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Abstract

This work addresses the problem of segmenting an object of interest out of a video.

We show that video object segmentation can be naturally cast as a semi-supervised learn-

ing problem and be efficiently solved using harmonic functions. We propose an incre-

mental self-training approach by iteratively labeling the least uncertain frame and up-

dating similarity metrics. Our self-training video segmentation produces superior results

both qualitatively and quantitatively. Moreover, usage of harmonic functions naturally

supports interactive segmentation. We suggest active learning methods for providing

guidance to user on what to annotate in order to improve labeling efficiency. We present

experimental results using a ground truth data set and a quantitative comparison to a

representative object segmentation system.

1 Introduction

Video object segmentation is an important problem in video analysis, and it has many appli-

cations, including post-production, special effects, object recognition, object tracking, and

video compression. In particular, the rapidly-growing numbers of videos which are available

from the web represent an opportunity for new video applications and analysis methods.

A key motivation for this paper is the observation that video-based object tracking and

interactive video object segmentation are closely-related problems. In both cases, the goal

is to segment an object from the video with a minimum number of annotations provided

by the user. In tracking systems, the user identifies the object in the first frame (e.g. by

drawing a contour around it) and it is tracked automatically in the remaining frames [6, 10].

However, these methods can fail in cases of occlusion or due to a severe change in object

appearance. In contrast, recent systems for interactive video object segmentation provide

very fine-grained control via a well-designed interface, making it possible for a user to get

pixel-perfect segmentations [4, 17, 26].

Our goal is to address both of these problems within the same framework. In a tracking

context, our approach makes it easy to fix up an existing solution by carving the object

labeled in the first frame through out the video. Applications to biotracking are a motivating
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example, as there is a strong need for a general purpose tool for tracking a wide range of

animals with different morphologies. In contrast to video post-production, in biotracking

applications segmentations which are not pixel-perfect but which delineate the limbs of the

animal (for example) can still be useful for animal behavior experiments.

Likewise, in the context of interactive video object cutout, our approach leverages con-

straints on video data and an active learning approach to minimize the number of annotations

that must be supplied by the user. In case of biotracking, it is necessary to minimize the need

for guidance by the user in order to have a useful tool for biologists. As a result our method

aims at getting the most benefit from each user click. To achieve this goal, we develop an

active learning method which chooses the most important frames to be labeled, and which

guides the user in each frame about where to click.

Our framework is based on casting video segmentation as a semi-supervised learning

problem with video-specific structures such as temporal coherence which makes the follow-

ing contributions:

A framework for object cutout and interactive segmentation: In this work we present a

framework which addresses video object cutout and has a natural extension to interactive

segmentation. We use semi-supervised learning to propagate labels from known locations to

unknown, and uncertainty is a key in a effective label propagation. Furthermore, uncertainty

is incorporated into active learning to guide the user in annotating the video. Tsai et al

[20] formalize tracking as a video object cutout where only the first frame was annotated.

A limitation of their approach is that it is not clear how to make additional annotations

effectively. We propose a new framework that addresses this problem.

Incremental self-training: We develop an iterative solution to semi-supervised video

segmentation. At each step, we pick the least uncertain frame, fix all labels in the frame,

and update system parameters (e.g. object appearance models). We show that incremental

self-training is very effective in adapting to video content, outperforming standard semi-

supervised learning and state-of-the-art tracking systems.

Intelligent user guidance: We develop a systematic way to provide intelligent guidance to

users in an interactive setting. This is by selecting the most informative frames to be labeled

by user, and guiding the user while labeling each frame.

2 Previous Work

Semi-supervised Learning: Semi-supervised learning is a very active sub-field in machine

learning (detailed survey provided by Zhu [28]) with wide applications in natural language

processing and bioinformatics. Examples in computer vision include image classification

[13] and tracking [27]. For segmentation, [23] showed a few examples of interactive seg-

mentation, and[22] applied multiple instance learning to semantic segmentation. Further-

more Badrinarayanan and others [3, 9] use an EM based semi-supervised learning algorithm

to propagate labels from the start and end of a video. In comparison, we propose a self-

training approach which significantly improves the results.

