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ABSTRACT: In recent years, deep learning has become a part of our everyday life and is
revolutionizing quantum chemistry as well. In this work, we show how deep learning can be
used to advance the research field of photochemistry by learning all important properties
multiple energies, forces, and different couplingsfor photodynamics simulations. We
simplify such simulations substantially by (i) a phase-free training skipping costly
preprocessing of raw quantum chemistry data; (ii) rotationally covariant nonadiabatic
couplings, which can either be trained or (iii) alternatively be approximated from only ML
potentials, their gradients, and Hessians; and (iv) incorporating spin−orbit couplings. As the
deep-learning method, we employ SchNet with its automatically determined representation of
molecular structures and extend it for multiple electronic states. In combination with the
molecular dynamics program SHARC, our approach termed SchNarc is tested on two
polyatomic molecules and paves the way toward efficient photodynamics simulations of
complex systems.

E xcited-state dynamics simulations are powerful tools to
predict, understand, and explain photoinduced processes,

especially in combination with experimental studies. Examples
of photoinduced processes range from photosynthesis, DNA
photodamage as the starting point of skin cancer, to processes
that enable our vision.1−5 As they are part of our everyday
lives, their understanding can help to unravel fundamental
processes of nature and to advance several research fields, such
as photovoltaics,6,7 photocatalysis,8 or photosensitive drug
design.9

Because the full quantum mechanical treatment of molecules
remains challenging, exact quantum dynamics simulations are
limited to systems containing only a couple of atoms, even if
fitted potential energy surfaces (PESs) are used.10−26 In order
to treat larger systems in full dimensions, i.e., systems with up
to hundreds of atoms, and on long time scales, i.e., in the range
of several 100 ps, excited-state machine learning (ML)
molecular dynamics (MD), where the ML model is trained
on quantum chemistry data, has evolved as a promising tool in
the last couple of years.27−33

Such nonadiabatic MLMD simulations are in many senses
analogous to excited-state ab initio molecular dynamics
simulations. The only difference is that the costly electronic
structure calculations are mostly replaced by an ML model,
providing quantum properties like the PESs and the
corresponding forces. The nuclei are assumed to move
classically on those PESs. This mixed quantum−classical
dynamics approach allows for a very fast on-the-fly evaluation
of the necessary properties at the geometries visited during the
dynamics simulations.

In order to account for nonadiabatic effects, i.e., transitions
from one state to another, further approximations have to be
introduced.34 One method, which is frequently used to
account for such transitions, is the surface-hopping method
originally developed by Tully.35 A popular extension for this
method including not only nonadiabatic couplings (NACs)
but also other couplings, e.g., spin−orbit couplings (SOCs), is
the SHARC (surface hopping including arbitrary couplings)
approach.36−38 Importantly, NACs, also called derivative
couplings, are used to determine the hopping directions and
probabilities between states of the same spin multi-
plicity.36,37,39−41 The NAC vector (denoted as CNAC) between
two states, i and j, can be computed as39,42,43
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where the second-order derivatives are neglected. As a further
difficulty, NACs are often missing from quantum chemistry
implementations and hopping probabilities and directions are
thus often approximated.44−52 SOCs (denoted as CSOC) are
present between states of different spin multiplicity
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and determine the rate of intersystem crossing. They are
obtained as off-diagonal elements of the Hamiltonian matrix in
standard electronic-structure calculations.37,53

Most of the recent studies involving ML dynamics deal with
ground-state MD simulations, see e.g. refs 54−78, where one
of the most promising ML models is SchNet,79,80 a deep
continuous-filter convolutional-layer neural network. In
contrast to popular ML models like RuNNer,64 n2p2,81

TensorMol,82 ANI,63 or the DeePMD model83 that require
hand-crafted molecular descriptors, SchNet belongs to the
class of message-passing neural networks.84 Other examples of
such networks are the DTNN,85 PhysNet,86 or HIP-NN.87

The advantage is that the descriptors of molecules are
automatically designed by a deep neural network and are
based on the provided data set. In this way, the descriptors are
tailored to the encountered chemical environments. Thus, we
choose SchNet as a convenient platform for our developments.
An arising difficulty compared to ground-state energies and

properties is that for the excited states not only one, but several
PESs as well as the couplings between them have to be taken
into account. Only a small but quickly increasing number of
studies deal with the treatment of excited states and their
properties using ML.15−28,31,33,88

