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Abstract

Stochastic tracking of structured models in monolithic state spaces often requires mod-

eling complex distributions that are difficult to represent with either parametric or

sample-based approaches. We show that if redundant representations are available, the

individual state estimates may be improved by combining simpler dynamical systems,

each of which captures some aspect of the complex behavior. For example, human body

parts may be robustly tracked individually, but the resulting pose combinations may not

satisfy articulation constraints. Conversely, the results produced by full-body trackers

satisfy such constraints, but such trackers are usually fragile due to the presence of

clutter. We combine constituent dynamical systems in a manner similar to a Product of

HMMs model. Hidden variables are introducied to represent system appearance. While

the resulting model contains loops, making the inference hard in general, we present

an approximate non-loopy filtering algorithm based on sequential application of Belief

Propagation to acyclic subgraphs of the model.

1 Introduction

It has long been conjectured that human success in interpreting complex dynamic scenes

(e.g. nonrigid objects undergoing complicated motion) is due to our ability to simulta-

neously perform inference at multiple logical scales or levels of abstraction [12, 10]. On

the other hand, most model-based machine vision algorithms – both deterministic and

stochastic – approach this task with monolithic top-down frameworks using a single

state parameterization.

Many of these algorithms have been based on filtering in hidden Markov chain

frameworks and share the “generate-and-test” method of observation likelihood com-

putation based on probabilistic generative models. In such systems, a (usually deter-

ministic) low-level process is used to extract visual image features. The model state is

estimated using a “generate-and-test” framework, where the features corresponding to

a particular state are produced by a deterministic function and compared to features

extracted from the image, and the result is then converted into likelihood based on the

sensor noise model. These approaches are popular in part because inference in Markov



chain models has been extensively studied, and exact inference algorithms are avail-

able once the model has been defined. On the other hand, approximations are involved

in defining the model are severe (approximate dynamics and observation likelihoods

are usually used). These methods are biologically implausible, since they use a “feed-

forward” information flow from low-level to high-level abstraction levels, while it has

been shown that the high-level feedback is important for human perception [10].

In this work, we propose an alternative approach to tracking complex systems us-

ing multiple representation framework. Instead of committing to a single representation

with complicated dynamics, our framework combines multiple stochastic trackers, each

using simple approximate dynamics and estimating the state of the body at a particular

representation (e.g. levels of the hierarchical structure or levels of abstraction of [13]).

The consistency of estimates is enforced by communication between individual track-

ers through shared appearance representations. Rather than competing to provide the

best explanation for the observations (i.e. Switching Models paradigm [17]), our sim-

ple models cooperate in the spirit of Product of Experts [8] and Product of HMMs

[3] frameworks to maximize the probability of the observations (Figure 1(c)). The

major difference between our approach and HMM variants, such as Factorial HMMs

[7] and Coupled HMMs [1] is that rather than partitioning the state vector and semi-

independently evolving its parts, we maintain an overcomplete state representation. The

power of the framework arises from the interactions between individual Markov chains

that redundantly describe the system.

For example, the human body exhibits behaviors that are subject to constraints at

different scales, and dynamics described in a single parameterization may be quite com-

plex (e.g. a straight-line motion of the hand involves complicated interactions between

joint angles [16]). Intuitively, explicitly modeling dynamics at each scale is more ap-

propriate than using the common technique in which a single level of abstraction (and

its unique parameterization, usually joint angles) is selected, and inference is performed

only at this level (Figure 1(a)). Such algorithms utilize the hierarchical structure of the

observed body only to simplify rendering of appearance features corresponding to par-

ticular states, which are then used for state likelihood computations.

Our approach results in a model that has complicated structure but simple poten-

tials, compared to standard models with simple structure but complicated potentials.

While exact inference in the resulting loopy model is complicated, we show that an ap-

proximate on-line filtering algorithm based on Belief Propagation [18] can successfully

infer system state.

