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Combining Spatial Registration With Clutter
Filtering for Power-Doppler Imaging
in Peripheral Perfusion Applications

Michael F. Insana , Life Fellow, IEEE, Bingze Dai,
Somaye Babaei , Graduate Student Member, IEEE, and Craig K. Abbey

Abstract— Power-Doppler ultrasonic (PD-US) imaging is
sensitive to echoes from blood cell motion in the microvas-
culature but generally nonspecific because of difficulties
with filtering nonblood-echo sources. We are studying the
potential for using PD-US imaging for routine assessments
of peripheral blood perfusion without contrast media. The
strategy developed is based on an experimentally verified
computational model of tissue perfusion that simulates
typical in vivo conditions. The model considers directed
and diffuse blood perfusion states in a field of moving
clutter and noise. A spatial registration method is applied
to minimize tissue motion prior to clutter and noise filtering.
The results show that in-plane clutter motion is effectively
minimized. While out-of-plane motion remains a strong
source of clutter-filter leakage, those registration errors
are readily minimized by straightforward modification of
scanning techniques and spatial averaging.

Index Terms— Clutter filtering, motion modeling, phan-
tom studies, power-Doppler ultrasound, scattering model,
spatial registration.

I. INTRODUCTION

POWER-DOPPLER ultrasonic (PD-US) imaging could
become an important tool for monitoring spatiotemporal

changes in the muscle perfusion of patients at risk for periph-
eral arterial disease (PAD) of the lower extremities. PD-US
images indicate perfusion qualitatively from the net power
within the signal bandwidth that is measured over an ensemble
of Doppler pulses [1]. These images faithfully display relative
muscle perfusion if the tissue clutter and noise components of
the echo signal are minimized to leave a reproducible estimate
of blood-echo power. This report describes an analysis of the
ultrasonic imaging process with experimentally verified echo
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simulations that reveal the conditions under which PD-US can
reliably represent peripheral muscle perfusion.

PAD is a systemic reduction of capillary perfusion from pro-
gressive atherosclerosis occurring across vascular scales [2].
Patient symptoms occur primarily in the extremities and range
from muscle cramping to gangrene requiring amputation. PAD
patients are also at increased risk for developing coronary
artery disease and stroke [2], [3]. As its lifetime occurrence in
the US population is 20%–30% [4], advancing PAD poses a
significant risk to healthy aging. PAD is often preventable, and
some lost perfusion can be recovered if treatment accompanies
lifestyle adjustments. Because PAD symptoms are similar to
other conditions, there is a growing need for effective tech-
niques that permit frequent monitoring of muscle perfusion in
at-risk populations [5].

Ultrasonic imaging of microvascular perfusion without con-
trast enhancement poses unique challenges for clutter filtering.
Blood cell speed in the capillaries is slow (0.1–2.0 mm/s) [6],
[7], [8] and directionally diffuse. Conversely, the movement
of muscle reflectors relative to the beam axis that occurs
from probe jitter, patient breathing, and heart sounds are more
spatially coherent. The resting-state motion range of skeletal
muscle for fixed-probe scanning (no hand jitter) was found to
be routinely small (<0.1 mm) during 2-s Doppler acquisitions
[see Fig. 5(a)]. Perfusing blood cells are spatially integrated
throughout the moving muscle tissue. Hence, one component
of blood-cell motion relative to the sound beam is spatially
coherent and coupled to tissue motion, while the second com-
ponent involves diffuse cell movements within capillaries that
are uncoupled to the tissue movements. The latter component
is the target of perfusion imaging. The ratio of clutter-echo
amplitude to blood-echo amplitude in peripheral perfusion
applications is on the order of 5 at 24 MHz, increasing to
16 at 8 MHz.1

The high echogenicity, large SNR, and coherent in-plane
motion of peripheral muscle scatterers relative to the blood
cells enable principal component analysis (PCA) filters to

1The backscatter coefficient in whole pig blood (HCT = 40) at 24 MHz
is 2 × 10−3 cm−1sr−1 [12]. The backscatter coefficient in rat soleus
muscle at normal incidence to muscle fibers is 3.07 × 10−4 × f 1.61 =
5 × 10−2 cm−1sr−1 at 24 MHz [13]. The ratio of muscle to blood backscatter
intensity at 24 MHz is 25, with an amplitude ratio of 5. The intensity ratio
at 8 MHz is 250 with an amplitude ratio of 16.
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effectively minimize the clutter component [9], [10], [11].
However, if the tissue and blood-cell speeds overlap [18],
the separation of clutter and blood singular-value subspaces
is incomplete. Some investigators have proposed rigid spatial
registration of echo frames before clutter filtering [14], [15],
[16], [17], [18]. Registration minimizes any in-plane trans-
lation of the dominant clutter echoes between frames, which
narrows the clutter singular-value bandwidth and improves the
separation between clutter and blood subspaces to enhance
PCA filter efficiency. Spatial registration techniques are well
described in the ultrasonic imaging literature where the pri-
mary applications are 3-D image rendering and multimodal
image fusion [19], [20], [21], [22], [23], [24]. This report sum-
marizes our investigation of factors influencing the reliability
of PD-US measurements in representing temporal changes in
muscle perfusion.

We begin by describing a computational model simulating
ultrasonic echo signals from perfused muscle, where scatterers
move continuously in three spatial dimensions, while echoes
are recorded discretely in scan planes. We also implement a
displacement estimator for spatial registration that is applied
to echo frames prior to PCA filtering. Simulations provide
the exactly known conditions from which errors in spatial
registration methods and PD-US signals can be precisely
determined with respect to each source contributing to the echo
signal. We will show that small out-of-plane tissue movements
are the greatest challenge to obtaining consistent PD-US
measurements, but there are methods for detecting elevational
motion and reducing the uncertainties caused by the losses of
interframe echo correlation. Our focus is on simulation and
phantom measurement at 5 MHz, but we explore results at 20
MHz that are used for preclinical studies.

II. METHODS

A. Perfused Tissue Scatterers

We propose a discrete-scatterer model to simulate echo
signals from perfused tissues scanned with a linear array
transducer. Here, tissues are modeled as a porous matrix
composed of random point reflectors that move continuously.