Active Learning: Active learning is another growing sub-field in learning (detailed sur-

vey provided by Settles [19]). Zhu et. al [30] present an active-learning approach based on

risk minimization of unlabeled nodes using harmonic functions. In this work, we demon-

strate that uncertainty leads to a better solution than risk minimization for video segmenta-

tion. Other examples of active learning include classifying video [25], object categorization

[14] and image co-segmentation [5]. Kohli and Torr [15] introduced a method for estimat-

ing uncertainty for graph-cut through an expensive post-processing which can be used for



FATHI ET AL.: SELF TRAINING AND ACTIVE LEARNING FOR VIDEO SEGMENTATION 3

active learning. Instead, we use a continuous formulation using harmonic functions which

computes soft labels and naturally provides uncertainty.

Object tracking: Significant progress has been made recently on object tracking by var-

ious approaches where [2, 6, 10, 11] are a few representatives. Many of these trackers can

produce object segmentations [6, 10, 18, 20]. Ren and Malik [18] showed that segmentation

helped avoid drifting on long sports videos. Bibby and Reid [6] demonstrated the adaptation

of target models and integration of multiple terms to track a wide range of targets. Chock-

alingam et. al [10] developed a level-set based system which tracks the target by dividing

it into multiple regions combining spatially constrained appearance model and motion esti-

mation. Tsai et al [20] developed a multi-label MRF model for offline tracking solved with

Fast-PD. Our use of self-training in tracking is novel and yields promising results comparing

to the state of the art [10, 20]. In addition we propose an interactive segmentation framework.

Interactive Segmentation: There is a huge literature on interactive image segmenta-

tion. The most relevant to our work is that of Grady’s [12], which uses random walks for

label prediction in images. For interactive video segmentation, a popular toolkit is LabelMe

Video [26], where the user uses polygons to delineate objects. More complicated interactive

trackers [4, 24] show segmentation results frame by frame, and let the user fix errors. These

works are focused on pixel-perfect segmentations and user interface designs. In comparison,

our goal is to intelligently guide the user to where to annotate and thus minimize user effort

for each specific video. We propose a method that achieves a close to perfect segmentation

after getting a few annotations from the user.

3 Video Segmentation Framework

The goal of this work is to address object tracking and interactive video segmentation in a

unified framework. We want to enable robust extraction of objects from challenging videos

(with large changes in shape, appearance and motion) using minimal user input. One ap-

plication is biotracking: video segmentations desired in biotracking may not need to be

pixel-perfect, but it has to handle a wide range of animals with very different morphologies,

and it has to do with minimal effort from non-expert users.
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Figure 1: A flow chart illustration of our approach.

Figure 1 gives the flow chart for our approach. We formulate video segmentation as a

semi-supervised learning problem on a graph of super-pixels. Harmonic functions provide

an efficient solution to the graph labeling problem and produce soft labels, which we use to

measure labeling uncertainties at both the super-pixel and the frame level. We then iteratively

choose the least uncertain (or most certain) frame in the video, discretize the soft labels, and

apply self-training to update similarity metrics and the affinity graph. We will demonstrate

that incremental self-training significantly improves segmentation accuracy in comparison

to standard baselines and state of the art segmentation-based tracking methods.

Our approach has a natural extension to interactive segmentation. We can present the
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current segmentation to the user and ask for more input. To minimize user effort, we devise

an effective scheme to intelligently suggest the user which frame and which super-pixel to

label. Our scheme is empirically validated through simulation.

In the rest of this section we describe the semi-supervised learning formulation for video

segmentation, its harmonic solution, and the underlying graph structures.

