
Combining Software and Hardware LCS for

Lightweight On-Chip Learning

Andreas Bernauer1, Johannes Zeppenfeld2, Oliver Bringmann3,
Andreas Herkersdorf2, and Wolfgang Rosenstiel1

1 University of Tübingen, 72076 Tübingen, Germany
bernauer@informatik.uni-tuebingen.de

2 Technische Universität München, 80290 München, Germany
3 Forschungszentrum Informatik, 76131 Karlsruhe, Germany

Abstract. In this paper we present a novel two-stage method to realize
a lightweight but very capable hardware implementation of a Learning
Classifier System for on-chip learning. Learning Classifier Systems (LCS)
allow taking good run-time decisions, but current hardware implemen-
tations are either large or have limited learning capabilities.

In this work, we combine the capabilities of a software-based LCS, the
XCS, with a lightweight hardware implementation, the LCT, retaining the
benefits of both. We compare our method with other LCS implementa-
tions using the multiplexer problem and evaluate it with two chip-related
problems, run-time task allocation and SoC component parameterization.
In all three problem sets, we find that the learning and self-adaptation ca-
pabilities are comparable to a full-fledged system, but with the added ben-
efits of a lightweight hardware implementation, namely small area size and
quick response time. Given our work, autonomous chips based on Learning
Classifier Systems become feasible.

Keywords: System-on-Chip, Learning Classifier System, XCS.

1 Introduction

As the number of functions integrated in a single chip increases, the complexity
of a chip grows significantly. Furthermore, increasing transistor variability [4,6],
process variation [1], and degradation effects [18] make it increasingly difficult
to ensure the reliability of the chip [16]. The International Technology Roadmap
for Semiconductors (ITRS) [13] estimates that until 2015, up to 70% of a chip’s
design must be reused to keep up with the increasing complexity.

Autonomic System-on-Chip (ASoC) [15] add a logical, autonomic layer to con-
temporary SoCs that helps the designer to manage the complexity and reliability
issues: decisions that are hard to take at design time because many parameters
are uncertain, can be taken at run time by the autonomic layer. Learning Clas-
sifier Systems (LCS) have been shown to be able to take the right run-time
decisions [3,2] and even adapt to events that due to the chip complexity have
not been foreseen at design time. LCS use a genetic algorithm and reinforcement

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 278–289, 2010.
c© IFIP International Federation for Information Processing 2010

Combining Software and Hardware LCS for Lightweight On-Chip Learning 279

learning to evolve a set of rules, the interaction of which propose a preferably
optimal action to any situation the chip may encounter. Although LCS allow
very capable systems for autonomous run-time decisions and self-adaptation,
current hardware implementations either require large portions of the chip [5],
increasing total chip costs, or have limited learning capabilities [24].

In this paper, we present a novel two-stage method to realize an on-chip Learn-
ing Classifier System (LCS) that is small, takes the good run-time decisions, and
can adapt to unexpected events. In the first stage at design time, we learn a rule
set in software using a particular LCS, the XCS [23]. In the second stage, we
use the rule set to initialize the lightweight LCS hardware implementation LCT
[24]. The idea is that the XCS learns just enough rules so that the LCT can
adapt to the actual manifestation and conditions of a particular chip and even
to unexpected events, albeit in a limited way.

We first compare our method to other LCS implementations using the mul-
tiplexer problem, a traditional testbed for LCS [23], and then apply it to two
chip-related problems, namely task-allocation and SoC component parameteri-
zation. We show that the LCT can adequately learn and still react to unexpected
events. To the best of our knowledge, this is the first study of a lightweight but
still capable hardware implementation of an LCS. We think that our work makes
using LCS to control chips conceivable.

This work is structured as follows. Section 2 gives an overview of related work.
Section 3 introduces the XCS and the hardware implementation LCT. Section 4
describes our proposed method. Section 5 presents the three benchmarks mul-
tiplexer, task-allocation and SoC component parameterization that we use to
assess our method. Section 6 shows the results of our assessment and Section 7
concludes this paper.