The nth scatterer is represented by 3-D Dirac delta
δ(x − xn) at position xn = (xn, yn, zn)

� within tissue volume
�. Scatterers moving relative to the sound beam have positions
that are functions of measurement time, xn = xn(t). The
scattering field is given by the object function

f (x, t) =
∑
n∈�

anδ(x − xn(t)) (1)

where an is the reflectivity of the nth scatterer. The object may
be further parsed into tissue and blood scatterers

f (x, t) = fτ (x, t) + fβ(x, t)

=
∑
p∈�

τ δ(x − xp(t)) +
∑
q∈�

β δ(x − xq(t)) (2)

where τ and β are the reflectivities of tissue and blood cells,
respectively, which are assumed to be constant throughout �.
The locations of tissue xp and blood xq scatterers define the
locations of all reflectors xn ∈ {xp, xq} and an = {τ, β}.

B. Echo Signal Model

The signal model converts the 3-D object function from (1),
a continuous function of space and time, into a time series
of discretely sampled 2-D radio frequency (RF) echo frames.
A spatiotemporal object is mapped into each measurement of
the dataset via the spatial sensitivity function (SSF), hS(x). The
SSF characterizes contributions from lateral (x), elevational
(y), and axial (z) positions relative to the beam axis at a
given measurement time. Specifically, for pulse-echo impulse
response function, h(x, t), the SSF is hS(x) = h(x|t) [27],
[28]. Since scatterers move slowly compared to the acquisition
frame rate, we assume that all scatterers are essentially frozen
during the time an echo frame is acquired. Also, we model the
SSF as unchanged within volume � (local shift invariance).

We indicate the fast-time axis by tk = (k−1)Tk, 1 ≤ k ≤ K ,
with fast-time sampling rate 1/Tk [MHz]. It logs the arrival
of echo samples along the beam axis at depth zk = ctk/2 for
sound speed c [mm/μs]. Samples in the scan plane along the
axis perpendicular to the beam axis are given by x� = (�−1)X ,
where 1 ≤ � ≤ L. X [mm] is the lateral sampling interval as
determined by the pitch of the array. The frame-time (or slow-
time) axis is tm = (m − 1)Tm, 1 ≤ m ≤ M at Doppler frame
rate 1/Tm [Hz]. From these variables, each beamformed echo
signal frame gk�m is described for an axial sample k, lateral
sample �, and frame m as

gk�m = �k�m +
∫

x∈�

dx hS(x − x�, y, z − ctk/2) f (x, tm)

= �k�m +
∫

x∈�

dx hS(x − xk�) f (x, tm) (3)

where xk� = (x�, 0, zk)
� locates echo samples in the (x, z)

scan plane with acquisition noise �. The number of integrals
in (3) is determined by the dimension of dx in this case three.
We are implicitly assuming that f (x, tm, tk) = f (x, tm) by
assuming that the scatterer velocities are much slower than
the rate of data acquisition. Simulation parameters are listed
in Table I.

Combining (1)–(3), we obtain

gk�m = �k�m +
∑
n∈�

an hS(xn(tm) − x�, yn(tm), zn(tm) − zk)

= �k�m +
∑
n∈�

an hS(xn(tm) − xk�)

= �k�m +
∑
p∈�

τ hS(xp(tm) − xk�)

+
∑
q∈�

β hS(xq(tm) − xk�). (4)

The echo signal in (4) describes a weighted coherent summa-
tion of SSF values at tissue and blood scatterer positions in �.
The quantity |xn(tm)− xk�| measures the distance between the
nth scatterer and the pulse center located at (x�, zk) during
the time when the mth frame is recorded. With functional
representation for hS , the echo signal for continuously varying
scatterer positions is simulated.

The spatial distribution of scatterers modeled in this way is
represented by an independent, multivariate Poisson variable.
The acquisition noise is given by an independent, zero-mean,
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TABLE I
SIMULATION PARAMETERS FOR A GABOR PULSE

multivariate normal variable. Independence ensures that both
frequency spectra are constant over the measurement band-
width. Hence, the ensemble echo spectrum of this linear
system is the SSF spectrum scaled by a flat scatterer-field
spectrum, and that product is added to a band-limited white
noise spectrum.

C. Gabor Approximation to the SSF

The Gabor approximation to the SSF for a linear array
transducer is

hG(x|u0, σx , σz, φ)

= sin(2πu0z + φ) × 1

(2π)3/2
(
2σ 2

x

)
σz

× exp

[
−1

2

((
x

σx

)2

+
(

y

2σx

)2

+
(

z

σ 2
z

)2
)]

(5)

where u0, σx , σz, and φ are free parameters. The approxi-
mation provides a relatively simple close-form expression to
estimate the pulse parameters described in Section II-G.

We computed the SSF function hS from
Rayleigh–Sommerfeld diffraction theory (see [27, eq. (9)])
to compare with the Gabor approximation from (5). The
approximation hG was found by adjusting the four Gabor
parameters to minimize the squared error

�hS(x�, zk) − hG(x�, 0, zk |u0, σx , σz, φ)�2.

Fig. 1(a) is an example of the SSF computed using the
Rayleigh–Sommerfeld theory for a nominal 8 MHz, 60% frac-
tional bandwidth pulse, and f-number = 2 in-plane aperture.
The f-number is the ratio of focal length to active aperture
length. We assumed the attenuation coefficient, α = α0z0 f0,
where α0 = 0.5 dB/cm-MHz, z0 = 4.0 cm focal length,
and f0 = 8 MHz center frequency of the transducer. The

Fig. 1. (a) 8-MHz SSF with 60% fractional bandwidth and f-number = 2
in-plane focusing and (b) its Gabor-function approximation.

frequency-dependent scattering amplitude factor was f 1.3. The
best-fit Gabor approximation, as shown in Fig. 1(b), has a
center frequency of 7.32 MHz and a fractional bandwidth of
0.63. Given the similarity of pulses, we used hG in place of
hS in (4) to simulate echo signals.

D. Tissue and Blood Cell Motion

The model assumes that echo frames are recorded instanta-
neously as scatterers move continuously in �. The locations
of tissue and blood scatterers in the mth echo frame are

xp(tm) = (m − 1)Tmvp(tm) + xp(t1)

xq(tm) = (m − 1)Tm(vp(tm) + vq(tm)) + xq(t1). (6)

The velocity vector for tissue scatterers vp(tm) [mm/s] varies
in time, but all tissue scatterers move together (rigid transla-
tion). In contrast, the time-varying velocity of blood scatterers
vq(tm) allows each blood cell to move independently in space.
Because they perfuse the moving tissues, blood cell motion is
determined by the sum of both velocities.

The simulations include two patterns of tissue (clutter)
motion, both have all scatterers moving rigidly between
frames, i.e., vp(tm) = vp�(tm) ∀ {p, p�} ∈ �. In some cases,
the transducer probe is translated linearly along one of three
axes. In other cases, scatterers oscillate rigidly in the scan
plane [see Fig. 5(b)] to mimic breathing and cardiac pulses.