In addition to the higher dimensionality that can be tackled
with ML,89,90 the learning of couplings proves challenging
because properties resulting from electronic wave functions of
two different states, Ψi and Ψj, have their sign dependent on
the phase of the wave functions.32,33,91,92 Because the wave
function phase is not uniquely defined in quantum chemistry
calculations, random phase jumps occur, leading to sign jumps
of the coupling values along a reaction path. Hence, the
couplings can not be learned directly as obtained from a
quantum chemistry calculation. An option is to use a phase
correction algorithm to preprocess data and remove these
random phase jumps. Assuming that the effect of the Berry
phase remains minor on the training set, smooth properties are
obtained that are learnable by ML models.32 However, this
approach is expensive and many quantum chemistry reference
computations are necessary to generate the training set. In
cases of large polyatomic molecules with many close-lying
energetic states, this approach might even be infeasible.
The aim of this Letter is to provide a framework to carry out

efficient excited-state MLMD simulations and to combine two
popular methods for this purpose: the SHARC approach for
photodynamics with states of different multiplicity and SchNet
to efficiently and accurately fit potential energies and other
molecular properties. We call this combination the SchNarc
approach and adapted SchNet for the treatment of excited-
state potentials, their forces, and couplings for this purpose.
The SchNarc approach can overcome the current limitations of
existing MLMD simulations for excited states by allowing (i) a
phase-free training to omit the costly preprocessing of raw
quantum chemistry data and, to treat (ii) rotationally covariant
NACs, which can either be trained or (iii) alternatively be
approximated from only ML potentials, their gradients, and
Hessians, and to treat (iv) SOCs. When using the phase-free
training in combination with the approximated NACs, the
costs required for the training set generation can be reduced
substantially. Further, each data point can be computed in
parallel, which is not possible when phase correction is needed.
With all these methodological advances, the SchNarc ML

approach simplifies accelerated nonadiabatic dynamics simu-
lations, broadening the range of possible users and the scope of
systems, in order to make long time scales accessible.
To validate our developments, the surface hopping dynamics

of two molecules, showing slow and ultrafast excited-state
dynamics, are investigated. The first molecule is CH2NH2

+, of
which we take a phase-corrected training set from ref 32. Using
the same level of theory (MR-CISD(6,4)/aug-cc-pVDZ) with
the program COLUMBUS,93 the training set is recomputed
without applying phase correction to train ML models also on
raw data obtained directly from quantum chemistry programs.
This training set should be used to validate our phase-free
training approach. The ML models are trained on energies,
gradients, and NACs for three singlet states using 3000 data
points.
Slow photoinduced processes are present in thioformalde-

hyde, CSH2.
94 The training set is built up of 4703 data points

with two singlet states and two triplet states after initial
sampling of normal modes and adaptive sampling with simple
multilayer feed-forward neural networks according to the
scheme described in ref 32. This scheme applied for the
training set generation is based on an uncertainty measure.
Two (or more) ML models are trained and dynamics
simulations are performed. At each time step, the predictions
of the different ML models are compared. Whenever the error
between the models exceeds a manually defined threshold, the
molecular geometry visited at this time step is recomputed
with quantum chemistry and the data added to the training set.
Our previously proposed network32 was used for this purpose
because the training set was generated before SchNarc was
developed. The sampling procedure is largely independent of
the network architecture used and could therefore also be
carried out with SchNarc but has not been tested here. The
program MOLPRO95 is used for the reference calculations
with CASSCF(6,5)/def2-SVP.
The main novelty of the phase-free training is that it

removes the influence of the arbitrary phase during the
learning process of an ML model. It can be applied to any
existing ML model capable of treating excited states and any
existing data set for excited states eliminating an expensive and
time-consuming phase correction preprocessing. The chosen
ML model here is SchNet, for which the new loss function
termed phase-less loss function is implemented and tested using
the methylenimmonium cation, CH2NH2