2 Related Work

Learning Classifier Systems were originally introduced in [12]. The XCS was first
presented in [21] and later refined in [23]. The XCS has been used in a large range
of learning and classification problems, including controlling a robotic mouse
[10], a system-on-chip (SoC) [3], the lights of a traffic junction [17], and for
finding suitable partitions in hardware-software codesign [11]. A first hardware
implementation of an XCS has been presented in [5], named XCSi, which uses
fixed-point arithmetic. The implementation shows good learning rates of the
XCSi, but is quite large. In [24], the authors present an optimized hardware
implementation of an LCS, called the Learning Classifier Table (LCT), which
is small but has no mechanism to create new classifiers. Using a hand-crafted
initial rule set, the authors show that the LCT can adjust the frequency of a
SoC according to a given objective function.

The most popular machine learning algorithms for which hardware imple-
mentations exist are neural networks [19,9] and, more recently, support vector
machines [14]. Along with the fact that for these systems, “the actual rules im-
plemented [are] not apparent” [19], their implementations are about five times
as large as the LCT [14].

280 A. Bernauer et al.

3 XCS and LCT

We briefly describe the XCS and LCT and refer to [22,23,7,24] for further details.
The XCS learns a minimal set of classifiers (or rules) the interaction of which,

in the ideal case, provide an optimal response (called action) for a given situation.
The learning is based on a genetic algorithm and reinforcement learning. Each
classifier (or rule) consists of a condition, an action, a reward prediction, the
reward prediction accuracy, and some other house keeping values. The condition
is a string of bits (‘0’, ‘1’, and the don’t-care symbol ‘#’). At each learning
step, the XCS matches the input signal with the condition of each classifier and
notes the actions and accuracy-weighted reward predictions that each classifier
proposes. The XCS then selects an action to apply: in the exploit mode, it
chooses the action that promises the highest reward, while in the explore mode,
it chooses a random action to find new alternatives. After the action has been
applied, the XCS receives a reward depending on the new state and updates its
reward predictions and classifier set accordingly. After some number of iterations,
the genetic algorithm repeatedly creates new, possibly better suited rules.

The LCT consists of a memory, which holds a fixed number of classifiers, and
hardware-based mechanisms for action lookup and fitness update. There is no
mechanism to generate new classifiers. The classifiers in the LCT consist only
of a condition, an action and a fitness, similar to the fitness in the strength-
based ZCS [20]. To realize the don’t-care bits, the LCT first logically ANDs the
monitor signal with a mask before comparing it with the bit value. The LCT
selects the action of a matching classifier randomly according to the classifier’s
relative fitness (roulette-wheel selection) using weighted reservoir sampling to
ensure a fixed lookup time. After receiving the reward for a previously applied
action, the LCT distributes the reward r to the classifiers of the action set and
updates the fitness f according to f ← βr + (1 − β)f with the learning rate
0 ≤ β ≤ 1.

4 Methodology

One major trade-off of hardware-based machine learning lies between the learn-
ing capabilities of the implementation and the allotted hardware resources: the
system is either very capable but requires a lot of resources or it requires lit-
tle resources but is less capable. We address this problem with the following
two-stage approach:

1. At design time, the software-based XCS learns a (preferably optimal) set of
rules to solve a given problem.

2. We translate the XCS rules with our xcs2lct too into a form that is suitable
for the LCT. Initialized with these rules, the hardware-based LCT continues
to learn at run time.

With this setup, we can use all the resources that are available to a capa-
ble software implementation (the XCS) and use the acquired knowledge in a

Combining Software and Hardware LCS for Lightweight On-Chip Learning 281

lightweight hardware implementation (the LCT). The idea is that the XCS learns
a rule set that allows the LCT to adapt to the actual manifestation and con-
ditions of a particular chip and even to unexpected event, despite its limited
learning capabilities.