Two blood-cell velocity patterns were modeled. First,
directed flow data simulated all blood cells moving along
the beam axis at the same speed but each with a ±15◦
random angular variability about the axis, e.g., Fig. 6(a).
Second, diffuse flow data simulated blood cells moving in
uniformly random directions in the volume at constant speed,
e.g., Fig. 7(a). The spatially averaged blood velocity in diffuse
flow is zero.

E. Displacement Estimation and Spatial Registration

From (4), echo signals within the first and mth frames are

gk�1 = �k�1 +
N∑

n=1

an h(xn1 − xk�)

gk�m = �k�m +
N∑

n=1

an h(xn1 + �x1m − xk�) (7)

where xn1 � xn(t1). From (6), the 3-D translation of the mth
frame relative to the first frame is

�x1m = xp(tm) − xp(t1) = (m − 1)Tmvp(tm).
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Fig. 2. Geometry of simulated echo acquisition in the (x, z) scan plane.
Displacements are estimated in nine distinct regions of area X0 × Z0 for
each frame in the M-frame ensemble relative to the first.

Only the velocity of the more echogenic clutter scatterers is
considered for the purpose of registration.

Tissue scatterer displacement �x1m is estimated in two
stages. First, we compute the average discrete 2-D spatial cross
correlation function φ between regions in the first and mth
RF echo frames. If k and � are the axial and lateral spatial
coordinate indices for the first frame, k � and �� are the indices
for the mth frame, and �k = k − k � and �� = � − �� are the
differences. For jointly wide-sense stationary echo data g in
analysis area X0 × Z0

φ�k��1 m = F−1{F{gk�1}(F{gk���m� })∗}. (8)

F{·} denotes the forward 2-D discrete Fourier transform of
zero-padded echo data for the region, F−1{·} is the inverse
transform, and ∗ indicates the complex conjugate. The coarse
displacement estimate is indicated by the sample indices at the
correlation peak using

[�k̂,��̂]1m = arg max
�k,��

φ�k��1m . (9)

Equation (9) estimates the in-plane translation of regions
between frames 1 and m in units of discrete lateral and axial
RF echo samples. For example, �k̂ = ��̂ = 0 if vp = 0. For
|vp| > 0, discrete displacements are estimated with in-plane
spatial resolution given by the RF echo sampling intervals,
(X, Z = cTk/2).

Second, the subsample displacement estimate is found by
combining a cubic spline interpolation algorithm with a 2-D
unconstrained nonlinear optimization search algorithm imple-
mented in the MATLAB function fminsearch. At each step
in the search, the mth echo frame is continuously interpolated
via MATLAB’s interp2 before applying a derivative-free
simplex search method [33]. The fine-scale search begins
at the coarse-scale estimate values and terminates once the
convergence criterion of 10−4 is obtained. The result is the
subsample lateral and axial displacement estimates (ξ̂ �, ζ̂ �)�,
respectively.

The continuous displacement estimate [mm] between
frames 1 and m is the sum of the coarse and fine estimates

ξ̂ 1m =
(

ξ̂1m

ζ̂1m

)
=

(
��̂X + ξ̂ �

�k̂
cTk

2
+ ζ̂ �

)
. (10)

Tissue scatterers can move in three spatial dimensions, but
only displacements in the scan plane can be measured with a
1-D array transducer. Displacement estimation is successful if
ξ̂ 1m 
 �x1m .

The simulated scattering object is 14 mm × 14 mm ×
5 mm, where the larger two dimensions form the x, z scan
plane. The resulting echo frame from (4) is 10 mm × 10 mm.
The displacement of the frame used for spatial registration is
the average value estimated from nine nonoverlapping regions
in each frames, each of area X0 × Z0 (nominally 1 mm2),
as illustrated in Figs. 2, 6(a), and 7(a). Because simulated
tissue echoes are wide-sense stationary processes, the exact
placement of the subregions is arbitrary. Region selection
needs more carefully consideration for in vivo measurements
where tissue echogenicity is heterogeneous. Each frame in
the ensemble is aligned with the first frame by removing the
relative displacement via interpolation methods.

F. Estimator Efficiency

An efficient unbiased displacement estimator for registering
echo frames exhibits a measurement variance that approaches
the lower statistical bound on variance for the parameters of
the experiment. Evaluating estimator efficiency is also a way
to validate the echo simulation and displacement estimation
algorithms. Knapp and Carter [35] derived the Cramér–Rao
lower bound (CRLB) on the variance of correlation-based time
delay estimates for a linear signal model. This section explains
how (4) may be adapted to their CRLB variance expression
in the spatial frequency domain.

Let u = (ux , uz)
� be the continuous spatial-frequency

vector for the x, z plane. The 2-D discrete-time Fourier
transform of sampled RF echo data from the mth frame is
Ĝm(u) = F{gk�m}. Here, 2-D echo samples in space are trans-
formed into the continuous 2-D spatial frequency domain. The
auto power-spectral density for the mth frame is Pmm(u) =
E{|Ĝm(u)|2}, and the cross power-spectral density between the
first and mth frames is P1m(u) = E{Ĝ1(u) Ĝ∗

m(u)}. E{·} is the
expectation operator. Displacements are assumed to be small
compared to the correlated region size.

The cross correlation between echo data in frames 1 and m,
now expressed using continuous position variables, is related
to the cross-spectral density via the 2-D integral transform

φ1m(ξ ) =
∫ ∞

−∞
du P1m(u) ei2πu�ξ .

The magnitude-squared coherence function between data in
frames 1 and m is C1m . It is a function of the cross-spectral
and autospectral densities [35]

C1m(u) = |P1m(u)|2
P11(u)Pmm(u)

, 0 ≤ C1m(u) ≤ 1. (11)

C1m measures the extent to which data in the mth echo frame
can be predicted from data in the first frame: C1m = 0 at
all spatial frequencies for statistically independent data and
C1m = 1 for identical data, e.g., m = 1.
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The CRLB on variance for in-plane displacements estimated
along the x- and z-axes is, respectively, [35]

var(ξ̂ ) ≥ −E
{∣∣∣∣ ∂2

∂ξ2
ln p(G|σ f , σ�, ξ)

∣∣∣∣
−1

}

=
[

8π2 X0

∫ ∞

0
dux u2

x

C1m(ux)

1 − C1m(ux)

]−1

var(ζ̂ ) ≥
[

8π2 Z0

∫ ∞

0
duz u2

z

C1m(uz)

1 − C1m(uz)

]−1

(12)

where G = (G1(ux), Gm(ux))
� and p(G|σ f , σ�, ξ) is a

conditional normal probability density for the data—the like-
lihood function. The integral exists when the signal includes
bandlimited white noise because C1m = 1. The ensemble
spectral properties of simulated echo data are known.

