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ABSTRACT

This work deals with strategies to jointly reduce the speaker and
environment mismatches in Automatic Speech Recognition. The
consequences of environmental mismatch in the performance of con-
ventional Vocal Tract Length Normalization algorithm are analyzed,
observing the sensitivity of the warping factor distributions to the
SNR fall. A new combined speaker-noise normalization strategy
which reduces the effect of noise in VTLN by applying Histogram
Equalization is proposed and experimented in AURORA2 and AU-
RORA4 databases. Solid results are obtained and discussed to ana-
lyze the effectiveness of the described technique.

Index Terms— Speaker Normalization - Noise Reduction -
Combined Strategies - VTLN -HEQ

1. INTRODUCTION

Best results in an Automatic Speech Recognition are obtained when
the testing is done under conditions that are identical to those in
which the recognition system was trained: however this is an ideal
situation and, in real applications, it will almost never happen. In
a real scenario there are two main sources of variability which pro-
duce mismatches between the training and test conditions: the first
one is the inter-speaker variability in the spectra for the same enun-
ciated sound, which significantly degrades the performance when
many different speakers use the system. The second one is the ef-
fect of the environmental noise on the speech representation. Noise
introduces a distortion in the feature space and, due to its random
nature, it also causes a loss of information. In the literature these
two sources of degradation have been well explored separately.
The approaches that address the speaker variability problem in ASR
fall into two broad groups known as speaker adaptation and speaker
normalization techniques. In the speaker adaptation category, the pa-
rameters of the acoustic models of the independent speaker system
are adapted to a new speaker using some of his data. The speaker
normalization approach takes into account the fact that the variation
in the vocal tract lengths is considered a major source of speaker
variability, and the most common approach to overcome it is called
vocal tract length normalization (VTLN) [1], [2],[3]. While speaker
adaptation methods usually estimate matrices, VTLN estimates only
one parameter and is therefore useful for situation counting on less
adaptation data. In practice VTLN implementations consisting of
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linear transformations applied directly on the MFCC feature domain
[4], [5], [6] are the most used due to their lower computational cost
and comparable performance
On the other hand, the strategies used to reduce the environmental
noise are known as Robust Recognition Techniques; these methods
are mainly focused on the minimization of the mismatch caused by
noise. Some of these approaches consist of the adaptation of the
models to the new environment; other methods try to compensate
the effect of the noise over the acoustic signal or its parameterization,
providing an estimation of the clean speech representation. Other set
of techniques investigate how to characterize the speech signal using
features with a behavior less sensitive to noise. Within this latest
category, feature normalization algorithms define linear and non lin-
ear transformations to modify the noisy features statistics and make
them equal to those of a reference set of clean data. One funda-
mental representative of the feature normalization set of techniques
is Histogram Equalization (HEQ) [7] [8], which provides a trans-
formation mapping the histogram of each component of the feature
vector onto a reference histogram. Such transformation eliminates
the non-linear effect of noise distorting the original feature space.
Some analysis has been done on how the performance of the speaker
normalization techniques degrades in the presence of noise. R. Rose
and A. Keyvani [9],[10] point at such degradation of VTLN algo-
rithm and propose the usage of class dependent warping distributions
associated to individual HMMS states; A. Miguel [11] proposes an
augmented state space acoustic decoding method for speech vari-
ability normalization and reports results on noisy databases. D.R.
Sanand [12] shows results of a linear transformation variation of
VTLN for AURORA4 database.
This work advances in the analysis of the warping factor sensitivity
to the speech signal SNR. Based on such high sensitivity observed,
the combination of speaker normalization and environment robust-
ness strategies is proposed. A novel approach that consists of merg-
ing optimally the noise normalization technique Histogram Equal-
ization and the Speaker normalization technique VTLN is suggested.
The work is organized as follows: section 2 analyzes the effect of
noise in the speaker normalization process and supports it with em-
pirical data. Section 3 describes the strategy proposed. Section 4
describes the experimental work and results obtained. Conclusions
and hints about future work are exposed in section 5.

2. EFFECT OF NOISE IN THE VOCAL TRACT LENGTH
NORMALIZATION PROCESS

All of the many existing implementations of VTLN aim to find the
optimal warping factor α to warp the frequency axis of the speech
signal so that the spectra of different speakers uttering the same
sound appear similar. The conventional method to implement such
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speaker normalization is based on the production of the warped fea-
tures for all the possible α values in a given range, followed by a
maximum likelihood based search over them to estimate the optimal
α value. The optimal warp-factor estimation α̂i for an utterance i is
given by:

α̂i = argmaxαPr(Cα
i |λ, Wi) (1)