3.1 Semi-supervised learning and segmentation

Video object segmentation can be naturally viewed as a semi-supervised learning problem

over a graph. In our case we treat super-pixels as data points, and our goal is to propagate

the information from labeled ones to others. In a semi-supervised learning setting, there are

n = l +u data points xi (l labeled and u unlabeled points, typically u ≫ l), and the goal is to

label the unlabeled points. One can formulate this problem on a graph G = (V,E) with nodes

V = L+U and edges E, where L are the labeled nodes and U the unlabeled ones. In our

approach, we represent connectivities in this graph by a n× n symmetric matrix W , where

wi j represents the similarity or affinity between two nodes xi and x j:

wi j = exp(−gT
i jΣgi j) (1)

where gi j = xi − x j and Σ is the inverse covariance matrix. We assume Σ is diagonal and

contains hyperparameters to scale the elements of g. In Section 4.1, we present a method for

learning the weights in Σ.

The labeling problem in G can be solved using min-cut [7]. Zhu et. al [29] propose a

framework which relaxes the min-cut objective function and leads to a simple algorithm with

interesting behaviors. They look for a harmonic function f : V → R that is real-valued on

the unlabeled data U , but constrained to be fL ∈ {0,1} on the labeled data L. The intuition

behind the harmonic solution is that it returns the probabilities of starting from unlabeled

nodes and arriving at nodes with a particular label by randomly walking in the graph.

The harmonic solution f can be computed in polynomial time by simple matrix opera-

tions [29]. It is possible to represent the combinatorial laplacian ∆ = D−W as four blocks

separating labeled and unlabeled nodes:

∆ =

[

∆ll ∆lu

∆ul ∆uu

]

and similarly split f into labeled ( fl) and unlabeled ( fu) parts. The harmonic solution

subject to f |L = fl is

fu = ∆−1
uu ∆ul fl (2)

The formulation above considers only pairwise edges. It is easy to incorporate priors or

unary edges: add an auxiliary node for each class, and connect it to all the nodes using priors

as edge weights.

The harmonic solution has several key advantages for video segmentation comparing to

mincut. It provides a real-valued solution where uncertainty (and related quantities such as

risk) can be easily computed and optimized, crucial to our approach. Furthermore, exam-

ples in [12] and our experiments show that it tends to be less sensitive to noise and weak

boundaries.

3.2 Graph construction for video segmentation

The graph G we use for video object segmentation has three types of edges: (1) spatial, (2)

temporal and (3) prior edges. We model spatial coherencies using appearance and boundary

saliency, and model temporal coherency using appearance and optical flow.
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Spatial edges. Spatial edges connect the adjacent super-pixels inside each frame. Super-

pixels have different sizes and shapes. We represent each super-pixel by its color and texture

histograms. Texture descriptors [21] are computed for each pixel and quantized into the 256

nearest k-means centers. Similarly, color descriptors for each pixel are quantized into 128

k-means bins. The distance gs
i j between a pair of super-pixels is the difference between their

color and texture histograms. We concatenate gs
i j with the saliency of the shared contour be-

tween i and j as in [1], obtaining a 385 dimensional feature vector. We compress these vec-

tors to 64 dimensions using PCA. We multiply the spatial weights ws
i j = exp(−(gs

i j)
T Σsgs

i j)
by the length of the shared contour to compensate for size differences between super-pixels.

Temporal edges. We compute dense optical flow between adjacent frames using [8]. A

super-pixel i is linked with a super-pixel j in the adjacent frame if optical flow connects some

of their underlying pixels. Similar to the spatial edges, we use color and texture histograms

to compute the distance gt
i j (384 dimensional) between i and j and compress the acquired

vectors to 64 dimensions using PCA. We observe that the appearance-based distance gt
i j

can compensate for errors in motion estimation. We multiply wt
i j = exp(−(gt

i j)
T Σtgt

i j) by

the number of corresponding pixels between the super-pixels as given by the flow field. In

addition to optical flow, we also compute sparse SIFT features[16] correspondence. If we

find SIFT correspondences between two super-pixels (i.e. the number of inliers above a

threshold), we increment wi j with a large constant.

Prior edges. The spatial and temporal edges capture the similarity between adjacent

super-pixels. To add priors for super-pixels belonging to each of the K classes, we add K

labeled nodes, one for each label class, to the graph and connect all the unlabeled nodes

to them. We learn the weights for these connections as wk
i = exp(−(gi)

T Σkgi), where gi

contains the color and texture histograms for super-pixel i.