For the linear signal model and wide-sense stationary multi-
variate processes of (4), autospectral densities have signal and
noise terms given by

P11(u) = Pmm(u) = Phmm (u) + P�mm (u)

= σ 2
f |H (u)|2 + σ 2

�

Bx Bz
. (13)

Applying (5), we have H (u) � H (ux, 0, uz) = F{hG(x)}.
Bx and Bz [mm−1] are effective noise bandwidths along the
ux - and uz-axes. The effective noise bandwidth is traditionally
defined for positive frequencies as [34]

B � 1

|H (0)|2
∫ ∞

0
du |H (u)|2. (14)

For bandpass white noise, bandwidths are determined by the
sampling rates (see the values listed in Table I).

The cross-spectral density for the two frames is

P1m(u) = P11(u) e−i2πu��xm + P�1m (u)

= σ 2
f |H (u)|2 e−i2π(u��xm) (15)

because, for uncorrelated noise, P�1m (u) = 0.
Combining (11) with (13)–(15), we find

C1m(ux) = S(ux)

1 + S(ux)
and C1m(uz) = S(uz)

1 + S(uz)
(16)

where

S(ux) = Bx

σ 2
f

σ 2
�

∫ ∞

0
duz |H (u)|2

S(uz) = Bz

σ 2
f

σ 2
�

∫ ∞

0
dux |H (u)|2. (17)

S(u) is the ratio of the signal spectrum to the noise spectrum.
Separately integrating the numerator and denominator of S(u)
over positive frequencies results in the echo SNR

SNR = σ 2
f

∫ ∞
0 du |H (u)|2
σ 2

�

Bx Bz

∫ ∞
0 du

= σ 2
f

σ 2
�

∫ ∞

0
du |H (u)|2. (18)

Finally, combining (12) with (16) and (17) gives the lateral
and axial displacement variance bounds [mm2], respectively,

var(ξ̂ ) ≥
[

8π2 X0

∫ ∞

0
dux u2

x S(ux)

]−1

var(ζ̂ ) ≥
[

8π2 Z0

∫ ∞

0
duz u2

z S(uz)

]−1

. (19)

Equation (19) shows that unbiased displacement errors are
functions of the correlation area, pulse properties, sampling
rates, and echo SNR. It also shows that the variance bound
is independent of the true displacement �xm .

G. Echo-Signal Model Parameters

The Gabor pulse approximation of (5) makes it convenient
to estimate closed-form expressions for the terms in (19) that
defines simulated signal properties. The independent para-
meters listed in Table I were selected to represent realistic
spatial sampling and pulse parameters for 5- and 20-MHz
broadband (bb) pulses. From these values, we estimate the
lateral σx , elevational σy , and axial σz Gabor pulse parameters,
noise bandwidths Bx, Bz , the 2-D speckle correlation area
A2-D, and 3-D speckle correlation volume A3-D. We assume
that the lateral beamwidth is specified by its full-width-at-
half-maximum (FWHM) value, FWHMx = cz0/ f0 Dx = 2 ×
f-number/u0, where z0 is the focal length and Dx is the lateral
active-aperture length. The pulse bandwidth is determined in
the spatial frequency domain by FWHMuz of the axial pulse
spectrum |H (uz)|2. Noise variance σ 2

� is computed from the
echo SNR equation of (18) after computing the average signal
power σ 2

f

∫
du |H (u)|2 from the simulated noise-free echo

signals of (4). Selecting at least 20 scatterers per pulse, the
total number of scatterers in the simulated volume is found
from expressions for the speckle correlation volume A3-D,
as listed in Table I. A3-D includes 95% of the 3-D Gabor pulse
energy.

The fractional bandwidth for bb 5-MHz pulses was set to
0.75 for an echo SNR estimated experimentally at 30 dB. The
bb pulses provide more precise spatial registration results at
high SNR. The fractional bandwidth of 20-MHz pulses was
lowered to 0.4 for an echo SNR estimate of 15 dB.

H. Phantom Measurements

A gelatin phantom containing a spatially fixed random sus-
pension of cornstarch particles as tissue scatterers (no blood-
mimicking scatterers) was scanned to experimentally verify
the simulation results for clutter displacement estimation. The
construction of the gelatin materials follows methods described
previously [29]. We added 2.6% cornstarch by mass to the
125-cm3 phantom volume. The density of dry cornstarch
is 0.625 g/cm3. Particle sizes are modeled as a Gaussian
distribution of spheres with the mean diameter of 18 μm, the
standard deviation of 4 μm, and the range of 2–30 μm [36]
so that the particle density is on the order of 104 per mm3 of
gel. The speed of sound in the phantom is 1506 ± 1 m/s, and
the slope of the frequency-dependent attenuation coefficient is
0.30 ± 0.03 dB cm−1 MHz−1 [32].

The 5-cm gelatin cubes were scanned with a Sonix RP
ultrasonic imaging system (Ultrasonix Medical Corporation,
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Richmond, BC, Canada) at 5 MHz and a depth of 4 cm. The
scan plane area over which displacement was estimated from
the RF echo signals was X0 = 12.52 mm ×Z0 = 9.70 mm
with lateral and axial sampling intervals X = 0.3438 mm
and Z = 0.0419 mm. A linear array transducer attached to
a three-axis motion controller unit was oriented such that the
beam axis was perpendicular to an acrylic plate on which the
phantom rested. In this fixture, RF echo data were recorded
in color mode as the transducer was translated along the
beam (z-axis), perpendicular to the beam in the scan plane
(x-axis), or perpendicular to the beam and normal to the scan
plane (y-axis). The phantom contained a weakly reflecting
cylinder with a long axis oriented collinear to the x-axis of the
transducer to help lateral translations remain in the scan plane.

As the transducer was moved along the z-axis at 0.48 mm/s,
the scanner recorded 12 frames/s, yielding 25 frames/mm.
Alternatively, the transducer translated along the x- or y-axes
at 1.0 mm/s, while the scanner recorded ten frames/s, yielding
ten frames/mm. We selected echo frames during times of
constant transducer velocity; the results for axial and lateral
axis motion are summarized in Fig. 4.

