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Abstract

In psychological experiments, participants are typically instructed to respond as fast as possible without sacrificing
accuracy. How they interpret this instruction and, consequently, which speed–accuracy trade-off they choose might vary
between experiments, between participants, and between conditions. Consequently, experimental effects can appear
unpredictably in either RTs or error rates (i.e., accuracy). Even more problematic, spurious effects might emerge that
are actually due only to differential speed–accuracy trade-offs. An often-suggested solution is the inverse efficiency
score (IES; Townsend & Ashby, 1983), which combines speed and accuracy into a single score. Alternatives are the
rate-correct score (RCS; Woltz & Was, 2006) and the linear-integrated speed–accuracy score (LISAS; Vandierendonck,
2017, 2018). We report analyses on simulated data generated with the standard diffusion model (Ratcliff, 1978) showing
that IES, RCS, and LISAS put unequal weights on speed and accuracy, depending on the accuracy level, and that these
measures are actually very sensitive to speed–accuracy trade-offs. These findings stand in contrast to a fourth alternative,
the balanced integration score (BIS; Liesefeld, Fu, & Zimmer, 2015), which was devised to integrate speed and accuracy
with equal weights. Although all of the measures maintain Breal^ effects, only BIS is relatively insensitive to speed–
accuracy trade-offs.

Keywords Speed–accuracy trade-off . Integration of errors and RTs . Integrated scoring . Task instructions . Performance
strategies . Methods in experimental psychology

The ideal outcome of a behavioral experiment in many
fields of experimental psychology is the predicted effect
in the dependent measure of interest—usually either re-
sponse times (RTs) or proportions of correct responses
(PCs)—and no effect between conditions in the respec-
tive other measure (or at least an effect in the same
direction). This outcome is ideal for two reasons: (a) it
is easy to interpret, and (b) with just one outcome
measure on which to test a hypothesis, there is no need
to correct for multiple testing.

Unfortunately, it is sometimes not predictable whether par-
ticipants will focus more on doing the task right or on doing it
fast (i.e., which point on the speed–accuracy trade-off [SAT]
continuum they will choose; for reviews, see, e.g., Heitz, 2014;
Luce, 1986; Pachella, 1974; Sanders, 1998). Indeed, SATs can
vary unpredictably within and across participants (e.g., Dutilh
et al., 2012; Gueugneau, Pozzo, Darlot, & Papaxanthis, 2017;
Liesefeld, Fu, & Zimmer, 2015), participants can adapt their
SATs trial-wise and at will (e.g., Paoletti, Weaver, Braun, & van
Zoest, 2015; Reuss, Kiesel, & Kunde, 2015; Voss,
Rothermund,&Voss, 2004;Wickelgren, 1977), and theymight
even change their SATs systematically between conditions.
Sometimes, of course, shifts in SATs are the phenomenon of
interest (e.g., as an account of post-error slowing; Laming,
1968; see also Botvinick, Braver, Barch, Carter, & Cohen,
2001; Thura, Guberman, & Cisek, 2017), but usually SAT
shifts hinder the goals of a study, probably confounding the
investigated effect.

Even when the dependent measure of interest is set a priori
for theoretical reasons, researchers still routinely check
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whether the respective other measure points in the same
direction (e.g., shorter RTs and more correct responses/
higher PC). This is because RTs and PCs pointing in
opposite directions (i.e., shorter RTs and fewer correct
responses/lower PC) would indicate that the observed
effects may (in part) be due to SATs instead of to Breal^
effects. Furthermore, the (sometimes subjective) decision
to interpret the one or the other measure would yield
conflicting conclusions regarding the direction of the
effect. Therefore, ignoring either would obviously be
wrong.

These intricate situations might be resolved by using a
combination of RTs and PCs, such that (a) possible SAT
contributions are cancelled (or at least dramatically atten-
uated), while (b) ^real^ effects remain in the data. There
are suggestions of such combined measures in the litera-
ture, and they have been employed when the data show
signs of SATs (e.g., Kunde, Pfister, & Janczyk, 2012;
Kristjánsson, 2016). The goal of this article is to test
whether these available measures conform to the two, just
mentioned, criteria, and to arrive at well-founded recom-
mendations as to whether or not to use them. For this
purpose, we simulate pure SATs and Breal^ effects with
the diffusion model (Ratcliff, 1978) and determine the
degree to which each measure attenuates SATs and main-
tains Breal^ effects. Additionally, we will formally intro-
duce and test a new alternative that was conceived by
Liesefeld et al. (2015).

Measures to combine speed (RT) and accuracy
(PC)

In the following section we describe four measures in the
literature that combine RT and accuracy into a single perfor-
mance measure. To make perfectly clear how the different
measures are calculated, an example data set and the respec-
tive calculations are given in Table 1.

Inverse efficiency score (IES)

The most often suggested combined measure is the inverse
efficiency score (IES; Townsend & Ashby, 1983), which is
typically defined as mean correct RTs divided by PCs (Akhtar
& Enns, 1989; Bruyer & Brysbaert, 2011):

IESi; j ¼
RT i; j

PCi; j

ð1Þ

wh e r e RT i;j i s p a r t i c i p a n t i ’s m e a n RT o n
correct-response trials in condition j and PC i ,j is

participant i’s proportion of correct responses in condi-
tion j. Although most (if not all) studies using or eval-
uating IES have included only correct RTs, all RTs (in-
cluding those from error trials) seem to be taken into
account according to the original proposal (Townsend &
Ashby, 1983, p. 204). We will, however, evaluate the
version without incorrect RTs, because this is the one
typically reported in empirical studies. This measure can
be interpreted as Bthe average energy consumed by the
system over trials^ (Townsend & Ashby, 1983, p. 204).

Rate-correct score (RCS)

An alternative suggestion is the rate-correct score (RCS;
Woltz & Was, 2006):

RCSi; j ¼
NCi; j

∑
ni; j
k¼1RT i; j;k

ð2Þ

where NCi, j is participant i’s number of correct responses
in condition j and the denominator reflects the total time
participant i spent on trials in condition j (in other words,
the sum of RTs across all ni, j trials of participant i in
condition j). RCS Bcan be interpreted directly as number
of correct responses per unit time^ (Woltz & Was, 2006,
p. 673). As is evident from a comparison of Eqs. 1 and 2
and as detailed in Appendix A, RCS is similar or even
identical to the inverse of IES (see also Vandierendonck,
2018), and therefore no strong differences between the
two are to be expected. Both measures also bear some
similarity to reward rate (e.g., Balci et al., 2011; Gold
& Shadlen, 2002), which instead of mere RTs takes into
account all of the time between two responses (i.e., also
the time between a response and the next trial).

Linear integrated speed–accuracy score (LISAS)

Vandierendonck (2017) suggested the linear integrated speed–
accuracy score (LISAS), which is defined as

LISASi; j ¼ RT i; j þ
SRT i; j

SPEi; j

∙PEi; j ð3Þ

wh e r e RT i; j i s p a r t i c i p a n t i ’s m e a n RT o n
correct-response trials in condition j and PEi,j is partic-
ipant i’s proportion of errors (1 − PC) in condition j.
Note that both the mean RT and SRT include only cor-
rect trials and that SRT i; j

and SPEi; j
are the across-trial

sample standard deviations of participant i in condition j

(i.e., with n in the denominator, and not the unbiased

Behav Res (2019) 51:40–60 41



population estimate with n – 1 in the denominator).1

Whereas IES and RCS were constructed to have a straight-
forward interpretation (viz. the energy consumed on average
and the number of correct responses per second of activity),
the goal of LISAS is to obtain a linear integration.

Balanced integration score (BIS)

Liesefeld et al. (2015) devised a measure that focuses on giv-
ing equal weights to RTs and PCs, which we term balanced

integration score (BIS).2 It is calculated by first standardizing
RTs and PCs to bring them to the same scale and then
subtracting one standardized score from the other:3

BISi; j ¼ zPCi; j
−zRT i; j

ð4Þ

with zxi; j ¼
xi; j−x

Sx
.