2 Prior Work

Dynamical system state estimation in complex models is an important problem in ma-

chine vision (e.g. object pose estimation and tracking). It is commonly posed as a search

problem in a high-dimensional configuration space, and has been studied extensively in

the context of the human body tracking algorithms. While deterministic optimizations

(e.g. gradient descent) have been investigated [5, 2, 19], the need to model uncertainty

(especially important for the monocular case with depth ambiguities) resulted in the

advent of stochastic algorithms.



Most of these algorithms have been based on filtering in hidden Markov chain

frameworks and share the “generate-and-test” method of observation likelihood com-

putation. The visual features corresponding to a particular state are produced by a de-

terministic function and compared to features extracted from the image, and the result

is then converted into likelihood based on the sensor noise model. Various appearance

features, and 3D body descriptions have been proposed, cf. surveys in [6, 15, 14, 21].

Multiple functional forms of the approximations to state posterior and state dynam-

ics likelihood distributions have been used. Early human tracking approaches [20] used

a Kalman Filtering framework, thus implicitly modeling all constituent distributions

with Gaussians. These assumptions have been later relaxed to account for nonlinear

monomodal dynamics (while still using Gaussian state model) by using Extended [9]

or Unscented [25] Kalman Filters. Switched linear systems [17] were proposed to de-

scribe arbitrary learned dynamics.

Different approaches have been used for modeling dynamics in systems with sample-

based state distribution representations. The original CONDENSATION algorithm and its

variants were used in [22, 11]. Importance sampling with proposal distribution defined

over hand motion manifold was proposed in [29]. The hybrid Monte Carlo sampling

that used observed image to modify sample locations (not only sample weights) was

presented in [4]. Partitioned [11] and Layered [26] sampling used factored state dynam-

ics, which allowed semi-independent propagation of parts of the state vector. Several

techniques [24, 23] have been proposed for modifying state dynamics (or rather diffu-

sion) parameters based on the previous state distribution. An implicit dynamics model

presented by [21] uses a motion-capture database to predict the future state distribution.

Our approach is to combine weak cooperating trackers. In this sense it is similar to

Bayesian modality fusion [28], which combines the output of head trackers operating

in different modalities based on individual trackers’ reliability.

We propose to combine weak trackers using the product model proposed in [8] and

[3]. The Product of Experts paradigm [8] uses “simple” (expert) probability distribu-

tions to model more complex ones by taking their products and renormalizing rather

than summing the constituent distributions (the mixture model). The product model ac-

cepts (assigns high probability) only those areas of the parameter space that all experts

accept.

Our model uses renormalized products of tractable probability distributions that are

derived from individual trackers, each modeling a low-dimensional constraint on the

data. (note that we use PoHMM [3] conventions for combining directed and undirected

links in the Graphical Model (Figure 1(c))). In this work, we assume that constituent

stochastic trackers are completely specified, and the appearance feature hierarchy (if

any) is known; we concern ourselves with inference on the combined model, rather

than learning its structure.

3 Probabilistic Formulation

A common approach to state estimation in complex systems is the generate-and-test

framework. In this framework, state likelihood is computed as the similarity between

appearance features (e.g. color blobs, edge pixels, volumetric models) extracted from



...

O
2

F
2

S
2

1

O
1

F
1

S
1

1
S

0

1

...

O
2

F
2

S
2

2

O
1

F
1

S
1

2
S

0

2

(a) (b)

...