The interframe correlation coefficient between the first and
mth frames, ρ, was computed as the transducer moved along
each axis to estimate the pulse dimensions; for example,
see ρ(y) in Fig. 10(b) and (d). The correlation coefficient
functions were each fit to a Gaussian, and the FWHM
value was found. Applying the Gaussian-function relation
FWHM = 2

√
2 ln 2 × σ , we estimate the following color-

mode pulse parameters for the experiment: σx = 0.251 mm,
σy = 0.743 mm, and σz = 0.163 mm. The experimental para-
meters for narrowband (nb) color-mode acquisitions may be
compared to the bb 5-MHz simulation values listed in Table I.

III. RESULTS

A. Uncertainties in Registering Clutter Echoes at 5 MHz

Fig. 3 displays the CRLB on variance from (19) for lateral
displacements estimates (red lines) and axial displacement
estimates (black lines) over an echo SNR range of 0–30 dB.
The dashed lines are for simulated echo signals (S) computed
from the 5-MHz parameters listed in Table I, while the dotted
lines are for 5-MHz experimental echo signals (E) computed
from the parameters described in Section II-H. For a fixed
echo-signal strength, the variance bounds are proportional to
the acquisition noise variance σ 2

� , giving the linear decrease
with increasing SNR viewed on a log–log scale. The quadratic
frequency weighting in the variance expressions of (19) means
that the axial variances are about 30 dB lower than lateral
variances.

On the same plot are displacement variances measured from
simulated echo data over the SNR range (open circle points)
and experimental echo data at SNR 
 30 dB2 (closed circle

2Estimating SNR experimentally: let σ 2
g and σ 2

� be the ensemble echo-signal
and noise variances. From (18), SNR = σ 2

g /σ 2
� − 1 
 σ 2

g /σ 2
� for σ 2

g � σ 2
� .

The noise variance may be estimated for experimental data by subtracting
one echo frame from the average of N � 1 echo frames recorded at one
spatial location without perfusion. The relationship between the sample and
ensemble noise variances is ˆvar(�) = σ 2

� (1 − 1/
√

N ). For experimental data,
SNR 
 10 log(σ 2

g (1 − 1/
√

N)/ ˆvar(�)).

Fig. 3. In-plane displacement variances are estimated from simulated
and experimental data at 5 MHz. Variances from echo simulations are
estimated for lateral (open red circles) and axial (open black circles)
motions, where the transducer was moved along one axis as the scatter-
ing medium remained fixed. The two solid circular points at SNR = 30 dB
are variances estimated experimentally. The dashed lines are the CRLBs
for the simulation parameters (S), the dotted lines are for experimental (E)
parameters, and both are computed using (19).

points). Variances measured using 5-MHz echo simulations
approach the lower bound when the echo SNR exceeds 20 dB.
At lower SNR values, ambiguity errors [30] increase the
variance.

The simulation results in Fig. 3 show that the displacement
estimator from (10) is efficient for data simulated by the echo
model of (4). Achieving the lower bound for echo simula-
tions is a consistency check of the modeling and estimation
programming. It shows that spatially coherent in-plane object
displacements are reversible by spatially registering echo sig-
nals, within the noise limitations responsible for the estimation
variance. When diffuse blood perfusion or other spatially
incoherent scatterer motion is present, they too increase the
displacement variance for spatial registration of clutter echoes.

The experimental results in Fig. 3 show that displacement
variances (two solid points at SNR = 30 dB) are greater than
those estimated from simulated echo signals. Similarly, the
variance bounds using experimental parameters (dotted lines)
are larger than those obtained with simulation parameters
(dashed lines). The increases are mostly explained by the
following differences between experimental and simulated
echo data parameters. First, the color-mode pulses of the
experiment extend in space more than the simulated B-mode
pulses. The nb color-mode RF echo signals generate more
displacement uncertainty than the bb signal at high SNR,
but they enable spatial registration and PD-US estimation
in one dataset. Second, the area over which echo signals
are spatially averaged and the sampling intervals differ; the
latter influences noise power calculations for (19). Third, the
experimental pulse spectrum must include the influence of
ultrasonic attenuation that modulates the spectral amplitude
of the pulse along the uz-axis. We did not model attenuation
losses in the simulated echo data. The differences between the
variance bounds and the variance estimates for phantom data
are 2 dB axially and 6 dB laterally.
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Fig. 4. (a) Axial and (b) lateral displacement errors (±1 sd) are shown
for phantom experiments at 5 MHz where the echo SNR is 30 dB.
Clutter motion is a linear translation along the z- or x-axis as indicated.
Measurement variances reported as solid points in Fig. 3 are computed
from these errors.

Fig. 5. (a) In vivo measurements of clutter motion are made at 8 MHz in
a transverse scan plane of the human calf muscle. In the experiment, the
subject’s leg and the probe are both fixed. (b) Oscillating in-plane clutter
motion applied in echo simulations is shown. The oscillation frequency
is 1.0 Hz.

Fig. 4 shows examples of registration errors resulting from
the phantom experiments. The translation ranges are limited
because clutter alignment in vivo typically involves transla-
tions much less than 1 mm [see Fig. 5(a)]. The lateral error
plotted in Fig. 4(b), for example, is ex = ξ̂1m −�x1m . We lin-
early detrend ex before estimating the lateral displacement
variance var(ξ̂) = (1/Np)

∑Np

j=1 e2
x reported in Fig. 3. Np

is the number of measurements along the displacement axis.
Estimates of var(ζ̂ ) in Fig. 4(a) are found similarly. The error
bars shown in Fig. 4 indicate that displacement errors become
more variable as the translational distance increases, a situation
not predicted by the CRLB equations. Our explanation for the
increasing error is addressed in Section III-G.

B. In-Plane Clutter Motion Patterns

Clutter motion patterns of two types were observed during
in vivo scanning. Motion is smallest when a prone subject has
their leg gently restrained, and the probe is rigidly fixed after
being acoustically coupled to a relaxed calf muscle. Under
these conditions, muscle movements relative to the beam
axis follow a small-range chaotic pattern like the example
of Fig. 5(a). For echo simulations, the oscillating in-plane
tissue motion pattern shown in Fig. 5(b) was selected with
an oscillation frequency of 1.0 Hz.