As the chip area that is necessary to store the classifiers in memory constitutes
the largest part of the LCT, we would like to minimize the number of necessary
classifiers to keep the chip area requirement small. We therefore consider trans-
lating both all XCS rules to corresponding LCT rules (all-XCS translation) and
only the top performing rules (top-XCS translation). The xcs2lct translates the
rules according to the following algorithm, which ensures that the XCS and the
LCT classifiers match the same input values:
foreach b ← xcs-rule[i] do

if b == ’#’ then lct-rule[i].(mask,bit) ← (’0’, ’0’);
else lct-rule[i].(mask,bit) ← (’1’, b);

To compare our method with the base performance of the LCT, we also con-
sider two more ways to generate LCT rules, full-constant and full-reverse. Both
translations provide all possible LCT rules, that is, a complete condition-action
table1 as there is no known method to generate an appropriate rule table for the
LCT. The full-constant translation initializes the rule fitness to half the maxi-
mum reward (500) and, as it is independent of the XCS rules, represents the
bottom line of LCT’s own learning capabilities. The full-reverse translation sets
the rule fitness to the highest predicted reward of all matching XCS rules, or
zero, if no XCS rule matches, and represents the combined learning capability
of the LCT and the XCS.

The original action selection strategy for the LCT is roulette-wheel, which se-
lects actions randomly according to the relative predicted reward of the matching
classifiers, similar to the explore mode of the XCS. Additionally, we also consider
the winner-takes-all strategy, which selects the action whose matching classifiers
predict the highest reward, similar to the exploit mode of the XCS. However,
unlike in the XCS, in the LCT the accuracy of the prediction does not influence
the action selection.

While the XCS is usually configured to alternate between the explore and
exploit mode, in our experiments the LCT uses only one of either strategies. We
leave the analysis of alternating strategies in the LCT as future work.

5 Experimental Setup

We use three problem types to assess our method: multiplexer [21], task al-
location [2], and SoC component parameterization. Additionally, we define an
unexpected event for each problem type to explore LCT’s learning ability. As the
XCS has already been shown to be able to solve these problem types and adapt
to unexpected chip events [2], in this work we concentrate on the performance
of the LCT.
1 Of course, the memory requirements of the classifiers generated with full-* grow

exponentially with the problem size. We use them only for comparison.

282 A. Bernauer et al.

The multiplexer problem is a typical LCS benchmark [23]. The n-multiplexer-
problem is defined over binary strings of length n = k + 2k. The first k bits
index a bit in the remaining bits. The correct action for the LCS is the value
of the indexed bit. For example, in the 6-multiplexer problem, m6(011101) = 0
and m6(100100) = 1. We define the inversed multiplexer as the unexpected
event for the multiplexer, that is, the LCS is supposed to return the inversed
value of the indexed bit. For example, in the inversed 6-multiplexer problem,
m6(011101) = 1 − m6(011101) = 1. We use the same XCS parameters as the
full-fledged FPGA implementation of XCS presented in [5] to have comparable
results: α = 0.1, β = 0.2, δ = 0.1, ε0 = 10 (which is 1% of the maximum reward),
ν = 5, θGA = 25, χGA = 0.8, μGA = 0.04, P# = 0.3; GA subsumption is on with
θGAsub = 20, while action set subsumption is off. We do not use generalization
or niche mutation. The reported results are averages over 20 runs.

The task-allocation problem has been first introduced in [2] and is motivated
by the advent of multi-core systems, where tasks can be run on several cores si-
multaneously to increase overall reliability. In the (L, i)-task-allocation problem,
the LCS must allocate i available tasks on L ≥ i cores, some of which are known
to be occupied and thus not available. The system input is a binary string of
length L, where each bit represents the occupation of a particular core. There is
one action for each possible allocation plus a special action that indicates that no
allocation is possible (e.g., when all cores are already occupied), totaling

(
L
i

)
+1

possible actions. An action is valid and returns the maximum reward if the cor-
responding allocation only allocates available cores; otherwise the reward is zero.
The unexpected event for the task-allocation problem is the unmonitored failure
of a core: although reported as available, the core cannot be occupied, and an
allocation of that core returns zero reward. For the task-allocation problem, we
use the XCS parameters from [2] to have comparable results, which differ from
the multiplexer settings only in the following parameters: α = 1, θGA = 250,
χGA = 0.1, μGA = 0.1, P# = 0.4; GA subsumption is off. The reported results
are averages over 5 runs, due to the longer simulation time for the many problem
instances.