Thus, BIS is the difference in standardized mean correct
RTs and PCs. The mean and sample standard deviation must
be calculated over all cells that contribute relevant variance. If
values were, for example, standardized per condition, all con-
ditions would have the samemean value of 0, thus eliminating
any effects. Thus, RT , PC, SRT, and SPC are typically calculat-
ed across all observed mean RTs and all PCs from the ana-
lyzed experiment (including all subjects and all conditions).

Assessing the combined measures

Quality criteria for combined measures

As we stated above, we believe that a combined measure
should ideally (a) cancel out SATs and (b) maintain Breal^
effects. Other criteria, however, have been put forward and
are discussed in the following section.

Bruyer and Brysbaert (2011) examined how well IES
worked in several empirical data sets in comparison to
RTs or PCs alone. Their criterion was whether IES
Bclarifies matters^ (p. 9). In particular, they checked
(a) whether effects in RTs or PCs were preserved in
IES, (b) whether new effects emerged in IES, and (c)
whether IES would yield a more orderly data pattern
than its constituents. After comparing the result patterns
in RTs, PCs, and IES in data from several studies, they
plaintively concluded: BIt looks pretty much like every

1 personal communication, André Vandierendonck, August 25, 2017
2 To avoid any misunderstandings, we consider balanced integration to mean
that both constituents (RTs and PCs) contribute equally to the combined mea-
sure. We thank André Vandierendonck for pointing out that his (2017) use of
the term Bbalance^ deviates from ours. We will come back to this point later, in
the section on Balanced Integration of Measures; see also Appendix B for
more information.
3 Liesefeld et al. (2015) actually subtracted zPC from zRT and applied a linear
transformation to bring it to the scale of RTs, so that the results could be
interpreted as RTs in a hypothetical, error-free task, similar to IES. Switching
the subtraction order has the same effect as multiplying BIS by – 1. Thus, the
present definition of BIS is a linear transformation of the Liesefeld et al. (2015)
measure and therefore does not differ in its statistical properties. We decided to
adapt the definition here in order to obtain an interpretation in terms of perfor-
mance above or below average, which makes it easier to discuss some of this
measure’s properties.
It should also be noted that Paas and Van Merriënboer (1993) developed a

strikingly similar measure for the combination of mental workload—measured

by rating scales, psychophysiological markers, or dual-task techniques—on

the one hand, and task performance—measured by speed, accuracy, or test

scores—on the other. Their work was pointed out to us in response to a

conference presentation of the present study.

Table 1 Example calculations for the inverse efficiency score (IES; Eq. 1), rate-correct score (RCS; Eq. 2), linear integrated speed–accuracy score
(LISAS; Eq. 3), and balanced integration score (BIS; Eq. 4)

Subject RT c ∑RT PC SRT zPC zRT IES RCS LISAS BIS

Group A: v = 0.3, a = 50
1 356.8 35,684 .71 28.83 – 1.01 – 0.96 502.5 1.99 375.22 – 0.05
2 325.1 32,511 .73 45.60 – 0.86 – 1.19 445.3 2.25 352.83 0.33
3 370.6 37,064 .67 44.46 – 1.30 – 0.86 553.1 1.81 401.80 – 0.45
4 362.8 36,280 .73 30.58 – 0.86 – 0.92 497.0 2.01 381.40 0.06
5 348.5 34,853 .72 36.95 – 0.93 – 1.02 484.0 2.07 371.54 0.09
A 352.8 35,278 .71 37.28 – 0.99 – 0.99 496.4 2.02 376.56 0.00

Group B: v = 0.3, a = 200
6 640.3 55,998 .97 269.04 0.93 1.10 660.1 1.51 687.61 – 0.18
7 634.2 60,782 .99 226.07 1.08 1.06 640.6 1.56 656.92 0.02
8 650.7 61,318 .99 274.28 1.08 1.18 657.3 1.52 678.27 – 0.10
9 584.5 60,329 .97 222.33 0.93 0.70 602.6 1.66 623.60 0.23
10 610.0 65,284 .97 189.85 0.93 0.89 628.9 1.59 643.39 0.04
B 623.9 60,742 .98 236.31 0.99 0.99 637.9 1.57 657.96 0.00

The data are from the first five simulated subjects with the respective parameters. Means are calculated per column. z standardization (as an intermediate
step for calculating BIS) is done across groups; that is, ten values contribute to the mean and the standard deviation in this example). Therefore, A and B
(as well as all ten individual values) of zPC and zRT add up to exactly 0. RT = reaction time, c = correct, PC = proportion correct, Sx = sample standard
deviation of x; zx = standardized x—that is, zx = 0; Szx = 1. Note also the following: number of trials n = 100; proportion error (PE) = 1 – PC;
SPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PE∙ 1−PEð Þ
p

; NC = PC ∙ n, if no time-outs occur (as in this sample data set; see note 7).
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type of change is possible with the introduction of IES^
(p. 9). This indicates that employing convenience sam-
ples of empirical data sets is not well suited to exam-
ining the suitability of a given combined measure. A
promising and flexible alternative is creating artificially
generated data, in which the relative contributions of
SATs and Breal^ effects can be known.

Vandierendonck (2017) created such artificial data in order to
examine properties of IES, RCS, and LISAS. He simulated pure
effects on RTs or PEs and effects in both variables in the same or
opposing directions and found that all three combined measures
performed quite well in recovering these effects, with RCS and
LISASworking better than IES.4Although the effects in oppos-
ing directions can be conceived as SATs,5 his evaluation was
focused on whether effects are maintained or amplified in a
given combination of speed and accuracy. In contrast to this
standpoint, we believe that the most important property of a
combined measure should be its insensitivity to SATs, yielding
ideally no or considerably reduced effects when the effects on
RTs and PEs point in opposing directions. Only then would
using the combined measure avoid interpreting spurious effects.
Indeed, when patterns of RTs and PEs were opposing, the com-
bined measures examined by Vandierendonck somewhat re-
duced the effects, but these SAT effects were still alarmingly
large (see his Table 11 and Fig. 3d).

Interestingly, whereas Bruyer and Brysbaert (2011) advised
against the use of IES, Vandierendonck’s (2017) conclusion
was more favorable for this particular measure (see also
Vandierendonck, 2018). Both Vandierendonck (2017) and
Bruyer and Brysbaert concluded that one should always ex-
amine RTs and PCs/PEs separately in addition to any com-
bined measure. However, if such an examination is
always indeed needed, it appears questionable to us whether
anything is gained by examining the combined measure at all,
or whether the additional analysis simply enlarges the Results
section (and the alpha error).

Simulating SAT and Breal^ effects with a diffusion
model

Aswas exemplified above, attempts to assess the behavior of the
combined measures with empirical data have the disadvantage

that the degree of SATs and the impacts of other variables on RTs
and PCs (such as Breal^ effects) are unknown. To gain pure SATs
and pure effects, we based our assessment of combined speed–
accuracy measures on data artificially generated by the
well-established diffusion model (Ratcliff, 1978; Ratcliff,
Smith, Brown, & McKoon, 2016; Ulrich, Schröter, Leuthold,
& Birngruber, 2015; Vandekerckhove & Tuerlinckx, 2007;
Voss & Voss, 2007; Wagenmakers, van der Maas, & Grasman,
2007). In particular, we modeled SATs and Breal^ effects on RTs
and PCs by variation of threshold separation and drift rate, re-
spectively (see below for details on the model and the parame-
ters). Furthermore, as we will demonstrate below (see the
Balanced Integration ofMeasures section), the relativeweighting
of RTs and PCs depends on the accuracy level, and the different
combined measures’ effectiveness in canceling SATs and main-
taining Breal^ effects varies differentially across accuracy ranges.
Therefore, we densely sampled accuracies ranging from pure
guessing (50%) to virtually perfect performance (100%) instead
of picking only a few points from this spectrum.