Where Cα
i represents the warped features of the ith utterance and λ

stands for the speaker independent acoustic model. Wi corresponds
to the utterance’s true transcription for training utterances. For test
utterances, since the test true transcriptions are unknown, Wi is ob-
tained as output of the first-pass recognition process. The likelihood
is then calculated for all values of α from which the optimal α̂ will
be chosen. Independent of which VTLN implementation is used,
the performance of the speaker normalization is known to degrade
for tasks where ambient acoustic noise is a significant source of
variability. Many authors, [11], [10] have pointed at the need to
overcome the strong influence of noise in the optimal warping factor
estimation.
Figure 1 shows AURORA2 [13] accuracy results comparing the
baseline parameterization scheme to the VTLN speaker normaliza-
tion scheme in different noise conditions. AURORA2 gives very
good results for clean baseline recognition and therefore leaves
VTLN with very little margin to produce benefits. As the SNR
decreases, the graph shows the tendency of VTLN to have worse
performance than the baseline, and therefore the need to deal with
noise when applying speaker normalization techniques. Figure 2
shows the optimal warping factor values distribution when apply-
ing VTLN for AURORA2 at different noise levels. Sub-figure a)
presents the distribution for clean test utterances showing the two ex-
pected modes at both sides of the unit warping factor corresponding
to the two genders. As SNR decreases (sub-figure b)) the bi-modal
distribution is lost, to end grouping the warping factors towards the
lowest values (see sub-figures c) and d)). Such behavior in low
SNR is due to the increase of energy in the high-frequency band
when compared to clean-speech. Since there is higher energy at
high frequencies, VTLN will try to somehow compress it, that is, an
aggressive compressing warping factor like 0.8 will be chosen.
The same warping factor distribution analysis has been done for
AURORA4 database [14] and is shown in figure 3. Warping factor
distributions have been shown for clean test (sub-figure a)), car
noise as an example of stationary additive noise (sub-figure b)),
non-stationary street noise (sub-figure c)), plus these three just men-
tioned tests adding them convolutive channel noise in the subsequent
sub-figures d), e) and f). In this case, the expected clean warping
factor distribution is mainly maintained for all test cases. The reason
for this behavior is that the average AURORA4 SNRs per noisy
experiment is 15 dB that, in agreement with AURORA2 behavior,
is a SNR level for which VTLN produces healthy optimal warping
factors.

3. COMBINED STRATEGY: PERFORMING VTLN IN A
NOISE-ROBUST DOMAIN

The strategy proposed in this work consists of combining the speaker
normalization and the noise normalization techniques in order to
make the first one more robust against environmental mismatches.
Histogram Equalization [8], [15] will be applied together with a ba-
sic VTLN implementation. HEQ feature normalization provides a
non-linear transformation that can be seen as an extension of the
cepstral mean and variance normalization, able to compensate the
non-linear effects of noise not eliminated by those. Its proved effi-
ciency added to its versatility to compensate different types of noises

Fig. 1. Baseline and VTLN Accuracy results for AURORA2
Database for different noise levels.
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Fig. 2. Warp factor distribution for different SNR in AURORA2:
clean (sub-figure a), 15 dB (sub-figure b), 5 dB (sub-figure c) and 0
dB (sub-figure d).
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Fig. 3. Warp factor distribution for different tests in Aurora 4 in the
different sub-figures: a) clean speech, b) stationary additive noise,
c) additive non-stationary noise, d) convolutive noise, e) conv.noise
plus additive stationary noise, f)conv. noise plus additive non-
stationary noise

without any prior knowledge nor model, make it a very suitable ap-
proximation to be introduced in the joint scheme under exploration.

Figures 4(a) and 4(b) present a block diagram of the combined
strategy proposed to merge conventional VTLN and HEQ normal-
ization. The objective of the proposed structure is to eliminate the
influence of noise in the process of warping factor selection. An ini-
tial preliminary step of the method proposed is to generate an speaker
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(a) Train strategy for the combined algorithm (b) Test strategy for the combined algorithm.

independent recognition system using HEQ normalized features (SI
HEQ MODEL) that will be utilized during the train and test phases.
Figure 4(a) presents the block diagram of the training phase in which
the original VTLN features are equalized before using a VTLN-HEQ
generated model to perform a forced alignment. Using a Maximum
Likelihood criterion, the best warping factor are chosen from the
forced alignment results forming a VTLN-HEQ training list that is
used to re-estimate optimized VTLN-HEQ Models. This training
procedure is iterated 3 times, using the speaker independent HEQ
models (SI HEQ MODELS) as initial VTLN-HEQ Models in itera-
tion 1.
Figure 4(b) describes the proposed recognition process which can
be split into two decoding steps. A first decoding in done using SI-
HEQ models to generate transcriptions that will be used to perform
a forced alignment using the VTLN-HEQ models to select the best
warping factor per utterance. Such best-alpha codified utterances are
decoded in a second step using the VTLN-HEQ model to produce
the final recognition results.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