The SoC component parameterization problem demonstrates the ability of
LCS to dynamically parameterize a system-on-chip at run time, similar to [3].
The system consists of a processing core that is subject to random load fluc-
tuations. As the load changes, the LCS is responsible for setting the operating
frequency of the core as low as possible (i.e., maintaining as high a utilization
as possible), while ensuring that the core can keep up with the workload. The
monitor input consists of the core’s current frequency as well as its utilization.
There are five possible actions: four actions to increase or decrease the core’s
operating frequency by 10 or 20 MHz over a range from 50 to 200 MHz, and
one action to keep the core’s frequency unchanged. The reward for each action
is calculated by comparing the value of a system-wide objective function before
and after the action is applied. The objective function indicates how far from
the designer-specified optimum of high utilization and low error rate the system
is currently operating and is defined as fobj = (100%− utilization) + error rate,

Combining Software and Hardware LCS for Lightweight On-Chip Learning 283

where a low value indicates that the system is operating near its optimum. A
base reward of half the maximum reward (500) is given when the objective func-
tion returns the same value before and after the action is carried out. This is the
lowest possible reward without actively worsening the system’s operating state.
The unexpected event for the component parameterization problem is a man-
ufacturing defect that causes critical timing errors for operating frequencies in
excess of 100 MHz. As a result, increasing the frequency above 100 MHz causes
the core to cease functioning, resulting in wasted cycles for error correction and
providing lower rewards to the LCS. With timing errors, the LCT must therefore
learn to cap the frequency at 100 MHz, even when the workload would warrant
higher operating frequencies. We use the same XCS parameters as for the task-
allocation problem, except for α = 0.8 and P# = 0.1. The reported results are
averages over 100 runs.

We use the implementation of the XCS in the programming language C as
described in [8] as the software version of XCS. We use a SystemC-based sim-
ulation model of the LCT hardware implementation described in [24], with the
additional winner-takes-all strategy described in Section 4.

We compare the performance of the LCT that has been instructed using our
method with the base performance of the LCT, the performance of the full-
fledged hardware implementation of the XCS presented by [5], the performance
of the XCS reported in [2], and the performance of the software version of the
XCS. We also check whether the LCT retains the capability of LCS to adapt to
unexpected events.

6 Results

In this section we present the results on the three problem types multiplexer,
task-allocation, and SoC component parameterization mentioned previously.

6.1 Multiplexer

Figure 1 shows the correctness rate (x-axis) and population size (y-axis) for
the 6-, 11-, 20-, and 37-multiplexer problem for all eight possible combinations
of translations and action selection strategies for the LCT. Note that the x-
axis starts at 70% correctness rate and that the scales of the y-axes differ. The
top-XCS translation uses only classifiers that predict the maximum reward with
perfect accuracy. As we aim for a small but correct LCS, in each graph lower right
is better. The figures show that in the new winner-takes-all (WTA) strategy (solid
symbols), the LCT solves the multiplexer problem perfectly , while in the original
roulette-wheel (RW) strategy (empty symbols), it solves only between 80% and
97% of the problem instances. With the winner-takes-all strategy, the LCT shows
the same results as the full-fledged XCS implementation presented in [5]. The
figure also shows that the population size of the all-XCS translation (square
symbol) is about three times the population size of the top-XCS translation
(upwards triangle symbol) for all multiplexer problems. As the population sizes

284 A. Bernauer et al.

40
50
60
70
80
90

100
110
120
130
140

0.7 0.75 0.8 0.85 0.9 0.95 1

po
pu

la
tio

n
si

ze

6-multiplexer

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0.7 0.75 0.8 0.85 0.9 0.95 1

11-multiplexer

200

300

400

500

600

700

800

900

0.7 0.75 0.8 0.85 0.9 0.95 1

po
pu

la
tio

n
si

ze

% correct

20-multiplexer

800
1000
1200
1400
1600
1800
2000
2200
2400
2600

0.7 0.75 0.8 0.85 0.9 0.95 1
% correct

37-multiplexer

LCT-all-XCS-RW
LCT-all-XCS-WTA

LCT-top-XCS-RW
LCT-top-XCS-WTA

LCT-full-rev-RW
LCT-full-rev-WTA

LCT-full-const-RW
LCT-full-const-WTA

Fig. 1. Performance in the multiplexer problem. Clockwise from upper left: 6-, 11-,
20-, and 37-multiplexer. Within each graph, lower right is better. Note that the y-axes
differ in scale. Error bars are standard deviations σ in the respective dimension.

for the full-* translations rise exponentially, we excluded them from the 20- and
37-multiplexer problem.