...S
0

2

S
0

1

S
2

2

F
2

O
2

S
1

2

F
1

O
1

S
1

1
S

2

1 S
t−1

1

S
t−1

2 S
t

2

O
t

F
t

S
t

1

(c) (d)

Fig. 1. Combining weak trackers. (a) An articulated body tracker with state parameterized by

the joint angles, and with known dynamics p(St
1|S

t−1

1
), feature-generation model p(F |S1)

and feature-observation model p(O|F ). If inference is performed on the individual chain,

then appearance features may incorporated into the observation likelihood as p(O|S) =
∫

F
p(O|F )p(F |S). (b) Independent object tracking systems with dynamics p(St

2|S
t−1

2
) and

feature-generation model p(F |S2) (see text for details); the feature-observation model is shared

with the first system. (c) Combined model with potentials φ(St
1, S

t−1

1
) = p(St

1|S
t−1

1
),

φ(St
2, S

t−1

2
) = p(St

2|S
t−1

2
), φ(F, S1) = p(F |S1), φ(F, S2) = p(F |S2), φ(O, F ) = p(O|F ).

The edges leading to F nodes lack edges to preserve independence relationships. (d). A tree-

shaped subgraph on which approximate inference is performed. The marginal distributions,

p(St−1

1
|O0..t−1) and p(St−1

2
|O0..t−1), have been computed at the previous iteration, and are

not modified; Ot is observed.

the image and features generated for a particular value of the state. When the appear-

ance generating functions are complex such systems become quite sensitive to ob-

servation noise, since small variations in the appearance features extracted from an

observation may cause large changes in the state estimate. Thus the quality of state

estimates depends on the quality of appearance estimation. Likelihood computation

in the generate-and-test framework may be interpreted as implicit instantiation and

marginalization over features (F ) in the model shown in Figure 1(a) by specifying

p(O|S) =
∫

F
p(O|F )p(F |S).

By making appearance features an explicit variable in the model, we are able to

provide an alternative interpretation of this framework as estimating the intermediate

features, rather than the state, at each timestep. This insight enables us then to combine

heterogenous models at the level of features and improve tracking.

The task of estimating appearance features at every timestep may be solved by using

models with different state representations. For example, if we are interested in tracking

flesh blobs corresponding to hands, we may use the full-body representation parame-

terized by joint angles or we may track hands as two independent objects moving with

first-order dynamics. Other models are also possible. None of the models is exact (each



uses approximated dynamics and appearance generation), and each has its own advan-

tages and disadvantages. While tracking with the full-body model is complicated, its

estimates of the hand blob positions would always satisfy constraints implied by the

physics of the human body. On the other hand, independent blob trackers are usually

robust, but may produce state estimates incompatible with the human body. Different

models have different failure modes, so combining them may improve an overall esti-

mate of the system appearance. In the case of stochastic trackers, such an appearance-

estimation model can be represented with graphical models in Figure 1(a, b). For this

example, F may be interpreted as flesh-blob positions explaining part of the observed

image, S1 as a set of joint-angle parameters in the full-body model, and S2 as positions

and velocities in the independently-moving-objects model); superscripts denote time.

In a single chain the probability distribution of latent appearance features p(F |S, O)
can be expressed as

p(F |S, O) =
1

Z
p(F |S)p(F |O) (1)

and can be interpreted as a product of two “experts” [8], one predicting appearance

based purely on the state, and the other based on the observations. We combine multiple

chain models by using experts for all available models to predict appearance, in this

example:

p(F |S, O) =
1

Z
p(F |S1)p(F |S2)p(F |O) (2)

intuitively, the probability is high for a particular value of F only if all experts assign

high probability to this value.

The resulting system is shown in Figure 1(c) (note that the edges leading to F i are

left undirected in order to preserve independence relationships). In contrast to conven-

tional Product of HMMs [3], constituent chains are combined at the latent rather than

observed variable. Since, as has been noted, quality of individual state (Si) estimations

depends on the appearance estimation, the combined system should improve both ap-

pearance and individual state estimates.

Yet another reason for combining individual models is that the exact dynamics

and appearance generation distributions in these models are either unknown, or are so

complicated that their exact modeling is currently infeasible. Thus, certain approxima-

tions have to be made for tractability purposes (e.g. representing dynamics with simple

parametric distributions and the appearance with simple volumetric models). These ap-

proximations increase the uncertainty of both likelihood (by increasing the number of

modes [23]) and dynamics (by increasing the size of the parameter volume that has

to be searched). Furthermore, these approximations may violate the independence re-

lationships in the single-chain models (i.e. F 1 and F 2 are not in general independent

conditioned on S1

1
and S2

1
). A multi-chain combined model captures dependencies be-

tween F nodes more accurately.