We find that spatial and temporal edges are sufficient in many cases to produce good

results. In some cases (e.g. the penguin sequence in SegTrack dataset [10, 20]), putting

a significant weight on the object appearance model can hurt segmentation accuracy, be-

cause the object looks similar to the background. On the other hand, for some videos with

inaccurate optical flow, it is necessary to have prior knowledge about object appearance.

The final edge weight W is a linear combination of the individual weights W = W s +
αW t + β (W 0 + · · ·+W K−1). Our system learns and updates the similarity metrics Σs, Σt ,

Σ0
, ...,ΣK−1 iteratively in the self-training process, thereby automatically adapting the fea-

tures to the particular sequence.

4 Incremental Labeling using Self-Training

In the previous section, we presented a semi-supervised learning formulation of video seg-

mentation and showed how to construct the graph over super-pixels in all video frames. Di-

rectly solving for the unlabeled nodes over this graph, through either mincut or the harmonic

solution, does not work well (see Table 1). This is partly because it is impossible to find a set

of parameters (in particular feature weights Σ) that work for all videos, and partly because

objects change appearance over time and temporal links between frames can be noisy for

large motions.

To address these issues, we develop an incremental approach where we iteratively label

frames and apply self-training to adapt model parameters. At each step, we compute the

harmonic solution, choose the least uncertain frame and fix (discretize) the labels in that

frame. Afterwards, we use linear regression to update and balance the feature weights Σ.
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(a) (b) (c)

Figure 2: Self-training fails on a per-superpixel basis, showing the need for frame-level

inference. (b) Segmentation based on harmonic solution (user labels in red and blue). (c)

Superpixel based self-training fails after 100 iterations. Bright red and blue show labels fixed

after self-training. Per-frame self-training works well on this sequence (see more examples

in Fig 4).

4.1 Per-frame self-training

Self-training is a commonly used semi-supervised learning technique [28] which trains a

classifier on the labeled data and applies it on the unlabeled data. In our studies, we find that

self-training, when used in the context of spatial-temporal coherencies in a video graph, can

lead to much better results than direct graph-based solution of mincut.

What is special about videos? Videos consist of a sequence of frames ordered in time.

Video frames are closely coupled within themselves, and the associations between frames are

“Markov”. The object appearance in a frame is usually closest to its appearance in adjacent

frames. As a result, conditioned on the labels in a frame, the labels in adjacent frames can

be predicted with a high certainty.

We leverage the special structures in videos to assign labels iteratively. At each step, we

compute the uncertainty of each unlabeled frame, and select the one with least uncertainty.

This frame is often the one adjacent to the last labeled frame. We fix (discretize through

thresholding) the labels in this new frame given the harmonic solution. After adding these

nodes in the new frame to the set of labeled nodes L, we update the spatial, temporal and

unary similarity metrics (Σs, Σt and Σ0
, ...,ΣK−1) using the labels fL. We use the new metrics

to update the adjacency matrix W and the Laplacian ∆, estimate the new soft labels fu, fix

the labels for the next least uncertain frame, and iterate. In each iteration the final labels for

a new frame are fixed, and the algorithm iterates until all frames are labeled.

The frame uncertainty (entropy) H of a frame F is calculated by adding the uncertainty

of all super-pixels belonging to F weighted by their size:

H(F) = ∑
i∈F

H( fi)S(i) (3)

where S(i) is the area of super-pixel i and H( fi) is its entropy:

H( fi) =
K−1

∑
k=0

−log( f (i,k)) f (i,k) (4)

A plausible alternative, which ignores the video structures, is to iteratively apply thresh-

olding and self-training, but at the super-pixel level (i.e. fixing the label for the least uncer-

tain super-pixel at each step) instead of the frame level. This strategy often results in poor

segmentations; an example can be found in Fig 2.