Diffusion models (Ratcliff, 1978) are a class of
random-walk models that have been successfully applied to
modeling decision behavior and predicting RT distributions
and PCs in a variety of paradigms and fields of research (for
recent reviews, see Forstmann, Ratcliff, & Wagenmakers,
2016; Ratcliff et al., 2016; Voss, Voss, & Lerche, 2015;
Wagenmakers, 2009). The basic idea of these models (see
Fig. 1 for an illustration) is that a diffusion process starts at a
specified point and noisily accumulates evidence with a cer-
tain drift rate v (reflecting the strength of evidence) until one of
two thresholds is exceeded. In one interpretation of the diffu-
sion model, the upper threshold a is associated with a correct
response and the lower threshold 0 represents an erroneous

4 Vandierendonck (2017) also tested several versions of a binning score
(Draheim, Hicks, & Engle, 2016; Hughes, Linck, Bowles, Koeth, &
Bunting, 2014), which, as Vandierendonck (2017) makes very clear, has sev-
eral highly undesirable characteristics that make such measures uninteresting
as integrations of RTs and PCs. Furthermore, even considerably adapted ver-
sions of the binning score failed Vandierendonck’s (2017) tests. We will there-
fore not consider these binning scores here.
5 Recall that any shift along the SAT continuum would result in opposing
effects on RTs and PEs. Please also note that Vandierendonck’s conception
of SATs differs from this continuum view, and that he aimed to simulate SATs
independently from the (opposing) effects on RTs and PEs. However, only the
opposing effects can be interpreted as SATs, as we examine them here.

Fig. 1 Illustration of a simple diffusion model. In this example, the upper
threshold a is associated with correct responses and the lower threshold,
at 0, is associated with erroneous responses. Without any bias, evidence
accumulation starts at a/2. On each time step, a fixed drift rate and random
noise are added to the evidence. The green line represents a trial with a
(relatively) high drift rate (hitting the threshold a rather early), whereas
the blue line represents a trial with a (relatively) small drift rate (hitting the
threshold a rather late). Due to random noise, it is also possible that the
accumulated evidence will hit the lower threshold at 0, thus representing
an erroneous response.
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response. Although the exact starting point can theoretically
vary between 0 and a, most often it is set to a/2, thus without
any bias toward one or the other threshold. Once the accumu-
lated evidence exceeds one of the thresholds, the correct or
wrong decision is made (and a response is given, in many
experimental settings). Although the drift rate v drives the
diffusion process in the direction of a, noise can cause the
diffusion process to reach 0, and thus an error results.
Typically, the time from accumulation onset until a threshold
is reached is considered the decision time, and additional pro-
cesses such as perception, non-decision-related cognitive
processes, and motor execution are captured by a
nondecisional constant t0. For a more complete description
of parameters, see, for example, Voss et al. (2015) or Ratcliff
et al. (2016).

Of particular importance for the present purposes, larger
values of a will lead to longer RTs (since it takes longer to
reach a threshold) but at the same time increase the likelihood
of correct responses. In other words, varying a across simu-
lated conditions can be used to induce a Bpure^ shift along the
SAT continuum without any confound with Breal^ effects that
would reflect between-condition differences in task difficulty
(and that can be simulated by varying v or t0).

In our simulations, a Wiener diffusion process was used
(e.g., Ratcliff, 1978; Ulrich et al., 2015) in which noise is
modeled as Brownian motion to which a (linear) drift func-
tion is added. We fixed the starting point at a/2. For the
present purposes, we varied threshold separation a in order
to induce an SAT, with a ∈ {5, 10, 15,…, 290, 295, 300}.
We repeated the simulation with six different drift rates,
v ∈ {0.20, 0.22,…, 0.30}, as an operationalization of
Breal^ effects.6 For each simulated cell, an individual value
for the drift rate was sampled from a normal distribution
with mean v and a standard deviation of 0.01, to induce
error variance. Further error variance was induced by sam-
pling the nondecision time t0 for each simulated cell from a
normal distribution with mean 300 and a standard devia-
t ion of 20. Within each of these 60 ( threshold

separation a) × 6 (drift rate v) = 360 combinations, 100 tri-
als were simulated as a Wiener diffusion process (i.e.,
Brownian motion with a positive drift):

X tð Þ ¼ B tð Þσþ vt;

where B(t) represents the Brownian motion at time t. In our
simulation, we used σ = 4. The simulated data were orga-
nized in such a way that the data could be conceived as 100
independent between-subjects experiments with n = 20
participants in each cell and random variation in each par-
ticipant’s drift rate and nondecision time. For each simu-
lated participant and each of the combinations of a and v,
those variables were computed that were necessary in order
to calculate IES, RCS, LISAS, and BIS in a subsequent
step.7 The full data set can be retrieved from https://osf.
io/pyshv/

In a nutshell, we orthogonally manipulated threshold
separation and drift rate and added some error variance.
The variation in threshold separation emulates a variation
in SATs, and the variation in drift rate emulates a variation
in Breal^ effects. Given the goal to examine how well the
various combined measures cancel SATs, the main focus in
the following analyses was on the threshold separation.
The drift rate was varied orthogonally for two purposes:
(a) to check whether the threshold-dependent behavior of
all measures generalizes across various drift rates and (b)
to subsequently test how well the combined measures
maintain Breal^ effects. Error variance was added so as to
increase the comparability to real data and to avoid that
even negligible effects become significant.

Effects on speed and accuracy

Figure 2 visualizes RTs and PCs of the simulated data as a
function of threshold separation a and drift rate v. As
desired, RTs were in a range typically observed in cogni-
tive experiments, and importantly, responses speeded up
with increasing v and slowed down with increasing a (Fig.
2, left panel). At the same time, responses were more
accurate with higher values for drift rate v and with larger
threshold separations a (Fig. 2, right panel). Also, PCs
ranged from close to pure guessing (50%) to virtually
perfect performance (100%). Thus, the data cover the
whole spectrum of typically observed effects, and our
variation of threshold separation a implements an SAT:

6 Variation in threshold separation is the standard approach to simulating SATs
with the diffusion model (e.g., Dutihl et al., 2012; Lerche&Voss, in press): An
increase in threshold separation yields slower and more accurate responses
(reflecting a more conservative response criterion). Drift rate was chosen to
simulate Breal^ effects because, like threshold separation, it affects both RTs
and PCs. In contrast to threshold separation, however, an increase in drift rate
yields faster and more accurate responses (reflecting improved performance).
These features make drift rate particularly interesting, and many studies have
reported effects on drift rate (e.g., Germar, Schlemmer, Krug, Voss, &
Mojzisch, 2014; Janczyk & Lerche, in press; Janczyk, Mittelstädt, &
Wienrich, 2018; Ratcliff, Thapar, & McKoon, 2011; Schubert, Hagemann,
Voss, Schankin, & Bergmann, 2015; Voss, Rothermund, & Brandtstädter,
2008; Voss et al., 2004). Although improved performance is sometimes cap-
tured by nondecision time instead of drift rate (e.g., Schmitz & Voss, 2012),
nondecision time was less suited to simulating Breal^ effects here. This is
because nondecision time influences only RTs, and therefore anymanipulation
of nondecision time is, by definition, best captured by pure RTs and not by any
combined measure.

7 Because typical experiments have response deadlines, a decision process
taking longer than 3,200 ms was considered a timeout (adding the nondeci-
sion time of 300 ms, on average, this would correspond to a response
deadline around 3,500 ms). PC was calculated on the basis of trials without
timeouts. Such timeouts occurred only rarely, and a minimum of 97 (out of
100) trials were included in all respective cells (the average number was
99.99 trials).
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the higher the threshold separation, the slower but more
accurate the responses. The data set is complemented by a
Breal^ effect as induced by the drift-rate manipulation.
Hence, this simulated data set is well-suited for examining
the properties of the combined measures.