C. 5-MHz Echo Simulations With Directed Perfusion

Fig. 6 summarizes PD-US results for 5-MHz echo simula-
tions, where a clutter field includes a central region of directed

Fig. 6. Simulated PD-US image and spectra for directed perfusion
with the blood-cell speed of 0.2 mm/s at 5 MHz and 30-dB SNR. The
echo signals for the image in (a) were spatially registered and PCA
filtered. The tissue scatterers (gray scale) include a central region with
simulated blood perfusion (color overlay). The motion patterns for clutter
and blood are indicated by white arrows along with the nine regions where
displacement is estimated for spatial registration. (b) Eigenspectra are
shown from the PCA filter for unregistered and registered echo signals
that include clutter, blood, and noise (c + b + n) sources, clutter and
noise (c + n, no blood component), and noise only. PCA filter thresholds
at eigenindices 2 and 6 clearly define the blood subspace for directed
perfusion once the echo frames are registered. (c) Doppler frequency
spectra are shown for clutter, blood, and noise sources (c + b + n)
and for blood and noise sources (b + n) before spatial registration and
filtering. (d) Doppler frequency spectra are shown for spatially registered
echo signals. The solid black and red lines are the spectra of echo
signals with clutter, blood, and noise sources before and after PCA
filtering, respectively. The dashed black line shows the registered and
filtered spectrum when the echo signal contains only clutter and noise.
The Doppler frequency axis was converted into scatterer velocity using
v [mm/s] = (c/2) × (Doppler frequency [Hz]/pulse frequency [MHz]).

perfusion. The oscillating clutter motion between frames in
the simulated echo ensemble is spatially registered to the first
frame based on the average displacement detected in nine
2 × 2 mm windows placed inside and outside the region of
perfusion [see Fig. 6(a)]. We divide the total region into nine
windows and average to also estimate displacement variance.
The speed of each blood cell is 0.2 mm/s, directed on average
downward with a ±15◦ variation about the z-axis. Scatterers
are translated in the scan plane in an elliptical pattern to simu-
late cyclic clutter motion. The simulated 21-frames ensemble
was acquired over 2 s.

In Fig. 6(b), the eigenspectrum of the combined clutter,
blood, and noise echo signal (c + b + n) is examined
with and without spatial registration. In the same plot, the
eigenspectrum of echo signals composed of only clutter and
noise (c + n) before and after registration are compared
along with a noise-only spectrum. These plots show that
spatial registration narrows the echo eigenspectra when there
is coherent motion, concentrating clutter energy primarily
in the first eigenvalue. Following registration, the subspace
dominated by directed blood perfusion is contained within
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Fig. 7. Simulated PD-US image and spectra for diffuse perfusion with
the blood-cell speed of 0.2 mm/s at 5 MHz and 30-dB SNR. The PCA filter
thresholds are expanded to 2–11. Other parameters and each subsection
are the same as those described in Fig. 6.

eigenvalues 2–6. Eigenvalues outside this range are set to zero
when forming the image of Fig. 6(a).

Fig. 6(c) and (d) shows the Doppler frequency spectra for
the same echo signals. We see that clutter and blood compo-
nents that are broadened by clutter motion [see Fig. 6(c)] are
narrowed and separated by spatial registration [see Fig. 6(d)]
without distorting the mean blood-cell speed. The blood
component of the spectrum also narrows when the blood
motion coupled to tissue motion is eliminated. Clutter fil-
tering of the spatially registered Doppler spectrum seen in
Fig. 6(d) is effective at separating the clutter and directed-
perfusion components. When the blood component is excluded
(filtered c + n), the clutter filter passes noise in the velocity
range of blood-cell motion.

D. 5-MHz Echo Simulations With Diffuse Perfusion

Analogous to the results in Fig. 6, Fig. 7 summarizes
PD-US results for 5-MHz echo simulations, where the clutter
field contains a central region of diffuse perfusion. As with
directed perfusion, the frames are spatially registered before
clutter filtering that eliminates the first eigenvalue.

The interface between the blood and noise subspaces in the
diffuse-perfusion eigenspectrum of Fig. 7(b) is less distinct
than for directed perfusion. The greater diversity of the blood
cell movements in diffuse perfusion expands the blood sub-
space, and so we adjusted the eigenindices on the clutter filter
to the range of 2–11. This choice was a compromise between
losing too much blood power and including too much noise
power.

The clutter and blood components of the Doppler frequency
spectrum [see Fig. 7(c)], which overlapped entirely before
spatial registration, are more distinct after spatial registration
[see Fig. 7(d)]. It was unclear to us how much of the registered
and filtered spectrum [solid red line in Fig. 7(d)] is from the
blood component. Thus, we removed the blood component

and reprocessed the clutter in noise signals [dashed black line
in Fig. 7(d)]. The difference between the solid red line and
dashed black line spectra estimates the blood spectrum. It is
important to note that eliminating blood scatterers changes the
eigenvectors in the PCA filter, so comparisons are not exact.
Nevertheless, we see how the noise power is enhanced in the
frequency channels of the blood spectrum, as occurred with
directed perfusion.

Our observations of Doppler spectra from in vivo peripheral
perfusion data [17], [18] made before and after spatial regis-
tration are generally symmetric about the origin, suggesting
that in vivo muscle perfusion is diffuse. Spectral symme-
try is the reason for power-Doppler methods being more
informative than color-flow methods in perfusion imaging
applications. Similar to the simulated spectra in Fig. 7(d),
spatial registration narrows the clutter components. However,
these effects are difficult to quantify in vivo because the
component contributions are unknown.

E. Echo Signal Power at 5 MHz

Figs. 6 and 7 illustrate the effects of PCA filtering following
spatial registration on Doppler frequency and eigenspectra for
diffuse and directed perfusion in moving clutter and noise.
However, the most important measure of filtering success for
PD-US imaging is the net signal power relative to the true
blood-signal power. Net signal power is the integral of the
Doppler power spectrum over the measurement bandwidth.
A strength of echo simulations is the ability to study the effects
of spatial registration and PCA filtering on each component of
the echo signal and various combinations. Fig. 8 displays the
net signal power relative to blood power at 5 MHz for nine
simulated measurement states with different combinations of
signal components.

The signal power measured depends on whether the frames
are spatially registered, the PCA filter thresholds, and the
sources contributing to the echo signal. We report results for
the two filter settings (2–6 and 2–11 for a 21-frame ensemble)
that we investigated for directed and diffuse perfusion when
comparing measurements with and without spatial registration.
These comparisons quantify the effects of spatial registration
and show the sensitivity of power estimates to the upper filter
threshold.

The first four states on the left-hand side of Fig. 8 list the
signal power from unregistered and unfiltered signals relative
to the blood-echo power in decibels. The states examined
are moving clutter (c), acquisition noise (n), and perfusing
blood (b) components of the echo signal measured individ-
ually and in combination, labeled (c + b + n). Bar colors
indicate measurements for directed and diffuse perfusion.
Because these signals are unfiltered, the results for the two
PCA clutter filter thresholds (red and gold bars) have the same
value.

