preempts Tm in Core 1

 Th2 p-Jobs are placed in Core 1’s deque, pushing older p-Jobs (Tm) to
the end of the queue

 If Core 2 has no work to do, it may steal older p-Jobs from Core 1’s
deque (generated by Tm) causing priority inversion

 However, if work stealing wouldn’t be applied, Core 2 would remain
idle

Integration Challenges (RTSJ/FJ)

21

JTRES 2011, September 27 Combining RTSJ with Fork/Join

  Task Scheduling

 Respect the properties of both

 Real-time tasks and work-stealing

 Therefore, we should carefully take into account

 Timing properties of real-time tasks through feasibility
analysis

 Impacts of task migration

 Predictability of the system

 Memory Management

 Garbage collection (it is always a concern )

 Memory regions per WT

 Using portals to share p-Jobs maybe a solution (due to
the imposed scope assignment rules)

 Native multiprocessor support in the JVM

Future Work

22

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 The definition and specification of a real-time scheduling
algorithm based on work-stealing

 Considering the preliminary system model just
presented

 Implementation of this scheduling scheme using RTSJ and FJ

 Specification of memory-related concepts

 Scopes/ GC

Thank You!

23

JTRES 2011, September 27 Combining RTSJ with Fork/Join

Questions?