All LCT configurations were able to perfectly adapt to the unexpected event
of the inversed multiplexer problem (not depicted), given a rule base that the
XCS has learned for the (regular, non-inversed) multiplexer problem. However,
the LCT can only adapt to the inversed multiplexer problem, if the XCS was
able to solve the multiplexer problem sufficiently well (e.g., because XCS’ learn-
ing process was terminated prematurely). Otherwise, even if the XCS shows a
correctness rate of 100%, not all LCT configurations can adapt to the inversed
multiplexer. Figure 2 illustrates the case for m11. While the configurations all-
XCS and full-const solve 80%-100% of the inversed multiplexer problem, the top-
XCS and full-rev solve no more than 30%. The correctness rate did not change
further until 1 million steps. We assume that the prematurely terminated XCS
contains too many high-rewarding rules that are falsely marked as accurate be-
cause they were trained on only few problem instances, disturbing the results of
the top-XCS and full-rev translations.

From the results in the multiplexer problem, we conclude that with the all-
XCS translation the LCT shows both a high correctness rate and retains the
capability to adapt to unexpected events. When using the full-const translation,
we find similar results. Combining XCS’ knowledge and LCT’s own learning
capabilities in the full-rev translation leads to an LCT whose capability to adapt
to unforeseen events is very sensitive to the quality of the XCS rules. Similar is
true when using only the top performing XCS rules with the top-XCS translation.
As for more real-world problem types the XCS cannot always learn perfectly, we
will concentrate on the all-XCS translation in the following experiments.

Combining Software and Hardware LCS for Lightweight On-Chip Learning 285

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10k 20k 30k 40k 50k

%
co

rr
ec

t

steps

LCT performance in m
__

11 for insufficiently learned XCS

LCT-all-XCS-WTA
LCT-all-XCS-RW

LCT-top-XCS-WTA
LCT-top-XCS-RW

LCT-full-rev-WTA
LCT-full-rev-RW

LCT-full-const-WTA
LCT-full-const-RW

Fig. 2. LCT performance in the inversed
multiplexer problem m11 using rules from
an insufficiently learned XCS. σ < 0.005
if rate > 80%; σ < 0.1 if rate < 30%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2
1

3
1
3
2

4
1
4
2
4
3

5
1
5
2
5
3
5
4

6
1
6
2
6
3
6
4
6
5

7
1
7
2
7
3
7
4
7
5
7
6

8
1
8
2
8
3
8
4
8
5
8
6
8
7

9
1
9
2
9
3
9
4
9
5
9
6
9
7
9
8
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
10
9

%
va
lid

al
lo
ca
ti
on

Task allocation

LCT all XCS RW LCT all XCS WTA XCS

L
i

| 6 || 5 || 4 | | 7 | | 8 | | 9 | | 10 |

Fig. 3. Rate RLCT of valid task alloca-
tions in the LCT and RXCS for compari-
son. σ < 11% or better for any setting.

6.2 Task Allocation

Figure 3 shows the rate RLCT of valid task allocations of the LCT for the (L, i)-
task-allocation-problems, 1 ≤ i < L ≤ 10, and RXCS for comparison. The x-axis
shows the problem instances and the y-axis shows run-time RLCT and design-
time RXCS. From the figure we note that the LCT uses rule bases for which the
XCS correctly allocates more than 90% of the problem instances for L < 9 and
more than 80% for 9 ≤ L ≤ 10, comparable to what has been reported in [2]. We
find that the LCT using the winner-takes-all strategy (WTA) has very similar
rates to the XCS, with a larger difference only for L = 10. Using the roulette-
wheel strategy (RW), the LCT finds valid allocations considerably less often; in
particular for 1 < i < L−1, RLCT drops as low as 22%. The reduced performance
in the (10, 5) and (10, 6) problem instances concurs with the findings in [2] that
these two problem instances are the most difficult for the XCS.

To test LCT’s ability to adapt to unexpected events, we initialize the LCT with
the all-XCS-translated XCS rules and let the cores fail randomly every 5 000 steps.
Note that there is no further rule sharing between the XCS and the LCT besides
the initialization of the LCT; we depict the XCS solely for comparison purposes.