Although we discuss the case when individual models predict the same features, it

is possible to combine models with intersecting feature sets. In that case the combined

feature model would be the union of individual feature sets, and the likelihood potentials

are extended to produce uniform likelihoods for features that are not part of an original

submodel. If there exists a hierarchy of appearance descriptions (e.g. joint angles, 3D

volumetric descriptions of individual segments, and textured region representations of



the human body), then systems that approximately describe behaviors at each level in

the hierarchy may also be combined.

3.1 Inference in the Multi-chain Model

Single-chain models are popular because there exist efficient inference algorithms for

them. While our proposed multi-chain model is loopy (Figure 1(c)) and exact infer-

ence is notoriously complicated in such models, we take advantage of the fact that we

are interested only in marginal distributions for the state nodes to propose an efficient

algorithm for filtering in multi-chain model.

Let us consider the model in Figure 1(c). At time t = 1, we can ignore the nodes

with superscripts (times) t ≥ 2. If the initial states S0

1
and S0

2
are independent (as

shown), then the resulting subgraph is a tree, and so we can use standard Belief Propa-

gation technique to compute the marginal distribution at state nodes S1

1
and S1

2
.

p(S1

1 |O
1) =

1

Z

∫

S0

1

φ(S1

1 , S
0

1)p(S0

1)

∫

F1

[

φ(F 1)φ(F 1
, S

1

1)

∫

S1

2

[

φ(F 1
, S

1

2)

∫

S0

2

φ(S1

2 , S
0

2)p(S0

2)

]]

,

(3)

where φ(F 1) = φ(O1, F 1) (the equivalent expression of p(S1

2
|O1) is not shown).

Filtering at the next timestep (t = 2) is more complex since the model now contains

loops and the exact inference would require representing the joint p(S1

1
, S1

2
|O1):

p(S2

1 |O
1
, O

2) =
1

Z

∫

F2

[

φ(F 2)φ(F 2
, S

2

1)

∫

S2

2

[

φ(F 2
, S

2

2) (4)

∫

S1

1
,S1

2

φ(S2

1 , S
1

1)φ(S2

2 , S
1

2)p(S1

1 , S
1

2 |O
1)

]]

In order to simplify computations, we would like to approximate the joint distri-

bution p(S1

1
, S1

2
|O1) with a product q(S1

1
)q(S1

2
). It is easily shown that the best such

approximation (in the KL-divergence sense) is the product of marginal distributions

p(S1

1
|O1) and p(S1

2
|O1). Substituting p(S1

1
|O1)p(S1

2
|O1) for p(S1

1
, S1

2
|O1) in Equa-

tion 4, we obtain an approximate inference equation:

p(S2

1 |O
2) ≈

1

Z

∫

S1

1

φ(S2

1 , S
1

1)p(S1

1 |O
1)

∫

F2

[

φ(F 2)φ(F 2
, S

2

1) (5)

∫

S2

2

[

φ(F 2
, S

2

2)

∫

S1

2

φ(S2

2 , S
1

2)p(S1

2 |O
1)

]]

The similarity between Equations (3) and (5) suggests an approximate filtering algo-

rithm that estimates marginal distributions of the state variables by recursively applying

Belief Propagation to acyclic subgraphs of the form shown in Figure 1(d), using the

marginal state distribution obtained at time t − 1 as priors at time t.

While the exact nature of the approximation involved requires further analysis, it

may be shown that it preserves the main property of the exact model, that the appearance



features that are assigned zero probability under one of the constituent models are not

used in computation of either of the marginal distributions.