4.2 Metric learning and weight balancing

The role of the inverse covariance matrices Σ is to assign weights to the features in g, such as

color vs texture, to capture intra similarities and inter differences between object and back-

ground super-pixels. A perfect metric, both for spatial or temporal edges, has the following

property
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Sequence GraphCut GraphCut + Self Training Ours [10] [20] Average Object Size Number of Frames

Parachute 254 253 251 502 235 3683 51

Girl 4121 1616 1206 1755 1304 8160 21

Monkey-dog 1312 3727 598 683 563 1440 71

Penguin 19569 19569 1367 6627 1705 20028 42

Bird-fall 454 766 342 454 252 495 30

Cheetah 1961 898 711 1217 1142 1584 29

Soldier 3344 2484 1368 2984 2228 6321 32

Monkey-water 1306 1266 1009 4142 2814 6011 31

Table 1: We compare our tracking results with [10, 20] using the average number of errors

(pixels) per frame. Our results outperforms these methods in most of the sequences, and

achieve marginal results to [20] in the rest. We further compare our method to graph-cut and

graph-cut with self-training given the same set of parameters.

wi j = e
−gT

i jΣgi j =

{

1 i f fi = f j

0 i f fi 6= f j

(5)

where fi, f j ∈ {0, · · · ,K − 1} are the labels. It means we want the similarity weight be-

tween two super-pixels belonging to the same object to be high. Assuming that Σ is diagonal,

it is more convenient to write wi j = exp(−∑
m
d=1 σ(d)gi j(d)

2) where σ(d) is the d-th diago-

nal element of Σ, and gi j(d) is the d-th element of the feature difference gi j = xi − x j.

It is very hard, if not impossible, to find a set of weights σ(d) that can work for a variety

of videos. On the other hand, once the system has seen a specific video and acquired some

labels, it can search for a custom metric Σ which satisfies the property of Eq 5 over the known

labels. That is, we want Σm
d=1σ(d)gi j(d)

2 to be 0 for the case of wi j = 1 and ∞ for wi j = 0.

We use linear regression to estimate the σ(d)’s and find that regression works well with a

limited amount of training data. Similarly, for unary metrics Σk, if super-pixel i in the labeled

data belongs to class k, we force wk
i to be 1 and 0 otherwise, and the metrics Σ0

, · · · ,ΣK−1

are also learned through linear regression.

5 Assisted Interactive Segmentation

In this section we introduce an efficient interactive framework which achieves a close to

perfect video segmentation with the minimum amount of user input. Our interactive seg-

mentation method consists of two steps. In the first step our algorithm selects the most

informative frame from the set of unlabeled frames and asks the user to label it. Then in the

second step, our algorithm guides the user in annotating the frame by iteratively suggesting

the next best super-pixel to be labeled.

5.1 Selecting the most informative frame

Previous interactive segmentation algorithms[4, 17] start from the first frame of the video

and ask the user to annotate frames sequentially one after the other. This is necessary for

acquiring a pixel-perfect segmentation. However, our goal is to reach a close to perfect

video segmentation with as few user inputs as possible. As a result we intend to incorporate

the user input for only a few frames instead of getting the user to annotate every single frame.
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Method Parachute Girl Monkey-dog Penguin Bird-fall Cheetah Soldier Monkey

Most Uncertain 115 366 520 296 4 343 538 410

Random 122 412 344 329 4 428 769 513

Sequential 132 464 530 1171 45 445 1011 864

Initial Error 145 595 536 1291 45 497 1035 887

Table 2: The results of asking the user to annotate the most uncertain frames versus annotat-

ing the frames sequentially and randomly. Our method often achieve a better segmentation

error given the same amount of user effort. In all cases we simulate annotating 5 frames.

We compute the error based on the area of difference between groundtruth super-pixel labels

and the labels computed by different schemes.
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Figure 3: We show average number of erroneous pixels in a random frame, after t iterations

of interactively labeling super-pixels for 3 representetive sequences. We have compared the

average segmentation error per frame given each method after 5,10,15,20 queries.

This means that we have to seek a smart way of selecting those few frames in order to acquire

the most useful information from the user.

