
Combining Static and Live Digital Forensic Analysis
in Virtual Environment

Sasa Mrdovic, Alvin Huseinovic, Ernedin Zajko
Faculty of Electrical Engineering

University of Sarajevo
Sarajevo, Bosnia and Herzegovina

{smrdovic, ahuseinovic, ezajko}@etf.unsa.ba

Abstract—Traditional digital forensics is performed through
static analysis of data preserved on permanent storage media.
Not all data needed to understand the state of examined system
exists in nonvolatile memory. Live analysis uses running system
to obtain volatile data for deeper understanding of events going
on. Sampling running system might irreversibly change its state
making collected evidence invalid. This paper proposes
combination of static and live analysis. Virtualization is used to
bring static data to life. Volatile memory dump is used to enable
offline analysis of live data. Using data from memory dump,
virtual machine created from static data can be adjusted to
provide better picture of the live system at the time when the
dump was made. Investigator can have interactive session with
virtual machine without violating evidence integrity. Tests with
sample system confirm viability of proposed approach.

Keywords-forensics; hard disk image; volatile memory dump;
virtual machine;hibernation;

I. INTRODUCTION
Although digital forensics was recently challenged [1] it

still remains the main way to investigate digital evidence and
answer questions about previous digital states and events [2].
Digital forensics faces some challenges but is also area of
intensive research and fast development to address those
challenges.

Any forensics needs to follow strict procedures of evidence
collection that ensures evidence admissibility in a court of law.
Digital evidence is very sensitive and can be easily altered.
Therefore procedures were developed that ensure integrity of
the collected evidence. Initially, digital forensics used only
static analysis that concentrated on extracting evidence from
nonvolatile memory on media. Developments in digital world
that include networking and encryption, as well as increased
size of storage media required new methods. Live analysis was
a next step. With live analysis data is collected from a running
system. The idea is to gather data that is not available in a
media-only forensic analysis, providing additional contextual
information. In this process a content of the system volatile
memory, RAM, provides valuable information. This opened
another set of question on possible alterations to the system
while collecting the evidence. The alteration might make
collected evidence inacceptable. An alternative way to analyze
content of the volatile memory is to capture it and examine it

offline. The research of offline memory dump analysis is recent
but very intensive one. In addition, virtualization techniques
are finding its use in digital forensics. Booting copy of hard
disk in a virtual machine enables obtaining some information
that is not accessible by passive reading of data from the disk.
It is possible to do this without altering copy of the disk. This
opens some new possibilities and brings static and live analysis
closer to each other.

This paper explores possibilities of combining offline hard
disk and memory dump analysis. Virtual environment could
enable starting OS from disk image without changing the
image. Using data from memory dump could enable bringing
the system close to the state it was in when it was seized. This
provides for something similar to live response but in
repeatable manner. It is important to state that the methods
presented are proof of concept and are still not sufficiently
robust to be considered ready for use by forensic analysts.

The rest of the paper is organized as follows. General issues
of digital forensic analysis are addressed in section 2. Section 3
explains use of virtual machines for forensics. Volatile memory
analysis is presented in section 4. Method proposed in this
paper is explained in section 5. Results of testing of proposed
method are given in section 6. Conclusion and discussion on
directions for future research work are in section 7.

II. DIGITAL FORENSIC ANALYSIS
Traditional approach to digital forensics is static analysis.

This approach is most widely used, has established procedures
and defined legal validity of evidence collected. In static
analysis, forensically valid copy of all storage media of halted
system is made. Tools for media analysis are then used to
search for digital evidence. These tools are good at locating
files and searching their content. File creation and modification
times can be established. Deleted files usually can be recovered
to some extent. Other interesting information like browsing
history, email records and installed programs can also be
recovered.

Static analysis has certain limitations. The biggest one
being that it cannot provide complete picture of events. Recent
work [3] explains main limiting factors.