Figure 4 shows RLCT and RXCS after the first (left half) and the second
(right half) randomly chosen cores have failed. Note that the diagram shows
fewer problem instances for the second core failure, as not every instance allows
the failure of two cores (e.g., when allocating three tasks out on four cores, the
failure of two cores turns the problem unsolvable). We find that the rate of
valid task allocations of the LCT increases slightly, on average by about 1%-
point (maximum 10%-points) after the first core has failed and an additional
1%-point (maximum 11%-points) after the second core has failed. Compared to
the rates before any core has failed, we find an increase of about 2%-points on
average (maximum 17%-points). The increase is of about the same amount for
any employed action selection strategy, with the roulette-wheel strategy showing

286 A. Bernauer et al.

30%

40%

50%

60%

70%

80%

90%

100%
%
va
lid

al
lo
ca
ti
on

Task allocation after core failure

0%

10%

20%

2
1

3
1
3
2

4
1
4
2
4
3

5
1
5
2
5
3
5
4
6
1
6
2
6
3
6
4
6
5
7
1
7
2
7
3
7
4
7
5
7
6
8
1
8
2
8
3
8
4
8
5
8
6
8
7

9
1
9
2
9
3
9
4
9
5
9
6
9
7
9
8
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
10
9
3
1

4
1
4
2

5
1
5
2
5
3

6
1
6
2
6
3
6
4

7
1
7
2
7
3
7
4
7
5
8
1
8
2
8
3
8
4
8
5
8
6

9
1
9
2
9
3
9
4
9
5
9
6
9
7
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8

LCT all XCS RW LCT all XCS WTA XCS LCT all XCS RW LCT all XCS WTA XCS

L
i

|4| | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 5 || 6 | | 7 | | 8 | | 9 | | 10 |

single core failure double core failure

Fig. 4. RLCT after one or two randomly chosen cores have failed, and RXCS for com-
parison. After one core has failed, σ < 7%; after two cores have failed, σ < 5%.

a greater variance (not depicted). The results show approximately the same
increase that the XCS would show. As reported in [2], the valid task-allocation
rate generally increases after a core fails because the probability that the action
“no valid allocation possible” is correct increases.

Summarizing, we find that when using the winner-takes-all action selection
strategy, the LCT shows rates of valid task allocations which are comparable
to what we find in the XCS and to what has been reported in [2]. The LCT
also retains the capability to adapt to the unexpected failure of two cores, as
previously shown for the XCS in [2]. The roulette-wheel strategy, however, shows
high rates of valid task allocations only for some border cases.

6.3 Component Parameterization

Figure 5 shows the reward returned to the LCS in the SoC component pa-
rameterization problem before (left) and after (right) the unexpected event of
malfunctioning in the core, with 1000 being the maximum reward. The figure
shows the results for the first 3000 steps to clearly show the reward’s trend over
time. We find that the less explorative winner-takes-all strategy (WTA, dashed
line) receives the highest reward among the LCT configurations, with the all-XCS
translation (square) being on top. While on average the roulette-wheel strategy
(RW, solid line with symbols) never actively degrades performance, it is unable
to achieve even the level of performance that a static, non-learning winner-takes-
all strategy (cross on dashed line) achieves given the XCS-generated rule set as
a starting point. The more explorative roulette-wheel strategy is also unable
to show a significantly improved learning behavior, clearly making the winner-
takes-all strategy a better choice for this problem.

As expected, the initial average reward when using the full-const translation
(triangle) is 500, indicating that an equal number of rules benefit and harm
the system. Even though the winner-takes-all strategy is quickly able to achieve
higher rewards, it is not able to achieve the same level of reward as a system

Combining Software and Hardware LCS for Lightweight On-Chip Learning 287

400

450

500

550

600

650

700

750

800

850

900

0 500 1000 1500 2000 2500 3000

Steps

R
ew

ar
d

400

450

500

550

600

650

700

750

800

850

900

0 500 1000 1500 2000 2500 3000

Steps

R
ew

ar
d

XCS LCT-all-XCS-WTA Static all -XCS-WTA LCT-full-const-WTA LCT-all-XCS-RW LCT-full-const-RWStatic all-XCS-RW

Fig. 5. Reward averaged over 100 runs for component parameterization with fully
functional (left) and defective (right) component. After stabilization, σ < 20. Learning
rate of XCS used to generate LCTs’ initial rule set included for comparison.

initialized with a design-time generated rule set (all-XCS, square). The roulette-
wheel strategy is only able to attain a very slight improvement to its average
reward.