+. The phase-less loss
is based on the standard L2 loss, but here, the squared error of
the predicted properties is computed 2NS−1 times, with NS

being the total number of states. The value of each property, LP

(i.e., LSOC and LNAC), that enters the loss function is the
minimum function of all possible squared errors εP

k:
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for vectorial and nonvectorial properties, respectively. The
error εP

k for a specific phase is computed as the mean squared
error of a property P from quantum chemistry (index QC) and
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machine learning (index ML). The property P couples
different states, indicated by i and j. Because the wave function
of each of the states can have an arbitrary phase, the property
Pij that couples state i and j has to be multiplied with a product
of the phases for these states, pi·pj. The phases for all states
together form a vector p with entries of either +1 and −1.
Which of the 2NS−1 possible combinations for p is chosen is
indicated by the index k, also defined in eq 3. The possible
combination that gives the lowest error enters the loss
function. This is done for all samples inside of the training
set and can be seen as an internal ML-based phase correction.
Because of the continuity of ML fitted functions, the sign of
properties is consistent for predictions. Note that the relative
signs within one vector remain and must be predicted correctly
for successful training.
The overall loss function in this work is a combination of

such phase-less loss functions and mean squared errors for all
properties with a trade-off factor to account for their relative
magnitude. The relative magnitude of each property is defined
by a manually set trade-off factor (a detailed description of the
implementation is given in the Supporting Information).
Results are given in Figure 1, which shows the population

schemes of CH2NH2
+ obtained after excitation to the second

excited singlet state, S2. The populations obtained from
quantum chemistry are shown by dotted lines. SchNarc
models are illustrated using solid lines. Panels A and C are
obtained from SchNarc models trained on a data set that is not
phase-corrected; that is, it contains couplings that can
randomly switch their sign. Those are compared to populations
obtained from models trained on phase-corrected data (panels
B and D). As can be seen, the L2 loss function, as used in the
upper plots, leads to an accurate ML model to reproduce
ultrafast transitions only in the case of phase-corrected data
(panel B), whereas this loss can not be used when trained on
raw quantum chemistry data (panel A). In comparison, a

SchNarc simulation with an ML model that applies the phase-
less loss function is successful in reproducing the populations
for both training sets (panels C and D).
In those simulations, the NACs are multiplied with the

corresponding energy gaps, i.e., C̃ij
NAC = Cij

NAC
·ΔEij, to get rid

of singularities.21,33 These smooth couplings C̃ij
NAC are not

directly learned, but rather constructed as the derivative of a
virtual property, analogously to forces that are predicted as
derivatives of an energy-ML model. The virtual property is the
multidimensional antiderivative of the rightmost expression in

eq 1, ⟨Ψ| |Ψ⟩
∂

i
H

jR

el (a derivation is given in the Supporting

Information). Compared to previous ML models for
NACs,29,30,32,33 where NACs are learned and predicted as
direct outputs or even single values, this approach provides
rotational and translational covariance, which has recently been
achieved in a similar way for the electronic friction tensor.96

However, even without the need of preprocessing the
training set, the costly computations of NAC vectors for the
training set generation remain. Approximations of NACs exist
and often involve the computation of the squared energy-gap
Hessian.11,97−101 Their use in dynamics simulations is rather
impracticable with quantum chemistry methods, especially in
the case of complex systems, because of the expenses of
computing second-order derivatives.
Here, we take advantage of the efficiency for second-order

derivative computation from ML models with respect to
atomic coordinates to obtain the Hessians of the fitted PESs:i
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with R being the atomic coordinates of a molecular system.
Note that Hessians are also employed in quantum dynamics
simulations,102,103 which might open further applications for
our implementation.
The squared energy-gap Hessian can be further obtained as

the sum of two symmetric dyads, which define the branching
space.101 Hence, this Hessian can be employed to obtain the
symmetric dyad of the smooth NACs via11,104
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After singular value decomposition, the hopping direction can
be computed as the eigenvector, vij, of the largest nonzero
eigenvalue101,104,105 with the corresponding eigenvalue, λij, as
the squared magnitude of the ML smooth coupling, C̃ij

NAC. The
final approximated NAC vectors, Cij

aNAC, between two states are
then

λ

= ·
Δ

C v
E

ij ij

ij

ij

aNAC

(7)

The approximated NAC vectors can be employed in the
vicinity of a conical intersection; otherwise, the output
becomes too noisy. For the latter reason, we define thresholds
of 0.5 and 1.0 eV for the energy gaps to compute approximated
NACs between coupled singlet−singlet states and triplet−
triplet states, respectively. It is worth mentioning that the ML
models slightly overestimate the energy gaps at a conical
intersection,32 because ML PESs, in contrast to quantum
chemical PESs, are smooth everywhere and can reproduce the
cones present in such critical regions only to a certain extent.