At each timestep approximate inference may be performed using message passing

in 4 steps.

1. Compute µ
S

t−1

1
→St

1

=
∫

S1

1

φ(St
1
, St−1

1
)p(St−1

1
|O0..t−1) and

µ
S

t−1

2
→St

2

=
∫

S1

2

φ(St
2
, St−1

2
)p(St−1

2
|O0..t−1),

2. Compute µSt

1
→F t =

∫
St

1

φ(F t, St
1
)µ

S
t−1

1
→St

1

and µSt

2
→F t =

∫
St

2

φ(F t, St
2
)µ

S
t−1

2
→St

2

,

3. Compute µF t
→St

1
=

∫
F t µSt

2
→F tφ(Ot, F t) and µF t

→St

2
=

∫
F t µSt

1
→F tφ(Ot, F t)

4. Compute marginal state distributions p(St
1
|O0..t) ∝ µ

S
t−1

1
→St

1

µF t
→St

1
and

p(St
2
|O0..t) ∝ µ

S
t−1

2
→St

2

µF t
→St

2

If inference on constituent Markov chains was performed individually, it would still

involve steps analogous to 1 and 4 (and partially 3), so combining models does not

introduce much additional complexity to the inference process.

4 Implementation

In this work, we are interested in tracking human upper-body motion observed under

orthogonal projection. To this end we define an upper-body articulated model with 13

degrees of freedom (2 in-plane translational dofs, 3 rotational dofs at the neck, 3 rota-

tional dofs at each shoulder and 1 rotational dof at each elbow).

Since no parametric form is known for body-pose distribution, we choose to use a

sample-based density representation. Common sample-based particle-filtering approaches

(e.g. CONDENSATION), compute posterior state distribution at each timestep by sam-

pling from distribution at the previous timestep propagated by dynamics, and reweight

samples by their likelihood. If the configuration space is complex, then, unless the dy-

namics are well known, this procedure results in many samples falling into areas of zero

likelihood, and thus increasing the number of samples that need to be drawn. An alterna-

tive is likelihood sampling[27], when pose samples are drawn from the pose likelihood

function and are then reweighted based on the propagated prior. Although this method

results in greater per-sample complexity, it enables us to use fewer samples, since they

are in general placed more appropriately with respect to the posterior distribution.

To implement likelihood sampling, we take an advantage of the fact that we are

able to not only evaluate, but also sample from observation likelihood definitions for

the head and hands (in this case mixtures of Gaussians corresponding to face detector

outputs and to detected flesh-colored blobs). We define observation likelihood using

latent image observation likelihoods: face detector output for the head segment, flesh-

color likelihoods for the hands, and occlusion edge map matching for the rest of the

segments. Once the 2D face and hand position samples has been drawn, we use them

together with inverse kinematics constraints to define pose-proposal distribution. We

then use this distribution in the importance sampling framework to obtain sample from

the pose likelihood.

We define our proposal distribution as in [27]. In defining the proposal distribution

we take an advantage of the fact that once head and hand positions and neck configura-

tion are specified, then arm configurations (shoulder and elbow angles) are independent,



and each arm has only two degrees of freedom. The complete description of likelihood

pose-sampling may be found in [27].

While a tracker based on the likelihood sampling is can successfully operate with

a small number of samples and is self recovering, it is extremely sensitive to fea-

ture detector failures (such as flesh-color misdetections). In this work, we combine a

likelihood-sampling tracker with low-level flesh-blob tracking using robust Kalman fil-

tering. These tracking systems share appearance features (flesh-colored blobs), enabling

us to combine them in the manner described in Section 3.

We have applied our dual-chain tracker to three sample sequences, with results

shown in Figure 2. For each frame in the sequence we have rendered fourty randomly

drawn samples from the posterior state distribution (the frontal view overlayed on top

of the input image is shown in the middle row, and side view is shown in the bottom

row). The tracking results for the first sequence are also available in the submitted video

file (rendered at one third of the framerate). In most frames, the tracker succeeded in es-

timating poses (that contained significant out of plane components and self occlusions),

and was able to recover from mistracks (e.g. around frame 61 in the third sequence).