Balanced integration of measures

In the absence of any good reason to amplify the influ-
ence on the combined measure of either RTs or PCs, it
appears reasonable to give equal weight to both constitu-
ents. An operational definition of such balanced integra-
tion is that the combined measure shares as much variance
with RTs as with PCs. This is achieved in BIS by design
(see Appendix B). To assess the relative contributions of
RTs and PCs to the other combined measures, we calcu-
lated for each combined measure M (M ∈ {IES, RCS,
LISAS}) the index IM, as

IM ¼
r2RT ;M

r2PC;M

ð5Þ

where r2RT ;M is the squared Pearson correlation ofMwith RTs

and r2PC;M is the squared Pearson correlation of M with PCs. If

RTs and PCs contribute to the same degree to the measureM, the
index should take a value of IM ≈ 1. In contrast, IM < 1 means a
dominance of PC, and IM > 1means a dominance of RT, with the
extreme cases of IM = 0 (exclusively influenced by PC) and IM
=∞ (exclusively influenced by RT). For each measure, IM was
calculated for each combination of drift rate v and threshold
separation a. In particular, correlations were calculated separately
for each of the 100 experiments, Fisher z-transformed, averaged
across experiments, transformed back, and entered into Eq. 5.

As is evident in Fig. 3, IES, RCS, and LISAS exhibit a pattern
considerably deviating from a balanced integration of RTs and
PCs: For RCS and IES, the balance changes depending on a:
With smaller threshold separations, the influence of RTs is

Fig. 3 Relative contributions of RTs and PCs to three of the combined
measures, as a function of threshold separation a and drift rate v. The point
of balanced integration is indicated by the dotted line at IM = 1. Values
below 1 indicate a predominance of accuracy, and values above 1 indicate
a predominance of RTs. BIS is not plotted, because it integrates in a

balanced manner by design, so that for all cells IBIS = 1 (see Appendix
B). Note that the y-axis scaling for LISAS differs from the other two
measures because LISAS overemphasizes RTs to a much larger degree,
and the overemphasis on PCs for low thresholds in IES and RCS would
be disguised with an adapted scaling.
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The behavior of the three combinedmeasures might be prob-
lematic: Not only do these measures not weight RTs and PC in a
balanced manner, but the relative influences strongly depend on
the accuracy level. Thus, even if it is possible to find aweighting
factor so that RTs and PCs are balanced in one experimental
condition, this weighting will yield unbalanced integration in
other cells of the design. Thus, none of the three measures
integrates RTs and PCs in a balanced way. BIS differs in this
regard, and in fact IBIS = 1 across all levels of threshold separa-
tion a and drift rate v (see Appendix B for a formal proof).

However, whether a balanced and constant (across SATs)
weighting is desirable is an open question. One advantage of
the unbalanced and accuracy-dependent integration in IES
and RCS could be that RTs contain much more relevant infor-
mation when accuracies are close to ceiling, and accuracies
contain more relevant information when RTs are very fast.
Thus, in the following sections, we directly test more unam-
biguously desirable characteristics of any combined measure:
Do they cancel SATs while maintaining Breal^ effects?

Testing the efficiency of the combined measures
to compensate for SATs

In the worst case, an experimental manipulation would only in-
duce a pure SAT. Analyzing either RTs or PCs would then yield
spurious effects and wrong conclusions; analyzing both would
yield contradictory results. In Fig. 2, for example, although thresh-
old separation does not influence task difficulty, this parameter
exerts strong effects on RTs and PCs. The combined measures
should—ideally—compensate for these SATs and provide the
same values irrespective of the threshold separation. Figure 4
visualizes the combined measures as a function of threshold sep-
aration a and drift rate v. From simple visual inspection, it be-
comes clear that none of the four measures fulfills this criterion
perfectly, although the effect of threshold separation (i.e., of SATs)
is clearly smaller for BIS than for all competing measures.8

Due to the different y-axis scalings, the sizes of the
SAT effect (and of the drift-rate effect) are not directly
comparable between the four panels of Fig. 4.
Additionally, the figures do not contain information on
the statistical error variance, and one can therefore not
gauge which differences are statistically significant. To
address this question directly, we ran inferential statis-
tics on different subsets of the data to report effect sizes
and how often an SAT effect was statistically significant
for a given measure. We will start with t tests and
continue with analyses of variance (ANOVAs).

Comparisons of two conditions using t tests We first con-
centrate on situations with two conditions in which the
dependent measures are assessed by t tests. Therefore,
we ran two-sample t tests comparing all combinations of
threshold separation a for each of the 100 experiments
while keeping drift rate v constant, thus looking at pure
SATs. The results are illustrated in the form of heat
maps, in which each point represents one comparison
of two levels of a (as designated on the x- and y-axes).
In Fig. 5, color codes the resulting values for effect size
d (Cohen, 1988), and in Fig. 6, it codes the proportions
of significant t tests. In both figures, the upper/left half
of each heat map represents the data with drift rate v =
0.2, and the lower/right half the data with drift rate v =
0.3.

As we intended through the simulation of SATs, for
RTs and PCs, the d values clearly become larger, the larg-
er the difference between the two levels of threshold sep-
aration a (with generally larger effects on RTs). The re-
sults obtained for LISAS are very similar to those for RTs,
with only slightly smaller values for d. This is not surpris-
ing, given that LISAS mainly represents RTs (see Fig. 3).
The d values for IES, RCS, and BIS, in contrast, are much
smaller. However, IES and RCS both also exhibit an in-
crease in d values when small to medium values for
threshold separation a are compared with large values
(the orange regions far off the diagonal). That these re-
gions are not centered at the edges (as for RTs, PC, and
LISAS) results from the nonmonotonic behavior of both
measures in the smaller range of threshold separation a (in
particular, values with 0 < a ≤ 50 do not follow the general
trend of rising [IES] or falling [RCS] with increasing
levels of a; see Fig. 4).

Additional, subtle patterns become more clearly visible
when we consider the proportions of significant t tests, in
Fig. 6 (recall that we simulated 100 experiments for each
cell). First, for RTs, PCs, and LISAS, nearly all t tests are
significant, with exceptions only close to the diagonal—
that is, for small differences in SAT. Another effect of the
above-mentioned nonmonotonic behavior of IES and RCS
(Fig. 4) becomes apparent in Fig. 6, for comparisons of

8 As we mentioned above, there is no BIS for a single cell, and we therefore
had to use the following procedure to arrive at the values in Fig. 4 (lower right
panel): All size 2 k permutations with replacement of the six drift rates (= 36
possible combinations) were crossed with all size 2 combinations of threshold
separation without replacement (= 1,770 possible combinations). The z stan-
dardization required to calculate BIS was then done for the resulting 63,720
possibilities of two samples for each of the 100 experiments separately. Finally,
the resulting BIS values were averaged for all combinations of a and v. In other
words, we calculated BIS for all possible pair-wise combinations of all Drift
Rate × Threshold Separation cells and estimated a unique BIS for each cell by
averaging across all BIS values for the respective cell.
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negligible, whereas at larger separations RTs, take over so as to

affect the measures predominantly. Furthermore, the influence of

RTs increases with increasing drift rates v for medium to large

threshold separations a. For LISAS, the pattern is different: RTs

dominate at low levels of a, and the respective influences become

more balanced at higher levels (yet never reaching the point of

balanced integration at ILISAS = 1).



the smallest threshold separations to small-to-medium
threshold separations: Deviating from the high incidence
of significant tests in other regions, only about 20%–30%
of the t tests are significant, yielding the yellowish stripes
in the lower left corners of the graphs. This is again due to
the nonmonotonic behavior of IES and RCS as a function
of threshold separation, as described above and visible in
Fig. 4. For BIS, large areas with no or very few signifi-
cant t tests are apparent. Surprisingly, some tests are sig-
nificant around the diagonal—that is, for small differences
in SAT. Additionally, more tests are significant for the
higher drift rate of v = 0.3, in particular when combined
with high threshold separations. However, the proportion
of significant tests is lower than for any competing mea-
sure for virtually all comparisons.