Figure 1. Populations obtained from 90 QC (MR-CISD(6,4)/aug-cc-
pVDZ) trajectories are shown by dotted lines and are compared to
populations resulting from 1000 trajectories initially excited to the S2
obtained from SchNet (solid lines) that is trained on (A) not phase-
corrected data and takes the L2 norm as loss function; (B) a similar
SchNet model, but trained on phase-corrected data; (C) a SchNet
model trained on not phase-corrected data, but using the new phase-
less loss function; and (D) a SchNet model trained on phase-
corrected data using the new phase-less loss function.
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In ref 105, approximated NACs were applied for a 1D system,
and their usefulness in combination with ML was already
anticipated.
We turn this idea into reality and show ML excited-state

dynamics with approximated NACs for the methylenimmo-
nium cation, CH2NH2

+, as presented before, and thioformal-
dehyde, CSH2. A detailed analysis on the reference
computations, the ab initio methods applied, as well as
information on the timing of the Hessian evaluation are given
in the Supporting Information in sections S2 and S3.1,
respectively. The quality of the approximated NACs that is
further compared to learned NACs is assessed using a linear
vibronic coupling model of sulfur dioxide. The results are given
in the Supporting Information in section S4.1 in Figures S1−
S3 and support the validity of this approximation. Scatter plots
and scans along a reaction coordinate of CH2NH2

+ and CSH2

are further computed for energies, gradients, and couplings
(and approximated NACs for CH2NH2

+) in sections S4.2
(Figures S4 and S5) and S4.3 (Figures S6 and S7),
respectively. Computed normal modes from ML Hessians
are compared to reference values in Tables S3−S5 and show
their accuracy. None of the data points from the ab initio MD
simulations, to which we compare our SchNarc models, are
included in the training sets, and thus, the dynamics
simulations can be seen as an additional test.
The populations of CH2NH2

+ are given in Figure 2. The
reference population (panel A) is compared to SchNarc

simulations trained on energies and gradients (panel B). As is
visible, CH2NH2

+ serves as a test system for ultrafast
population transfer after photoexcitation. Transitions from
the second excited singlet state back to the ground state take
place within 100 fs,32,106 which can be reproduced only with
accurate NACs.33 Those transitions can be reproduced with
SchNarc using also the approximated NACs.
The application of the NAC approximation is further tested

on CSH2, showing slow population transfer. This model also
includes triplet states; thus, SOCs are additionally treated with
SchNarc. To the best of our knowledge, for the first time,
SOCs are trained with ML as directly obtained from quantum
chemistry. The population curves are given in Figure 3, where
panel A gives the reference population for 3000 fs and panel B
the SchNarc populations. In contrast to the methylenimmo-
nium cation, the CSH2 molecule serves as a test system for
slow populations transfer and shows intersystem crossing
strongly dependent on the accuracy of the underlying
potentials.94 Inaccurate ML models would thus be unable to

reproduce the reference dynamics. Also the slow population
can be reproduced accurately, which proves the validity of the
ML approach.
In summary, the SchNarc framework combines the

SHARC37 approach for surface hopping and the SchNet80

approach for ML and introduces several methodological
developments, which simplify the use of nonadiabatic ML
dynamics substantially. SchNarc takes advantage of SchNet’s
automatic generation of representations for the molecular
structure and extends it to excited states. The training of ML
models is facilitated by using the phase-less loss and the NAC
approximation, avoiding quantum chemical NAC calculations
at all. Thus, photodynamics simulations are possible based on
solely ML PESs, their derivatives, and SOCs. Furthermore, this
method allows for an efficient computation of the Hessians of
all the excited states at each time step. Hence, SchNarc allows
for efficient nonadiabatic dynamics simulations of excited
states and light-induced processes including internal con-
version and intersystem crossing.
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Figure 2. Quantum populations of the methylenimmonium cation
obtained from (A) 90 trajectories using MR-CISD/aug-cc-pVDZ
(QC) and (B) 1000 trajectories using SchNarc (ML). ML models are
trained only on energies and gradients, and NACs are approximated
from energies, gradients, and Hessians of ML models; this is in
contrast to results from Figure 1, where ML models are also trained
on NACs.

Figure 3. Quantum populations of populations up to 3000 fs of the
thioformaldehyde molecule obtained from (A) 100 trajectories using
CASSCF(6,5)/def2-SVP (QC) and (B) 9590 trajectories using
SchNarc (ML).
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