The next four measurement states in Fig. 8 display signal
power after registration and filtering for clutter in noise
(fr c + n), blood in noise (fr b + n), blood only (fr b), and
for all three components (fr c + b + n). Note that the clutter
filter eigenvectors change depending on which components
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Fig. 8. Measurements of net signal power for the 5-MHz, 30-dB SNR
echo simulations of Figs. 6 and 7. As listed in Table I, the ratio of tissue to
blood reflectivities τ/β = 24 dB. Nine experimental states are examined,
where, in each case, signal power is estimated relative to the blood-
only signal power. The first four states are the unregistered, unfiltered
echo data for (left to right) in-plane moving clutter (c), acquisition noise
(n), and blood perfusion (b) as recorded separately and in combination
(c + b + n). The next four states are the filtered and registered echo-
signal power relative to blood power. The signal sources are clutter in
noise (fr c + n), blood in noise (fr b + n), blood only (fr b), and all
components in combination (fr c + b + n). The objective in these four
states is to measure blood power, which is accurately estimated when
the power value is 0 dB. The unregistered, PCA filtered power from the
combined signal is (fur c + n + b). Results for directed (blue) and diffuse
(red and gold) perfusion are shown. The PCA filter passes eigenvalues
of 2–6 (out of 21) for directed perfusion and 2–6 or 2–11 for diffuse
perfusion.

Fig. 9. Measurements of net signal power for 20-MHz, 15-dB SNR echo
simulations. The features of the bar graph are explained in Fig. 8.

are included in the echo signal, and yet, the expectation
is that the blood-signal power is measured by each filtered
signal that contains a blood component. Accurate blood-power
measurements are those near 0 dB.

PCA filtering is effective for directed perfusion (blue bars)
in any combination of echo components, provided that the
blood subspace is made distinct by spatial registration of
the frames. PCA filtering is less effective for diffuse perfu-
sion. The filter with the narrower blood subspace (red bars)
underestimates blood power by an average of 3 dB, while
the broader subspace (gold bars) underestimates blood power
by an average of 2 dB. If we increased the upper PCA-filter
threshold, we would approach the blood power more closely.
This is possible to do with simulation because we know
the ground truth. In vivo, the echo SNR varies with signal

Fig. 10. Measurements of in-plane (x- and z-axes) displacements as a
function of out-of-plane (y-axis) clutter motion for simulated echo signals.
Accurate estimates are obtained when the mean displacement is zero.
Measurements are for 5 MHz in (a) and (b) and 20 MHz in (c) and (d).
Error bars indicate ±1 sd. The correlation coefficient between each echo
frame relative to the first is shown in (b) and (d). The transducer is moved
along y as echo frames are recorded.

strength and can be depth-dependent, which suggests that the
upper filter threshold should be adjusted according to the
circumstances. Our point is to demonstrate how blood and
clutter scatterer movements couple with PCA filter thresholds
to determine the PD-US signal.

F. Echo Signal Power at 20 MHz

PD-US methods are being developed using mouse mod-
els at higher pulse frequencies [17], [31]. For that reason,
we repeated the 5-MHz results of Fig. 8 at 20 MHz and 15-dB
echo SNR. Those findings are summarized in Fig. 9. We see
that the echo SNR and τ/β ratio input into the simulator
as a result of the change in pulse frequency are reflected in
the output power measurements. We selected the same PCA
filter thresholds since they are primarily determined by the
movement patterns of source scatterers. Otherwise, the general
trends observed at 5 MHz are seen at 20 MHz.

G. Effects of Out-of-Plane Tissue Motion

Fig. 10 displays registration displacement errors measured
in the x, z scan plane as the transducer moves only in elevation
(the y-axis in Fig. 2) as echo frames are recorded. The echo
data are composed of clutter and noise components. We cannot
spatially register out-of-plane motion, but we can track its
influence on in-plane registration errors as the echo signals
decorrelate. Results for 5- and 20-MHz echo simulations are
shown in Fig. 10(a) and (c), respectively. The bb simulated
pulse properties associated with these results are listed in
Table I.

Accurate displacement estimates are zero at all values of
y since these simulations contain no in-plane motion. It is
clear that the estimation uncertainty increases as the transducer
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Fig. 11. Correlation coefficients are computed from 5-MHz simulated
and experimental data. Echo frames that are recorded as the trans-
ducer translates along the x-axis are spatially registered before ρ(x) is
computed. The dashed and solid black lines are the results from bb
echo simulations. The red lines are bb and nb results from phantom
experiments.

moves in elevation. Also, the errors generated in lateral
estimates (red) are much larger than those in axial estimates
(blue). Expecting that estimation uncertainty is driven by
echo decorrelation, we plotted the interframe echo correlation
coefficient as the transducer moves along the y-axis. The
resulting ρ(y) curves at 5 MHz are found in Fig. 10(b) and
at 20 MHz in Fig. 10(d). The curve shape is determined by the
Gaussian-pulse properties: ρ(y) is four-time broader at 5 MHz
than at 20 MHz.

Small translations [see Fig. 10(a) and (c)] along the y-axis
result in unbiased means and linear increases in the standard
deviation of in-plane displacement estimates. Small transla-
tions are defined as the range of y values where ρ(y) > 0.5.
Greater elevational translations, such that 0.1 < ρ(y) < 0.5,
result in nonlinear increases in estimation uncertainties and
biased means. At larger translations, where ρ(y) < 0.1,
in-plane estimation breaks down completely. From the curve
at 5 MHz, estimates are unbiased for elevational motion
< 0.6 mm. At 20 MHz, the limit reduces to 0.15 mm.

Fig. 10 clearly shows that submillimeter elevational motion
increases in-plane registration errors. Can this be the reason
displacement uncertainties increase with translation distance in
the results of Fig. 4? Although the variance bound expressions
predict that estimation variance is independent of the true
displacement, out-of-plane motion is not considered in (19).

The amount of out-of-plane clutter motion occurring during
lateral translations may be estimated by monitored ρ com-
puted after the echo frames are spatially registered. Fig. 11
summarizes the results from phantom experiments (red lines)
and echo simulations (black lines). In each case, the transducer
is translated with constant speed along the lateral axis x , while
echo frames are recorded at a constant frame rate.

For echo simulations, transducer motion is exactly coplanar
with the scan plane. The resulting interframe correlation
coefficient curve (dashed line labeled Simulation 1) shows
ρ(x) 
 1 for all x . High correlation means that spatial
registration was effective at reversing the lateral translation
within the limits imposed by noise.