While the current implementation of the tracker is not realtime (on the average 1-

3 seconds per frame, mostly due to inefficient image computations), its performance

should be compared to other tracking methods using the same dynamics and image

likelihood models. In Figure 3, we compare the performance of the enhanced dual-chain

tracker using 1000 samples per frame (first column), likelihood-sampling tracker using

1000 samples (second column), CONDENSATION tracker with 5000 samples that runs

as fast as the dual-chain tracker (third column), and finally CONDENSATION tracker

with 15000 samples (the smallest number of samples that enables CONDENSATION to

perform with accuracy approaching dual-chain tracker performance). The results are

presented using the same method as in Figure 2, the frontal view is shown overlayed on

top of the input image, side view is shown to the right.

The dual-chain tracker was able to successfully track the body through the entire

sequence. The likelihood-sampling tracker was generally able to correctly estimate the

pose distribution, but failed on frames where image features were not correctly extracted

(cf. frames 20, 22, etc). The CONDENSATION variant with 5000 samples failed after 30

frames due partly to sample impovereshment (note that only few distinct samples were

drawn in frames 40 and later). Increasing the size of sample set to 15000 (with similar

increase of the running time) allowed CONDENSATION to successfully track through

more of the sequence.

5 Conclusions and Discussion

We have proposed a methodology for combining simple dynamical models with redun-

dant representations as a way of modeling more complex dynamical structures such as a

moving human body. The approach was motivated by the simple observation that nearly

all “generate-and-test” approaches to tracking complex structures implicitly marginal-

ize over an intermediate feature representation between state and observation. By mak-

ing the feature representation explicit in our approach we obtained a straightforward



means of mediating between simpler models as a means of capturing more complex

behavior.

Exact inference on the resulting structure is complicated due to the introduction

of loops in the graphical structure representing the combined models. However, as a

consequence of the fact that we are primarily interested in the filtering (or tracking)

problem, rather than the smoothing problem, an approximate inference method, based

on sequential inference on acyclic subgraphs provides a suitable alternative to exact

inference. This approximation has the important property that infeasible configurations

in any of the naive models precluded an infeasible configuration in all of the others.

Empirical results demonstrated the utility of the method for tracking the upper body

of a human. The method compares favorably with the well-known CONDENSATION

algorithm in two ways. First, a monolithic approach using CONDENSATION required

a significantly greater number of samples in order to explore the configuration space

sufficiently as compared to the multi-chain method. Secondly, and perhaps more im-

portantly, in the experiments presented the estimate of the posterior state distribution

more accurately represents the uncertainty of the upper-body pose than the alternative

methods. This is particularly encouraging considering the simplicity of combining con-

stituent models as compared to a monolithic approach.
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Sequence 1

Frame 1 Frame 31 Frame 61 Frame 91 Frame 121

Sequence 2

Frame 1 Frame 31 Frame 61 Frame 91 Frame 121

Sequence 3

Frame 1 Frame 31 Frame 61 Frame 91 Frame 121

Fig. 2. Applying dual-chain tracking to three sample sequences. Five frames from each sequence

are presented. The top row contains input frames. Fourty random particles from the estimated

posterior pose distributions are shown: in the middle row, the patricles are rendered onto the

input image (frontal view), and in the bottom row they are rendered in the side view. Note that

while a mistrack has occured on the third sequence near frame 61, the tracker was able to recover.
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Fig. 3. Applying four tracking algorithms to a sample sequence. For each frame a set of fourty

random pose samples were drawn from estimater posterior distribution and the corresponding

skeletons was rendered (frontal view overlayed on the frame and side view next to it). Errors in

feature detection caused likelihood-sampling tracker to fail on some of the frames (no samples

were produced).