Comparisons of three conditions using ANOVAs The exam-
ined measures are by no means restricted to comparisons of
two conditions (in contrast to other alternatives, such as the
binning score; Draheim et al., 2016; Hughes et al., 2014). To
get an impression of their behavior in more complex situa-
tions, we also considered the case of three conditions, as
would be assessed with ANOVAs. Unfortunately, this more
complex design does not allow an exhaustive examination of
all possible comparisons, as was possible with pairwise com-
parisons. Instead, we drew three random levels (without re-
placement) 100 times for each experiment and drift rate v.
Then we calculated a one-way between-subjects ANOVA on
each data set. Analogous to the analyses with t tests above,
Fig. 7 visualizes the mean effect sizes η2 and the mean propor-
tions of significant ANOVAs. As we expected, the ANOVA

Fig. 4 IES, RCS, LISAS, and BIS as a function of threshold separation a
(SATs) and drift rate v (Breal^ effects). All of the measures retain Breal^
effects (i.e., the differences between lines should be large) at reasonable
levels of a (i.e., when there is sufficient time to accumulate evidence, so

that PCs clearly deviate from guessing performance). However, effective-
ness in cancelling SATs (the lines ideally should be flat) strongly differs
between the various combined measures.

Behav Res (2019) 51:40–60 47



almost always revealed high effect sizes and significant effects
for RTs and PCs. However, this was also true for IES, RCS, and
LISAS. For BIS, the effect sizes and proportions significant were
considerably smaller. Surprisingly and in contrast to the other
measures, the effect of SATs on BIS depends on the size of the
Breal^ effect, with an increase from around 50% to 60% signif-
icant with increasing drift rate v.

Testing the efficiency of the combined measures
to maintain Breal^ effects

One trivial explanation for the efficiency of BIS in canceling
SATeffects would be that it cancels any effect. If this were the
case, BIS would be useless as a combined measure. Although
Fig. 4 already shows that this is unlikely, we also analyzed
Breal^ effects, as simulated by variations in drift rate, to ad-
dress this concern more formally (Figs. 8 and 9 for combina-
tions of drift rates as assessed with t tests; Fig. 10 for averages
across all combinations of three drift rates, as assessed with

ANOVAs; all calculations were performed for four exemplary
threshold separations with a ∈ {5, 100, 200, 300}). As can be
seen, all combined measures nicely maintain Breal^ effects,
and sometimes even enhance them. For very small threshold
separations—where performance is close to chance (pure
guessing)—variations in drift rate have no effect on any of
the examined measures (see also Fig. 4). This confirms the
usual recommendation not to consider data (in particular RTs)
when performance is close to chance.

Discussion

In the present study, we examined the usefulness of several
approaches for combining response times (RTs; speed) and pro-
portions correct (PC; accuracy) to control for speed–accuracy
trade-offs. Instead of using empirical data in which the levels of
SAT are unknown, we simulated pure SATs and Breal^ effects
without any confound, by varying threshold separation and drift

Fig. 5 Effect sizes d for pairwise comparisons of threshold separations a,
reflecting SATs, at two different values of drift rate v (v = 0.2 and v = 0.3,
above and below the diagonal, respectively). Each point in a panel
denotes a comparison between two combinations of threshold
separation (e.g., a = 250 vs. a = 200). The black diagonals indicate the
absence of comparisons between a cell and itself (e.g., a = 250 vs. a =
250). Note that all measures except BIS are heavily influenced by the

simulated SATs, with RTs alone and LISAS performing worst, followed
by PCs. IES and RCS show lower (but still substantive, up to d = 2)
effects of SATs. For most measures, the effect depends approximately
linearly on the difference in threshold separation. IES and RCS diverge
from this orderly pattern due to their highly nonlinear dependence on
threshold separation, displayed in Fig. 4. The effects on BIS do not
exceed d = 0.12.
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rate in the diffusion model (Ratcliff, 1978). Arguably, a useful
combined measure should cancel any effects of differential
SATs, so that it is insensitive to the specific trade-off along the
SAT continuum, without markedly attenuating Breal^ effects.
Whereas all combined measures fulfilled the latter criterion,
BIS came far closer to the first criterion than the other alterna-
tives, and it might be worth a recommendation whenever a
combination of RTs and PCs is desired.

Recommendations on the use of combined measures

Advantages of combining RTs and PCs There are several
potential reasons why a researcher may want to com-
bine RTs and PCs. First, when using BIS, SATs are
canceled to a large degree, thus considerably decreasing
the likelihood of interpreting spurious effects that are
mainly driven by SATs.

Second, combining RTs and PCs can yield a gain in
statistical power in two (not necessarily mutually exclu-
sive) situations: (a) If some participants focus more on
speed and others focus more on accuracy, the effects of

experimental manipulations will be distributed across
RTs and PCs, and a combination of the two can poten-
tially reconstitute the full effect (see also Hughes et al.,
2014, p. 705). (b) For situations in which there is no
clear theoretical reason to focus on either RTs or PCs,
testing both would yield an inflation of alpha error and,
thus, require an adaptation of the alpha level (i.e., with
the typical level of α = .05, only tests with p < .025
could safely be considered significant). Deciding a
priori to analyze BIS instead would allow for maintain-
ing the original alpha level.

When to combine RTs and PCs Before using any combination
of RTs and PCs (or any other measure), the researcher must, of
course, critically ask whether this combination makes theoret-
ical sense in the given situation. Only when the cognitive
process of interest affects both RTs and PCs (see
Vandierendonck, 2017, p. 654), and if a trade-off is possible
—that is, when the process is more error-prone when it is
speeded (like a decision)—RTs and PCs can reasonably be
interpreted as the result of a common underlying process. In

Fig. 6 Proportions of significant pairwise comparisons (two-sample t

tests) of threshold separations a, reflecting SATs, at two different values
of drift rate v (v = 0.2 and v = 0.3, above and below the diagonal,
respectively). Each point in a panel denotes a comparison between two

combinations of threshold separation (e.g., a = 250 vs. a = 200). The
black diagonals indicate the absence of comparisons between a cell and
itself (e.g., a = 250 vs. a = 250).
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situations in which RTs and PCs are mainly influenced by
different cognitive mechanisms, combined measures should
be avoided. As an example, in the change-detection task (a
typical task to assess visual working memory), participants
see two subsequent arrays of objects and have to decide
whether these are identical or whether one object has changed
in between. In this task, the researcher might be interested in
the capacity of working memory, which mainly affects PCs
(when capacity is exceeded; Alvarez &Cavanagh, 2004; Luck
& Vogel, 1997, 2013), or in the efficiency of the comparison
between working memory entries and a test display, which
mainly affects RTs (Gilchrist & Cowan, 2014; Hyun,
Woodman, Vogel, Hollingworth, & Luck, 2009; Liesefeld,
Liesefeld, Müller, & Rangelov, 2017). Combining RTs and
PCs would confound capacity limitations and comparison ef-
ficiency, and therefore would complicate rather than clarify
the interpretation of potential effects.

Risk of p hacking It might be tempting to check one or several
combined measures whenever RTs and PCs yield a nonsignifi-
cant, but Btrending,^ result in the same direction. Interpreting any
resulting effect as confirmatory evidence would, of course, be
misleading, due to the associated inflation in alpha error. It is,
however, perfectly fine to decide in advance that BIS will be
analyzed when the theory makes no clear predictions as to
whether an effect influences RTs or PCs, or when the effect is
expected to be distributed across both measures (e.g., due to
inter- and intra-individual variation in SATs).

Sample dependence of BIS

The standardization across subjects and conditions involved in
the calculation of BIS implies a major deviation from all pre-
vious combined measures: There is no BIS for a single cell;
instead, individual values reflect whether performance was
below (BIS < 0) or above (BIS > 0) the average performance
(across all subjects and cells) for the respective subject in the
respective cell of the design. In other words, a particular value
of BIS is not only influenced by the performance of the re-
spective subject in the respective cell, but also by the perfor-
mance of the subject in other cells and the performance of the
other subjects in the sample. In fact, the way the standardiza-
tion is performed is the main difference to LISAS, which
standardizes per subject/condition and thus provides
sample-independent performance values (Vandierendonck,
2017, 2018).