The proposed scheme has been tested on AURORA2 [13] and AU-
RORA4 [14] databases, following the standard clean training exper-
iments. All the procedures for recognition and training are identical
to the reference experiments with the exception of the front-end that
includes the noise and speaker normalization procedure and HMMS
re-estimations described in this research. The recognition system
used for AURORA4 is based on continuous cross-word triphone
models with 3 tied states and a mixture of 6 Gaussians per state.
Training and recognition have been performed using the HMMTool
Kit (HTK) software. The language model is the standard bi-gram for
the WSJ0 task. In the case of AURORA2 connected digits task, each
digit is modelled as a left to right continuous density HMM with 16
states and 6 Gaussians per state. A feature vector of 13 cepstral co-
efficients is used as the basic parameterization of the speech signal
using C0 instead of the logarithmic energy. This basic feature vec-
tor is augmented with first and second order regressions yielding a
final 39 components feature vector. The baseline reference system
uses sentence-by-sentence subtraction of the mean values of each
cepstral coefficient. For the proposed combined normalization tech-
nique (HEQ*VTLN), the parameters of the HEQ reference distri-
bution have been obtained by averaging over the whole clean train-
ing set of utterances. Both training and test utterances have been
then equalized to this reference distribution. Cepstral coefficients
are equalized before the computation of the regressions.

4.2. Discussion

Table 2 presents the numerical accuracy results of the studied algo-
rithms for AURORA2 database in terms of noise levels. The general
behavior is a drop in the accuracy when the SNR is reduced. HEQ
overcomes the noise very efficiently providing a baseline relative
improvement of 22.85%. In clean conditions, the very good results
of AURORA2 baseline reduce VTLN’s margin to improve. VTLN
slightly ameliorates baseline up to SNRs of 15 dB. For lower SNRs
the noise degrades VTLN performance for the reasons analyzed in
section 2. The joint method described in section 3 produces the best
accuracy results for all the noise levels giving a baseline relative im-
provement of 23.93%. This behavior shows the mutual benefits that
each individual normalization technique provides the other with.
Table 4.2 shows the experiments performed using AURORA4
database. The average SNR for each of AURORA4 tests is 15
dB. For these reason all the methods analyzed improve the baseline
parameterization. The combined strategy HEQ*VTLN obtains the
best results for all the test (23.90% baseline relative improvement),
pointing again at the mutual positive interaction between speaker
and noise normalization techniques. Clean scenario results underline
the robustness of VTLN approach. HEQ also improves baseline in
clean conditions because its philosophy of equalizing to a reference
distribution calculated with the whole clean training data set im-
plies a kind of blind speaker normalization. Applying the combined
HEQ*VTLN still improves both separate techniques as the warping
factor estimation becomes more reliable. Test 2 (stationary additive
car noise) and Test 9 (stationary additive car noise plus channel
convolutive noise) deserve a special mention as VTLN outperforms
HEQ when applied separately. This fact could mean that for certain
normalization algorithms the boundaries between speaker and noise
mismatches might not so rigid.

Baseline VTLN HEQ HEQ*VTLN
Clean 99.11 99.30 99.03 99.18

20 dB 97.29 97.80 97.61 98.12

15 dB 92.55 93.24 95.62 96.43

10 dB 75.60 75.68 90.38 91.44

5 dB 42.82 40.56 76.92 77.88

0 dB 23.69 19.47 47.26 47.52

-5 dB 12.92 10.98 17.34 17.64

Average 66.39 65.35 81.56 82.28

Rel. Improv. 0% -1.57% 22.85% 23.93%

Table 2. AURORA2 accuracy results for different noise levels.
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T-01 T-02 T-03 T-04 T-05 T-06 T-07 T-08 T-09 T-10 T-11 T-12 T-13 T-14 Avrg. R-I(%)
Baseline 87.15 74.33 55.87 54.03 47.81 56.43 47.03 75.84 64.53 45.45 42.39 35.87 47.55 38.23 55.18 0

VTLN 89.24 82.36 61.99 59.56 53.73 61.44 51.09 81.99 71.38 51.31 47.07 39.63 54.25 43.86 60.64 9.89

HEQ 88.18 77.27 62.21 61.10 63.06 62.62 59.01 78.71 67.37 53.92 50.64 49.39 55.51 50.24 62.81 13.83

H-VTLN 90.68 83.13 68.47 68.69 68.29 69.61 64.31 81.73 73.96 59.30 57.62 53.33 61.80 56.28 68.37 23.90

Table 1. AURORA4 accuracy results for clean speech (Test 01), different additive noise types (Test 02 to Test 07) and convolutive and
additive noise (Test 08 to Test 14). H-VTLN stands for the combined HEQ VTLN normalization.

5. CONCLUSIONS AND FUTURE WORK

This work identifies the convenience of merging complementary
mismatch reduction techniques like speaker and noise normaliza-
tion. An analysis of the effect of noise in the conventional VTLN
implementation has been done focusing on the noise effects over
the warping factor estimation under low noise conditions: α tend
to move to lower values because VTLN interprets noise as high
frequency acoustic information. A combined algorithm has been
proposed and experimented producing good recognition results that
confirm the mutual benefit of two families of techniques. The ex-
tension of this analysis to VTLN implementations based on linear
transformations with lower computational cost than conventional
VTLN is a very convenient next step.
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