In order to perform static analysis target system needs to be
shutdown. This can be achieved with a proper shutdown

978-1-4244-4221-8/09/$25.00 ©2009 IEEE

sequence or simply by pulling a power plug. The second
approach prevents possible execution of scripts set up to
remove evidence in a case of the shutdown. It might also result
in inconsistent disk state and data in write cache
unsynchronized. In both cases of halting the target system its
dynamic state is inevitably lost. Volatile memory content is not
preserved, except for possible data paged to disk. Other
relevant dynamic data like a process list, open network ports,
established network connections and installed kernel modules
cannot be examined with static analysis. Since all above items
could be relevant for the investigation being conducted, static
analysis gives incomplete evidence.

Encryption makes access to data stored in encrypted files or
volumes much harder if not impossible. Encryption keys, used
during system operation for access to encrypted data, are
inaccessible once the system is powered off.

There is also a question if creation of an image for analysis
is practical or even possible. For terabytes of disk data imaging
can take many hours. Imaging of large RAID arrays, NAS,
SANs is extremely difficult. The time and effort needed for
analysis increases with the disk size. Since manual analysis is
not feasible, automatic analysis is used. For terabytes of data
even automatic analysis takes time [4] and requires a
distributed analysis approach [5].

An often neglected drawback of static analysis is an
inconvenience for a regular user. A system cannot be used
while forensic copies of media are made. For certain systems
that require high availability this could completely prevent
static analysis.

An alternative to static analysis, or to be more precise
complementary approach, is live analysis. In this case evidence
is collected while the system is running. Live analysis resolves
some of the issues of static analysis. On the other hand there
are some open questions for live analysis. The most important
issue is that with live analysis any action the analyst executes
causes irreversible change of the investigated system state [6].
The change of the system state is against accepted principles in
forensics that evidence should not be altered and might cause
examination results not to be verifiable and repeatable [7].
Limitations imposed on acceptability of evidence collected by
live analysis depend on the applicable legal system.

There are some other issues with live analysis. Investigator
might not have appropriate level of access to the investigated
system. In a case of a compromised system its integrity is
questionable. An attacker might have modified the system in a
way that prevents detection of attack and modifications. This is
especially true if the investigated system’s user interface is
used. Even using known-good binaries from CD/DVD or other
trusted media might not reveal the true facts since many of the
forensic tools relay on the data provided by the kernel or the
file system that might have been tampered with.

There are some alternatives to static and live analysis. Two
that are relevant to this paper will be explained in more detail
in the next section. The two are: static analysis using
virtualization and offline analysis of volatile memory.

III. VIRTUAL MACHINES FOR STATIC ANALYSIS
Static analysis of hard disks is activity with a number of

constraints. A basic requirement that no changes can be made
to the original hard disk might significantly limit investigation
efforts. Practice is to obtain forensic image of the original hard
disk. There is a requirement for the image to remain unchanged
to be acceptable as evidence in a court of law. Some
information from the hard disk or its image cannot be obtained
by passive reading of the data from the disk. Sometimes an
operating system and/or programs from the disk need to be
started in order to get insight into what is on the disk and what
it was used for. Starting the program or the operating system
from the disk unavoidably includes writing to the disk. This
writing renders the disk unusable as evidence.

Usage of virtual machines was proposed for an analysis
phase of a digital forensic investigation [8]. The idea is to
create a virtual machine from an image to be investigated.
Since the virtual machine simulates only some basic hardware
components the image cannot be immediately booted in the
virtual machine. There are many changes to the original
environment required to enable the image to boot in the VM
environment, and once the system is booted new data will be
written to the original image thus modifying it. Such a changed
image would be immediately challenged in a court of law as
flawed.

This issue was addressed by CERT. They created Live
View [9]. Live View is a forensics tool that creates a VMware
virtual machine out of a raw disk image or a physical disk. This
allows the forensic examiner to boot up the image or the disk
and gain an interactive, user-level perspective of the
environment, all without modifying the underlying image or
disk. All changes made to the disk are written to a separate file.
This enables continuation of analysis from where it stopped or
a restart from the original state of the image or the disk.