The reader might wonder whether this sample dependence
of BIS is problematic for its use. The answer to this question
depends on the goal of calculating the measure. If the goal is to
determine the absolute performance (i.e., without comparison
to a specific group) of a particular subject in a particular task
(this might sometimes apply during job recruiting or grading
of academic achievements), BIS is not suited. It is, however,
well suited for determining relative performance—that is,
whether one (group of) subject(s) is better than another (group
of) subject(s), or one condition is more difficult than another
condition. This is exactly the type of question typically asked
in (experimental) psychological research, for which the sam-
ple dependence of BIS is, consequently, unproblematic. On
the contrary, concerning this type of question, BIS is often
easier to interpret than the constituent measures (RTs and
PCs), because it directly expresses whether a (group of) sub-
ject(s) performs above or below average (BIS > 0 or BIS < 0,
respectively).

To approach this question from another vantage point, con-
sider that statistical tests are insensitive to linear transforma-
tions such as the standardizations involved in BIS. In particu-
lar, the difference between two conditions in mean RTs will
result, by definition, in the exact same t value as the difference
of any linear transformation, if the transformation is applied
uniformly to all RTs (such as a standardization with the same
mean and the same standard deviation used in the calculation
of BIS).9 This feature of linear transformations alsomeans that
it is not the standardization, but the additive component (the
subtraction), that does the job of controlling for SATs (as we
demonstrated above).

9 The skeptic is invited to confirm this fact on the sample data in Table 1 by
calculating and comparing t values for the group difference in, say, RTs before
(i.e., RT c) and after (i.e., zRT) the standardization of RTs.

Fig. 7 Mean effect sizes η2 and the proportions of significant one-way
analyses of variance (between subjects) with three (randomly drawn)
threshold separations for each measure
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Standardizing across different subsamples

In the present examination, RTs and PCs were standardized
across all conditions and all subjects for a given test. This is, in
a way, the most conservative approach, because all variance is
kept (see the previous section). There might, however, be
situations in which it is reasonable to remove some of the
variance. When the research focus is on a Group ×
Treatment interaction, for example, it might be a good idea
to remove the main effect of group (and the related error var-
iance) by standardizing per individual (e.g., Bush, Hess, &
Wolford, 1993; Faust, Balota, Spieler, & Ferraro, 1999) or
per group.

In general, when calculating BIS, it is important to care-
fully ponder what shall be compared and therefore should
be minimally included in the standardization. If, for exam-
ple, standardization was performed separately per condi-
tion, any differences between conditions would be re-
moved by design, and it would be impossible to detect
any effects. If there is no particular reason to exclude a
particular contributor of variance (as in the Group ×
Treatment example above), we recommend including the
mean RT and PC for all subjects, groups, and conditions of
the experiment, because this maximizes the data basis for
calculating means and standard deviations.

Comparison to model fitting

In the present study, the combined measures were used to
extract Breal^ effects that were simulated via manipulations
of the drift-rate parameter of the diffusion model. In a way,
the aim was to Brecover^ effects on drift rate and to ignore
variations in another parameter (threshold separation).
Obviously, the best way to recover any parameter of the dif-
fusion model would be to fit the (simulated) data to the diffu-
sionmodel itself. Indeed, a diffusion-model analysis of speed–
accuracy data has several advantages in many situations
(Forstmann et al., 2016; Ratcliff et al., 2016; Voss et al.,
2015; Wagenmakers, 2009). Many, but not all, researchers
would argue that major strengths of the diffusion model are
that it is based on several well-validated theoretical assump-
tions and that its parameters are psychologically interpretable.
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Fig. 8 Effect sizes d for pairwise comparisons of drift rates v, reflecting

Breal^ effects, at four different values of threshold separation a (panel a: a

= 5 and a = 100; panel b: a = 200 and a = 300, above and below the

diagonal, respectively). Each point (square) in a panel denotes a compar-

ison between two combinations of drift rate (e.g., v = 0.20 vs. v = 0.22).

The black diagonals indicate the absence of comparisons between a cell

and itself (e.g., v = 0.20 vs. v = 0.20). Note that all combined measures

reveal Breal^ effects as well as or better than any of the constituents (RTs

or PCs) in most comparisons, and that BIS reveals these effects virtually

as well as any other competitor in most comparisons, and only slightly

worse than the best competitor in some comparisons (for a = 300, lower

right areas in panel b, in particular).

R These strengths, however, also restrict its use to specific situ-

ations, namely those in which a decision process is at the heart

of the observed behavior.

BIS, in contrast, was developed on the basis of purely sta-

tistical considerations (the same is likely true for LISAS). It

yields a balanced integration of RTs and PCs in any task,

independent of what the task measures and which cognitive

processes it involves. It would, of course, be advantageous to

show for each specific task that BIS cancels SATs while main-

taining Breal^ effects. Still, BIS was not specifically devel-

oped for decision processes and still performs quite well with

data generated by a decision-process model; this gives us

some confidence that BIS would perform equally well on data

generated by other models/processes.

To elaborate a bit on how BIS might complement the

modeling approach: Most popular models (such as the diffu-

sion model) focus on the decision process, whereas many

phenomena of interest to cognitive psychologists are captured

in the residual Bnondecision time^ (e.g., Schmitz & Voss,

2012). Arguably, SATs can also occur in nondecision compo-

nents of a task (Rinkenauer, Osman, Ulrich, Müller-

Gethmann, &Mattes, 2004). For example, in a mental rotation

task, Liesefeld et al. (2015) found that participants differed

from each other in the time they took for performing the rota-

tion, whereby taking less time meant that the resulting rotated

representation of the original stimulus was less accurate and

therefore more errors were committed; thus, it was not the

decision component of the task, but the rotation component

preceding the decision that was influenced by SATs.

Second, it is an empirical fact that researchers do use com-

bined measures (e.g., Collignon et al., 2008; Gabay, Nestor,

Dundas, & Behrmann, 2014; Kristjánsson, 2016; Kunde et al.,

2012; Mevorach, Humphreys, & Shalev, 2006; Petrini,

McAleer, & Pollick, 2010; Röder, Kusmierek, Spence, &

Schicke, 2007; Spence, Kingstone, Shore, & Gazzaniga,

2001a; Spence, Shore, Gazzaniga, Soto-Faraco, &

Kingstone, 2001b), and that reviewers do request the use of

these measures (according to our own experiences and infor-

mal reports from colleagues), especially if RTs and PCs show

opposite patterns of effects (which would indicate

condition-contingent SATs). One reason for using simple

combinations of RTs and PCs instead of decision models

might be that authors desire a combined measure that does

not rely on a specific psychological theory. This is understand-

able if the research focus does not lie on decision making

(which is the case for most of the studies cited above) or if

behavioral data are secondary to the research question (as in

many neuroimaging studies employing SAT measures; e.g.,

Kiss, Driver, & Eimer, 2009; Küper, Gajewski, Frieg, &

Falkenstein, 2017; Reeder, Hanke, & Pollmann, 2017).

Thus, from a practical standpoint, there is quite some demand

for combined speed–accuracy measures.
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Finally, BIS is easy to calculate, and therefore is potentially
accessible to a wider range of researchers. Although tutorials
and easy-to-use implementations and accessible tutorials for
the diffusion model and other evidence accumulation models
are available (e.g., Donkin, Brown, & Heathcote, 2011; Voss
et al., 2015;Wagenmakers et al., 2007;Wagenmakers, van der
Maas, Dolan, & Grasman, 2008), their correct application and
interpretation still require considerable theoretical back-
ground. Easy-to-use code for calculating BIS in Matlab, R,
and Excel can be retrieved from https://github.com/
Liesefeld/BIS.