Fig. 12. Reduction in standard error for displacement estimates, σ, as a
function of sample size, N. Results for (a) axial and (b) lateral motions
are shown. N is computed from the sample area used to spatially register
frames. Points in each graph, left to right, correspond to sample areas of
size 0.5 × 0.5, 1.0 × 1.0, 1.5 × 1.5, 2.0 × 2.0, and 2.5 × 2.5 mm. Lines
are linear regression models.

The same lateral translation of the transducer during several
phantom experiments always showed some level of decorre-
lation despite our best efforts to keep the translation in the
scan plane. Gross misalignment generates fast decorrelation
(not shown). Careful alignment generates the phantom results
shown. The nb echo frames recorded during phantom exper-
iments in Fig. 11 decorrelate more quickly than the bb echo
frames, as expected from (19).

Assuming that the echo decorrelation ρ(x) is from simulta-
neous lateral and elevational motions, we should be able to use
ρ(y) in Fig. 10(b) to determine the amount of motion along
the y-axis. For example, the bb phantom results in Fig. 11
show that ρ(x) 
 0.95 after the transducer translates laterally
x = 1 mm. Fig. 10(b) predicts that the transducer must have
also moved ∼0.15 mm along the y-axis. Thus, we simulated
the simultaneous transducer motion of y = 0.15 mm as
x = 1.0 mm and found the solid black curve in Fig. 11,
labeled Simulation 2. The small elevational movements that
increase registration errors also predictably reduce ρ. While
it is challenging to translate a linear array exactly in its scan
plane, the effects of elevational motion on spatial registration
are predictable. We find that the most likely reason for an
increase in errors with translation distance seen in Fig. 4 is
out-of-plane motion.

The increase in registration uncertainty caused by eleva-
tional motion can be reduced by expanding the area registered.
This type of spatial averaging reduces uncertainty by increas-
ing sample size N , provided that displacement estimates
remain unbiased. To demonstrate, we measured the change
in the standard deviation of the mean (i.e., standard error σ )
for displacement estimates as a function of N . The results
are shown in Fig. 12. Assuming that the speckle correlation
area A2-D defines one statistically independent spatial sample
in analysis area X0 × Z0, then N = (X0 Z0)/A2-D ≥ 1 is
the number of independent samples. For standard deviation
σ �, we have σ = σ �/

√
N . The log–log plot of σ(N) is

expected to be a linear curve with slope ln σ/ ln N = −0.5.
The slopes estimated from our measurements are closer
to −0.4.
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IV. SUMMARY AND DISCUSSION

Spatial registration aids power-Doppler clutter filtering by
maximizing ρ among the echo frames in an ensemble. Accu-
rately registered frames minimize the clutter singular-value
bandwidth so that PCA filtering can be effective at eliminating
most of the tissue-echo power while minimizing the loss of
blood-echo power. Simulation results show that blood-echo
power measurements are accurate when the perfusion is direc-
tional (see Fig. 6) because the blood singular-value bandwidth
is relatively narrow. Clutter filtering is also effective in diffuse
perfusion situations, but the blood-echo power estimates are
less accurate because the blood and noise subspaces are less
distinct (see Fig. 7), making it challenging to select the upper
filter threshold outside of the simulation.

The success of rigid spatial registration for improving clutter
filtering assumes that: 1) any movement of tissue scatterers is
spatially coherent and contained within the x, z scan plane;
2) the ratio of tissue-to-blood scattering intensity is large;
3) each echo frame may be described as a wide-sense station-
ary random process over the region used to register frames; and
4) the echo SNR is large. One reason for comparing the results
at 20 MHz with those at 5 MHz was to test whether assump-
tions 2) and 4) hold since both ratios are lower at 20 MHz.
We found from the results of Figs. 8–10 that trends observed
at 5 MHz are also seen at 20 MHz, except for those that
scale with the pulse wavelength. These assumptions generally
hold for the conditions commonly encountered in vivo for
peripheral perfusion assessments.

A common violation of the four assumptions is out-of-plane
clutter motion. Even submillimeter elevational movements
will measurably alter the PD-US signal. To minimize clutter
motion, we commonly restrain the limb and the probe during
data acquisition. Restraints are possible because peripheral
perfusion estimates in large muscles are an averaged property.

Figs. 4 and 10 show that the in-plane components of 3-D
clutter motion can be registered without bias despite some out-
of-plane movement as long as ρ > 0.5. The amount of out-of-
plane motion that might occur can be estimated by monitoring
ρ. Misregistration errors caused by echo decorrelation are
reduced by spatially registering large areas in each frame,
provided that the wide-sense stationary assumption holds.
We were able to approach the variance bound for phantom
measurements reported in Fig. 3 but only for the submillimeter
range of motion seen in vivo [see Fig. 5(a)].

The utility of PD-US measurements for patient care depends
on how the method fits into the clinical work flow. We see
qualitative PD-US methods as monitoring changes in perfusion
over time for patients with an established diagnosis. Typically,
a PAD patient workup begins with a physical exam and a mea-
surement of the ankle–brachial index (ABI) [41], [42]. If the
ABI results are positive for PAD, a CT or MR angiography
or vascular ultrasound exam is typically requested to examine
arterial patency in the lower extremities. If the conduit vessels
are not occluded, a contrast-enhanced quantitative perfusion
imaging exam may be conducted [37], [38], [39], [40] to locate
regions of low perfusion that could explain symptoms.

One role for PD-US imaging could be to regularly monitor
for relative changes in muscle perfusion over a period of

weeks and months after a diagnosis is established. The change
in perfusion over time might indicate disease progression or
treatment responses. This clinical task values measurement
consistency over the accuracy, which means that effective
clutter filtering is much more important than noise filtering.
Since the clutter bandwidth varies significantly depending on
the details of tissue motion, setting the clutter-blood threshold
on the PCA filter is critical. For simulations and phantoms,
it is sufficient to eliminate the first singular value. In PAD
patients, the threshold will need to adapt to each patient’s
conditions [10], [17]. However, since the acquisition noise is
relatively unchanged between patient exams, setting the blood-
noise filter threshold must be consistently applied, but the
value selected is less critical for qualitative monitoring.

The price paid for using PD-US in place of a contrast-based
imaging method is the need to minimize tissue and probe
motion, and longer processing time to register echo frames and
monitor ρ. The benefits of not using contrast-based imaging
are the ability to map spatiotemporal changes in perfusion as
often as deemed necessary with a modality that is safe, low
cost, and widely available.
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