IV. VOLATILE MEMORY ANALYSIS
A recent addition to live analysis is an idea to make a dump

of a volatile memory for offline analysis. Volatile memory
analysis shows promise in that the only source of evidence is a
physical memory dump. An investigator can then build the case
by analyzing the memory dump in an isolated environment that
is non-obtrusive to the evidence. This approach addresses some
of the issues with live analysis. It limits impact to the
compromised system, the analysis is repeatable and it is
possible to ask new questions later. Also, offline volatile
memory analysis does not rely on operating system of possibly
compromised machine. This enables detection of processes
hidden by installed rootkit or a similar tool [10].

 The first idea was to use a special pre installed hardware
that can copy memory to an external storage device without
modifying its contents [11]. The need for the special hardware
that must be fitted to the system being protected before
anything bad happens makes this approach impracticable in
general case, but it had started a lot of research dedicated to
analysis of memory dumps. a number of papers is devoted to
Windows memory analysis [12][13][14][15]. A method for
recovering files mapped in a memory and to link mapped file
information process data is subject of [16]. Different tools for

memory analysis are proposed like: FATKit [17],
BodySnatcher [18], Volatools [19] and FACE [20].

The biggest issue with the memory dump analysis was a
lack of tools. This is because with every release of a new
operating system, the physical memory structure changes. In
spite of difficulties some tools are being developed. The first
ones had only basic functionality [21][22]. Current tools
[23][24] are still script based but offer functionality similar to
the live analysis. They allow an investigator to interrogate an
image in a style similar to that used during a live response.

The most recent development in volatile memory analysis
is usage of hibernation. Most current computers systems and
OS have power management features that save the state of the
computer while the processor and devices (hard drive, monitor,
etc.) are disabled to conserve power. This is also known as
suspending to disk feature. If the system state and memory are
copied to disk using the power management features of the
computer, then this method may be more reliable than the
software solutions for creation of memory dump [11]. System
state and memory are usually saved in a file that contains all
the physical memory saved by the OS and aims to be restored
by the user the next time the computer is powered on.

Live forensics analysis is used on a physical memory dump
to recover information from a targeted machine. One of the
main problems is to obtain a readable physical memory dump,
hibernation is an efficient way to save and load physical
memory. Hibernation analysis has notable advantages. System
activity is totally frozen, therefore coherent data is acquired
and no software tool is able to block the analysis. The system is
left perfectly functional after analysis, with no side effects.

Usage of hibernation was mentioned for the first time when
volatile memory investigation was suggested [11]. It was not
really used until recently when a tool for Windows hibernation
file analysis was presented [25].

V. PROPOSED METHOD
This paper proposes combination of static and live analysis.

The combination should provide more insight into current state
of the system being examined and better understanding of the
events that led to it.

A hard disk image can be booted in VMware using Live
View. The memory dump obtained before the system was
powered off can be used to restore the system booted in virtual
environment to the state it was in when the memory dump was
created or as close to it as possible. The memory dump
contains data on the processes that were running on the system.
It also contains times when the processes were started. This
enables manual start of the programs that were not started
during boot process. The programs can be started in the same
order as they were started on the investigated system. This
includes hidden programs like rootkits that would not be
visible in live analysis. Open files and open network ports with
processes that opened them are also stored in the volatile
memory dump. With this information investigator can try to
open the same files and network ports. Furthermore, sometimes
even encryption keys can be recovered from the memory dump

[19], but this is out of the scope of this paper and will not be
tested.

Since Live View enables booting of an image in VMware
while keeping the image file intact, an investigator can use trial
and error approach trying to restore and understand the events
that took place on the system. What-if analysis can be
performed with the goal to understand possible development
scenarios. The best thing is that investigators actions are
repeatable and can be presented in a court of law.

The proposed approach to live analysis is to simply put the
system to hibernation. This is a fast way to preserve volatile
memory and system state with no need for additional tools and
no change of system state. After system goes to hibernation,
hard disk image can be created for further investigation. The
image contains hibernation file that in turn contains volatile
memory content.