EZ-diffusion model

Another powerful, yet easy to calculate, tool for combining
speed and accuracy data is the EZ-diffusion model
(Wagenmakers et al., 2008; Wagenmakers et al., 2007).
Based on the diffusionmodel (with a few simplifying assump-
tions), this model provides simple equations for calculating
drift rate v, threshold separation a, and nondecision time t0
on the basis of mean RTs, PCs, and the variance in RTs. In a

way, the drift rate of EZ diffusion corresponds to the com-
bined measures examined here (it would reflect our Breal^
effects while canceling out SATs). In addition, it provides
estimates of threshold separation (and thus of the degree of
SAT) and nondecision time. This model, of course, cannot be
reasonably compared to the other combinedmeasures with the
present set of simulated data, because EZ diffusion is based on
the same model that was used to generate the data. In fact, our
simulations were designed so that they would meet all (or
virtually all; see below) assumptions underlying EZ diffusion
(which is not guaranteed with real data; see also the section
below on Desirable Extensions of the Present Simulations).

To illustrate the use of the EZ-diffusion model and to also
validate our simulations, we extracted drift rate, threshold sep-
aration, and non-decision time from our data set using the
EZ-diffusion model. The results are visualized in Fig. 11,
and two interesting pieces of information are revealed: First,
the results validate our simulation by showing that the param-
eters are recovered well in large parts. In particular, the
drift-rate parameter seems mostly independent of the simulat-
ed threshold separation, but it is influenced by our Breal^
effects (as induced via variations in drift rate). Second, the
results point to a limitation of the EZ-diffusion model when-
ever its assumptions are violated. The particular violation here
(and elsewhere—e.g., Ratcliff, 2008) is that a trial is aborted
after a while (a response deadline; here, around 3,500 ms),
which implies that sometimes the decision process cannot
finish. The larger the threshold separation is, the more often
this happens, thus leading to distorted RT patterns in these
cases (a few very long RTs are missing in the data; see note
7). In Fig. 11, this becomes most obvious in the overestima-
tions of nondecision time with high threshold separations
(right panel).

Additionally, it remains to be investigated whether param-
eter extraction using the EZ-diffusion model has advantages
over the other measures in canceling SATs when data were not
generated with the diffusion model but with, for example, the
leaky competing accumulator model (Usher & McClelland,
2001), the linear ballistic model (Brown & Heathcote,
2008), or the fast-guess model (Ollman, 1966; see Van
Ravenzwaaij & Oberauer, 2009, for related comparisons).

Outlook: Open questions and future directions

Confounds of variation in threshold separation and drift rate

This article has treated only two idealized situations: pure
SATs without any Breal^ effects (a threshold separation varia-
tion) and pure Breal^ effects without any SAT (a drift-rate
variation). In these situations, there is no correlation between
SATs and the Breal^ effects across conditions (because one of
the two was always kept constant). All types of combinations
of these two situations are, of course, possible and likely do
occur in reality.

Fig. 10 Mean effect sizes η2 and the proportions of significant one-way
ANOVAs averaged across all possible combinations (without
replacement) of three drift rates (between subjects) for each measure.
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Fig. 9 Proportions of significant pairwise comparisons of drift rates v

(two-sample t tests), reflecting Breal^ effects, at four different values of

threshold separation a (panel a: a = 5 and a = 100; panel b: a = 200 and a

= 300, above and below the diagonal, respectively). Each point (square)

in a panel denotes a comparison between two combinations of drift rate

(e.g., v = 0.20 vs. v = 0.22). The black diagonals indicate the absence of

comparisons between a cell and itself (e.g., v = 0.20 vs. v = 0.20).

R
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Unfortunately, a systematic investigation of con-
founds between threshold separation and drift rates is
subject to a combinatory explosion (in the present case
of 60 levels of threshold separation and six levels of
drift rates, there are 360 possible combinations of these
two parameters, yielding 64,620 pairwise comparisons)
and is beyond the scope of the present article. That BIS
cancels out pure SATs and leaves intact pure Breal^
effects is already important information, especially in
light of our demonstrations that other measures dramat-
ically fail already in the simplest situation of pure SATs.
Nevertheless, preliminary explorations of this combina-
tory space are in line with the general pattern reported
here: BIS cancels or strongly reduces effects of SATs,
while typically maintaining Breal^ effects (see Appendix
C for more details).

Desirable extensions of the present simulations Although the
diffusion model is arguably one of the best validated and most
established models to reflect core cognitive processes
employed in a wide range of experimental tasks (Forstmann
et al., 2016; Ratcliff et al., 2016; Voss et al., 2015;
Wagenmakers, 2009), it is likely that data simulated by this
model differ from real data in various respects. Furthermore,
although variations in threshold separation are the standard
approach to induce SATs, there is some debate as to whether
SATs are (typically) reflected in (pure) variations of threshold
separation (Lerche & Voss, in press; Rae, Heathcote, Donkin,
Averell, & Brown, 2014; Rinkenauer et al., 2004; Starns,
Ratcliff, & McKoon, 2012; Voss et al., 2004), casting addi-
tional doubt on the validity of the present simulations. For
these reasons, future studies should strive to confirm the re-
sults reported here with alternative operationalizations of
SATs—namely, by using other parameter combinations

(including nondecision time t0 and drift rate v; see, e.g., Rae
et al., 2014; Rinkenauer et al., 2004) and/or other models (e.g.,
the leaky competing accumulator model, Usher &
McClelland, 2001; the linear ballistic model, Brown &
Heathcote, 2008; or the fast-guess model, Ollman, 1966),
and, with some qualifications (see the Quality Criteria for
Combined Measures section above), real data (see Bruyer &
Brysbaert, 2011; Vandierendonck, 2018).

Other statistical testsWe have rather exhaustively tested com-
parisons of two independent samples, have only parenthetical-
ly tested designs with more levels of a factor (three), and have
excluded any multifactorial and within-subjects designs.
Although there is no reason to believe that other combined
measures would gain the lead in these situations, and although
the results look very similar in some preliminary explorations
with such designs, these assumptions should be tested care-
fully and systematically in future work. Similarly, it appears
likely that BIS improves results in correlative approaches (see,
e.g., Draheim et al., 2016; Hughes et al., 2014; Van
Ravenzwaaij & Oberauer, 2009), but this topic, too, must
await future validation.

Unequal weighting of RTs and PCs BIS was designed to inte-
grate RTs and PCs in a balanced manner. There is no guaran-
tee, however, that balanced weighting is ideal (this would be a
rather surprising coincidence, in fact). Thus, future research
should strive to determine which weighting of RTs and PCs is
ideal in a given situation. For the meantime, an equal integra-
tion of the two constituents seems the most reasonable choice
to us. If it turns out that an unequal weighting is preferable, the
equal (and constant across accuracy levels) weighting is still a
convenient feature of BIS, because it allows easily adapting
the relative weights of RTs and PCs. This can be achieved by

Fig. 11 Threshold separation a, drift rate v, and nondecision time t0 as
extracted from the simulated data using the EZ-diffusion model
(Wagenmakers et al., 2008; Wagenmakers et al., 2007), as a function of

threshold separation a and drift rate v as implemented in the simulation
generating the data set. Note that the mean nondecision time was set to
300 ms in our simulations.
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simply adding a weighting parameter w to Eq. 4 (with 0 <w <
1), as in, for example:

BISi; j ¼ w∙zPCi; j− 1−wð Þ∙zRT i; j

A major difficulty with such an endeavor would be to find
criteria according to which one should determine w.
Obviously, to try different values forw until a desired outcome
(a statistically significant effect) is obtained would inflate the
alpha error and must be avoided.