Comparing the final reward of the design-time XCS (solid line with no sym-
bols) with the initial rewards of the run-time LCT using all-XCS translation
shows a surprising discrepancy. Although the LCT uses the rules learned by
the design-time XCS, we find a severe drop in the initial reward (from ∼840
to ∼650). We presume that this is because the LCT does not incorporate the
complete functionality of the XCS. For example, the LCT cannot sufficiently
represent XCS rules with high accuracy but low prediction, as the LCT does
not store accuracy. Thus, the LCT must initially re-learn portions of the de-
sign space. Fortunately, the LCT is able to perform this initial re-learning fairly
quickly within the first 500 steps.

Figure 5 shows the results of the component parameterization problem with
the unexpected event as explained in Section 5. The results are very similar
to those of the non-defective system, except that the average reward achieved
by the system is somewhat lower than before. In fact, the starting rewards of
less than 500 for the roulette-wheel strategy (solid line) indicate that, initially, a
majority of actions are taken that disadvantage the system. As before, the learn-
ing capabilities of the LCT quickly achieve an increase in the average reward.
However, the fact that any frequency above 100 MHz results in timing errors
prevents the system from adapting to heavier load scenarios, forcing the system
to operate at a lower degree of optimality and generally reducing the achievable
maximum rewards.

In summary, we find that the LCT using the winner-takes-all action selection
strategy and the all-XCS translation is capable to solve the SoC component
parameterization problem, even in the event of a unexpected manufacturing
defect.

288 A. Bernauer et al.

7 Conclusions

In this paper, we have presented a two-stage method that combines the capa-
bility of the software-based XCS with the area efficiency of the LCS hardware
implementation LCT. In the first stage at design time, the XCS initially learns a
set of classifiers based on a software simulation of a given problem. In the second
stage, we translate the classifiers into rules that are suitable for the LCT and
apply the LCT to the same problem at run time.

We showed that with our newly introduced winner-takes-all action selection
strategy for the LCT, the LCT can solve the multiplexer, the task-allocation and
the SoC component parameterization problem, if we initialize it with all rules
that the XCS has learned (all-XCS). In addition, the LCT retains the capability to
adapt to the unexpected events of the problems, which includes the unexpected
failure of two cores and the manufacturing defect of a core. We also found that
the performance of the LCT is less sensitive to the performance of the XCS when
using the all-XCS translation.

In summary, the results show that our proposed method allows a small and
lightweight yet very capable hardware implementation of an LCS, with which
the autonomic control of chips using LCS becomes feasible.

In future work, we will investigate alternating between roulette-wheel and
winner-takes-all action selection for quicker adaptation to unexpected events
in the LCT. We will also examine ways to reflect XCS’s knowledge of reward
prediction accuracy in the reward of the generated LCT rules, avoiding the
initial drop in returned reward, and we will look for a trade-off between the
good performance of all-XCS and the smaller classifier set of top-XCS.

References

1. Agarwal, A., Zolotov, V., Blaauw, D.: Statistical clock skew analysis considering
intra-die process variations. IEEE CAD 23(8), 1231–1242 (2004)

2. Bernauer, A., Bringmann, O., Rosenstiel, W.: Generic self-adaptation to reduce
design effort for system-on-chip. In: IEEE SASO, pp. 126–135 (2009)

3. Bernauer, A., Fritz, D., Rosenstiel, W.: Evaluation of the learning classifier system
xcs for soc run-time control. LNI, vol. 134, pp. 761–768. Springer, GI (2008)

4. Bernstein, K., Frank, D., Gattiker, A., Haensch, W., Ji, B., Nassif, S., Nowak, E.,
Pearson, D., Rohrer, N.: High-performance cmos variability in the 65-nm regime
and beyond. IBM Journal of Research and Development 50(4/5), 433 (2006)