Here we propose an active learning strategy based on selecting the most uncertain frame

F at each step and we show this method outperforms random or sequential frame selection

approaches. Frame uncertainty is computed in the same way as in self-training (described in

Eq 3). After the user is satisfied and finished with labeling a frame F , the harmonic solution

is updated to incorporate the new information, and the procedure is repeated. We compare

the user effort required in this scheme against the approach of asking the user to annotate the

frames sequentially or randomly.

5.2 Selecting the most informative super-pixel

When labeling each frame, our algorithm iteratively suggests the next superpixel to be la-

beled by the user. The user is asked to perform a click at each iteration: left click for object

and right click for background. We explore different strategies for selecting the next super-

pixel. We first evaluate a standard active learning technique based on risk minimization. Zhu

et. al [30] compute the expected risk as ∑
K
k=1 f (i,k)R̂( f+x(xi,k)), where R̂( f+x(xi,k)) is the

risk after adding node i with label k. The risk is defined and estimated in [30] as the general-

ization error of Bayes classifier. We can suggest to the user the superpixel which minimizes

the risk. Empirically, we find that risk minimization does not produce good suggestions,

likely because the risk estimation is often inaccurate.

The second strategy we consider is querying the superpixel with the highest uncertainty.

The most uncertain nodes are always located near the boundary between classes in the cur-

rent labeling. We found this method more effective for our problem. The reason is that once

the algorithm reaches a close to accurate segmentation, uncertainty based method queries

super-pixels at the ambiguous areas on object boundary and refines the object mask. We
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Figure 4: We qualitatively compare our results with [20]. Our results are shown with red

contours, and the results from [20] with yellow contours. The sequences in the first row

are parachute, monkey-water, girl, soldier and the ones in second row are bird-fall, cheetah,

monkey-dog and penguin. The contours produced by our algorithm are smoother, and the

segmentations are usually more accurate.

compare these strategies with randomly selecting the next super-pixel.

6 Experiments

We provide results both on object tracking and on interactive video segmentation. We per-

form our experiments on 8 challenging sequences with groundtruth segmentation [10, 20]:

parachute, girl, monkey-dog, penguin, bird-fall, cheetah, soldier and monkey-water. The

first six are the videos used in SegTrack dataset [20] in order to fairly compare our work

with previous methods. The length of these sequences are between 21 to 71 frames. In Table

1 we show that our approach produces better segmentations than [10], and also compares

favorably to [20]. We further show qualitative comparisons in Figure 4.

As a baseline, in Table 1 we also compare to a standard graphcut solution and graph-cut

combined with our self-training method using the same adjacency graph. In the results of

standard graph-cut, the object mask either shrinks or expands over time. The self-training

method is meant to solve this issue by iteratively segmenting frames one after the other.

The combination of graph-cut and self-training produces better results than graph-cut alone,

however still the shrinking bias in graph-cut is an issue. We show that the combination of

self-training and harmonic solution produces the best result.

For interactive segmentation, we compare different strategies for frame selection in Table

2, and those for superpixel selection in Figure 3. To compare different frame selection strate-

gies we simulate the user behavior using the ground-truth segmentation. In each iteration we

select the next frame based on the scheme criteria (the most uncertain frame, random, se-

quential), use the ground truth to label it, and recalculate the segmentation. We empirically

compare the three methods in Table 2.

We compare super-pixel selection strategies in Fig 3. We start with the first frame labeled,
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and simulate different strategies using the ground-truth labels instead of getting input from

an actual user. Selecting the next super-pixel based on uncertainty outperforms both the risk

minimization proposed in [30] and random selection. The reason is that given the first frame

mask, the object is segmented throughout the video with a high accuracy, and the uncertainty

based strategy queries super-pixels at the object boundary and can improve the result faster.

7 Conclusion
We have proposed a semi-supervised learning approach to video segmentation using har-

monic functions. We show that an incremental self-training approach, iteratively labeling

the least uncertain frame and updating similarity metrics, outperforms the state of the art

on challenging video benchmarks. Our approach naturally extends to an interactive setting,

where active learning can guide a user to most informative locations, minimizing user effort

required in video object segmentation.
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