Transforming the constituents Close inspection of Figs. 5, 6,
and 7 indicates that for BIS, SATs influence ANOVAs much
more than they influence t tests (although this influence is still
considerably less than for all of the alternatives). One remedy
would be to avoid using ANOVAs for testing critical hypoth-
eses and instead to focus on t tests or contrasts (which usually
reflect the hypothesis of interest much better, anyway).
Another alternative might be to transform RTs and PCs before
entering them into Eq. 4. In particular, BIS integrates RTs and
PC linearly, ignoring that RTs and PCs are typically not line-
arly related. Closer approximation to a linear relationship be-
tween RT and PC can be achieved by first transforming both
measures. It turns out that the following transformations pro-
vide reasonable approximations to linearity10 (but see, e.g., Lo
& Andrews, 2015, for potent ial pi t fal ls of such
transformations):

RT i; j

0

¼ ln RT i; j

� �

, and PC
0

i; j ¼ ln 1
1−PCi; j

� �
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Appendix A: The relationship between IES
and RCS

For the following discussion, consider the dataset given in
Table 2. The first trials 1, …, m were responded to correctly
(coded as 1), and trials m + 1,…,M represent error trials (coded
as 0).

The argument involves three steps. Steps 1 and 2 will
slightly transform IES and RCS, respectively, and Step 3 will
bring both measures together and express IES as a function of
RCS.

10 We thank Jochen Krebs for advice in this regard.

Table 2 Structure of a data set to demonstrate the relationship between
IES and RCS

Trial Correct RT

1 1 RT1

. . . . . . . . .

m 1 RTm

m+1 0 RTm + 1

. . . . . . . . .

M 0 RTM
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Combining multiple measures BIS is in no way restricted to

combining only RTs and PCs. To give an example,

complex-span tasks are measures of working memory capac-

ity that correlate highly with general intelligence. In these

tasks, participants have to remember a sequence of memoran-

da (e.g., words) and after each memorandum a short process-

ing task has to be solved (e.g., verification of an algebraic

equation). After several memorandum–processing pairs, par-

ticipants have to recall all memoranda. Usually, analyses of

this type of task focus on recall performance, but it turned out

that accuracy on the processing part correlates with intelli-

gence, too (Unsworth, Redick, Heitz, Broadway, & Engle,

2009)—potentially because people do trade off memorizing

and processing. BIS could be used to combine performance on

both aspects of the task in order to gain a more comprehensive

measure of complex-span performance.

Furthermore, BIS can combine an arbitrary number of per-

formancemeasures, by simply standardizing all constituents and

adding measures for which high values reflect good perfor-

mance (such as PC) and subtracting measures for which high

values reflect bad performance (such as RTs). To stick with the

example of complex-span tasks, in addition to recall accuracy

and processing accuracy, processing time could be included as a

third performance measure (see Unsworth et al., 2009).

Conclusion

We have formally introduced and validated a new approach to

control for speed–accuracy trade-offs, the balanced integra-

tion score (BIS), and compared it to alternative measures.

This measure effectively controls for speed–accuracy

trade-offs while retaining true effects. Furthermore, it is highly

flexible and easy to calculate. Matlab and R code as well as an

Excel sheet for calculating this measure can be retrieved from

https://github.com/Liesefeld/BIS

https://github.com/Liesefeld/BIS


Step 1.

IES ¼
�RT c

1−PE
¼

�RT c

PC
¼

∑m
i¼1RT i

m
m

M

¼

∑
m

i¼1
RT i

m
∙
M

m
⇒ IES∙

m

M
¼

∑
m

i¼1
RT i

m
Step 2.

RCS ¼
m

∑M
i¼1RT i

⇒

1
RCS

¼
∑M

i¼1RT i

m
¼

∑m
i¼1RT i

m
þ

∑M
i¼mþ1RT i

m

⇒

1
RCS

−
∑M

i¼mþ1RT i

m
¼

∑m
i¼1RT i

m

Step 3. Because the rightmost parts of the equations above
are equal, the terms to the left of the equal sign can
be equalized:

IES⋅
m

M
¼

1
RCS

−
∑M

i¼mþ1RT i

m

⇒IES ¼
M

m

1
RCS

−
∑M

i¼mþ1RT i

m

� �

¼
M

m⋅RCS
−
M ⋅∑M

i¼mþ1RT i

m2

Although this last equation shows the general case including
both correct and erroneous responses, an interesting relation-
ship becomes apparent when we assume that the proportion
correct (PC) approaches 1 (what means that m approaches
M). In this case, the minuend of the rightmost term approaches
1

RCS
. Because the nominator of the subtrahend contains the sum

of erroneous RTs—whichwill approach 0—the subtrahend will
disappear. Thus, in the extreme case of PC = 1, it follows that

IES ¼
1

RCS

The same follows for any PC if RTs from incorrect-
response trials are included in IES (as was apparently
intended by Townsend & Ashby, 1983, p. 204):

IES ¼
RT

PC
¼

∑M
i¼1RT i

M
m

M

¼
∑M

i¼1RT i

m
¼

1
RCS

Appendix B: Correlation of RTs and PCs
with BIS

In the main text, we noted that for BIS the ratio given in Eq. 5

equals 1—that is, IBIS ¼
r2
RT ;BIS

r2
PC;BIS

¼ 1. This is true because

rRT, BIS = − rPC, BIS holds. In this appendix, we provide a for-
mal proof for the latter relation. Because linear transforma-
tions do not change the correlation of two variables, the equa-
tion under question can be stated slightly differently:

rRT ;BIS ¼ −rPC;BIS⇔rzRT ;BIS ¼ −rzPC ;BIS

Transformation of the latter formulation then shows the
claimed equality

rzRT ;BIS ¼ −rzPC ;BIS

⇔rzRT ;zPC−zRT ¼ −rzPC ;zPC−zRT

⇔

cov zRT ; zPC−zRTð Þ

SzRT ⋅SzPC−zRT
¼ −

cov zPC; zPC−zRTð Þ

SzPC ⋅SzPC−zRT

⇔

cov zRT ; zPCð Þ−cov zRT ; zRTð Þ

1⋅SzPC−zRT
¼ −

cov zPC; zPCð Þ−cov zPC; zRTð Þ

1⋅SzPC−zRT

⇔

cov zRT ; zPCð Þ−1
1⋅SzPC−zRT

¼ −
1−cov zPC; zRTð Þ

1⋅SzPC−zRT
⇔cov zRT ; zPCð Þ−1 ¼ − 1−cov zRT ; zPCð Þð Þ
⇔cov zRT ; zPCð Þ−1 ¼ cov zPC; zRTð Þ−1

Appendix C: Variations in threshold
separation and drift rate (preliminary
analysis)

In the main article, we focused on evaluating situations in
which either only threshold separation a or only drift rate v

varied. These simulations allowed for full control over the
degree of SATs and Breal^ effects, and it was possible to vary
both influences independently. Empirical data, in contrast,
might confound SATs and Breal^ effects, and it is not typically
possible to tease them apart perfectly. Instead, decreasing RTs
accompanied by decreasing PCs across conditions are some-
times used as a convenience criterion indicating an SAT in
empirical data.

A thorough coverage of situations with concurrent varia-
tions in threshold separation and drift rate is beyond the scope
of the present article. Yet, a preliminary analysis suggests that
the combined measures behave similarly to what we have
reported for pure effects. In particular, we randomly sampled
one experiment and, from this experiment, two random sub-
samples 10,000 times (with differing threshold separation a

and/or drift rate v). On the basis solely of mean RTs and PCs,
we determined whether or not an SATwas present (decreasing
RTs with decreasing PC) and calculated the proportions of
significant two-sample t tests for all dependent measures
(RTs, PCs, IES, RCS, LISAS, and BIS). The results are pro-
vided in Table 3. Without empirical evidence for an SAT, all
combined measures appear to increase the likelihood of
obtaining a significant result to more or less the same degree
(when compared to RTs and PCs). In cases with empirical
evidence for an SAT, the proportion of significant results is
slightly attenuated for IES, RCS, and LISAS, but this desir-
able attenuation is much more pronounced for BIS.
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Despite this (for BIS) encouraging outcome, we would
point out the preliminary character of these results. Future
work will be required in order to consider varying effect sizes
for RT and PC differences. Furthermore, in the present analy-
sis, the contributions of differences in threshold separation a

and drift rate v are not clear, so we cannot exclude the possi-
bility that BIS overcorrects and, thus, underestimates the true
effects in these situations.
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