5. Bolchini, C., Ferrandi, P., Lanzi, P.L., Salice, F.: Evolving classifiers on field
programmable gate arrays: Migrating xcs to fpgas. Journal of Systems Architec-
ture 52(8-9), 516–533 (2006)

6. Borkar, S.: Thousand core chips: a technology perspective. In: DAC, pp. 746–749.
ACM, New York (2007)

7. Butz, M., Wilson, S.W.: An algorithmic description of xcs. In: Lanzi, P.L., Stolz-
mann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–272.
Springer, Heidelberg (2001)

8. Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and improvement of fitness
exploitation in xcs: bounding models, tournament selection, and bilateral accuracy.
Evol. Comput. 11(3), 239–277 (2003)

Combining Software and Hardware LCS for Lightweight On-Chip Learning 289

9. Dias, F., Antunes, A., Mota, A.: Artificial neural networks: a review of commercial
hardware. Engineering Appl. of Artificial Intelligence 17(8), 945–952 (2004)

10. Dorigo, M.: ALECSYS and the AutonoMouse: Learning to control a real robot by
distributed classifier systems. Machine Learning 19(3), 209–240 (1995)

11. Ferrandi, F., Lanzi, P., Sciuto, D.: Mining interesting patterns from hardware-
software codesign data with the learning classifier system XCS. Evolutionary Com-
putation 2, 8–12 (2003)

12. Holland, J.H.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in theoretical
biology, pp. 263–293. Academic Press, New York (1976)

13. International Roadmap Committee. International technology roadmap for semi-
conductors (2008), http://www.itrs.net/reports.html

14. Irick, K., DeBole, M., Narayanan, V., Gayasen, A.: A hardware efficient support
vector machine architecture for fpga. In: FCCM 2008, Washington, DC, USA, pp.
304–305. IEEE Computer Society, Los Alamitos (2008)

15. Lipsa, G., Herkersdorf, A., Rosenstiel, W., Bringmann, O., Stechele, W.: Towards
a framework and a design methodology for autonomic soc. In: ICAC (2005)

16. Narayanan, V., Xie, Y.: Reliability concerns in embedded system designs. Com-
puter 39(1), 118–120 (2006)

17. Prothmann, H., Rochner, F., Tomforde, S., Branke, J., Müller-Schloer, C.,
Schmeck, H.: Organic control of traffic lights. In: Rong, C., Jaatun, M.G., Sandnes,
F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 219–233. Springer,
Heidelberg (2008)

18. Schlunder, C., Brederlow, R., Ankele, B., Lill, A., Goser, K., Thewes, R., Technol,
I., Munich, G.: On the degradation of p-mosfets in analog and rf circuits under
inhomogeneous negative bias temperature stress. In: IEEE IRPS, pp. 5–10 (2003)

19. Widrow, B., Rumelhart, D.E., Lehr, M.A.: Neural networks: applications in indus-
try, business and science. Commun. ACM 37(3), 93–105 (1994)

20. Wilson, S.W.: Classifier systems and the animat problem. Machine Learning V2(3),
199–228 (1987)

21. Wilson, S.W.: Zcs: A zeroth level classifier system. Evolutionary Computation 2(1),
1–18 (1994)

22. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2),
149–175 (1995)

23. Wilson, S.W.: Generalization in the xcs classifier system. In: Koza, J.R., Banzhaf,
W., et al. (eds.) Genetic Programming Conference, University of Wisconsin, Madi-
son, Wisconsin, pp. 665–674. Morgan Kaufmann, San Francisco (22-25, 1998)

24. Zeppenfeld, J., Bouajila, A., Stechele, W., Herkersdorf, A.: Learning classifier tables
for autonomic systems on chip. In: Hegering, H.-G., Lehmann, A., Ohlbach, H.J.,
Scheideler, C. (eds.) GI Jahrestagung (2). LNI, vol. 134, pp. 771–778, GI (2008)

http://www.itrs.net/reports.html

	Combining Software and Hardware LCS for Lightweight On-Chip Learning
	Introduction
	Related Work
	XCS and LCT
	Methodology
	Experimental Setup
	Results
	Multiplexer
	Task Allocation
	Component Parameterization

	Conclusions
	References