As a proof of concept, test system was created and was
taken through the proposed steps of acquisition and analysis.
Testing results are presented in the next section.

VI. TESTING
System to be investigated was Windows XP SP3 installed

on 8 GB NTFS partition with 256 MB of RAM. The hard disk
partition and RAM are small compared to the current
standards. They are set small to enable a faster manipulation
but big enough to show the procedure. A user with
administrative privileges was logged on the system. Some
sample programs were stared on the system. One file was
opened for editing in Notepad. Netcat tool was started
from a command prompt and set to listen for incoming
connections on port 80. TrueCrypt 6.1a [26] was used to
create a new volume as an encrypted file container. One file on
this encrypted volume was opened for editing in Notepad.

At this point the system was hibernated. The hard disk was
taken out of the computer. An image of 8 GB partition in a raw
(dd) format was created using dd tool. This image was stored
on the investigators desktop computer and set read only. MD5
hash value was calculated using Microsoft File Checksum
Integrity Verifier. The value was stored for later comparison.

Live View 0.7b was started and given some basic data
about the image and the environment it should be booted in. It
was instructed to provide the same amount of RAM, 256 MB,
in the virtual machine. Also, information that the image is
Windows XP was supplied. Live View created necessary files
in the selected directory. Than Live View started VMware
Server 1.0.8 and pointed it to virtual machine files it
created from the image.

VMware server started boot up process. It realized that the
system was hibernated and tried to wake it up. Coming out of
hibernation failed, which was expected due to hardware
difference between the original system and virtual
environment. Windows XP offered to delete restoration data
and boot up system without retrieving hibernated system state.
It was accepted and the system started. The programs that were
manually started on the original system before hibernation
were not running. The same goes for the files manually opened

on the original system. There was a message about new
hardware being found, but it was ignored at this point. The
system in virtual machine was powered off. It was done for two
reasons. One was to test if the image has changed. Image,
being read only, has not changed which was confirmed
calculating its MD5 hash again. The other reason for shutdown
was to extract hibernation file from the image.

Partition image was mounted, read only, using Mount
Image Pro v3. File hiberfil.sys was copied from the
mounted image to the file system. The copy was set read only
and its MD5 hash value calculated. Using SandManSHELL
utility [27] memory dump was created from the
hiberfil.sys. Again the file was set to be read only and its
MD5 hash was calculated. Although SandMan provides some
basic utilities for extracting data from hibernation file they are
rather crude. At this time it was concluded that it is easier and
less error prone to use more mature tools for memory dump
analysis, like Volatility framework [23].

Before analysis of the memory dump partition image was
booted again using Live View. Live View offered choice to
continue working on the modified virtual machine or start over
from the image file. The option to continue working was
selected. The system booted up without messages and without
hibernated data. Now, there was a running picture of
investigated system that could be compared with a picture of
the system preserved in hibernation file.

Using Volatility it was possible to read various data from
the memory dump. List of running processes with times when
they were started was generated (Fig. 1). The list was
compared with the list of running processes in virtual machine
(Fig. 2). The difference was in the processes that were
manually started on the original investigated system. Volatility
list of DLLs loaded for each process (Fig. 3) show the
command line, e.g. path, which was used to start the process.

For instance, the following lines show that Notepad was
started with an empty file:
notepad.exe pid: 768

Command line : "C:\WINDOWS\system32\notepad.exe"

Figure 1. List of running processes from memory dump

Figure 2. List of running processes in virtual machine

Other interesting things could have been noticed from this
list.
TrueCrypt.exe pid: 1428

Command line : "D:\TC\TrueCrypt.exe"

Above lines show that TrueCrypt was running on the
system and that encryption was probably being used. Also,
TrueCrypt was not started from the system disk but from some
other volume. Since there is only one partition on the system it
must have been a removable disk. This was exactly the case on
the original investigated system.

Figure 3. Parts of list of DLLs loaded for each processes

Figure 4. List of open sockets

Another two lines point to a different event:
nc.exe pid: 240

Command line : nc -l -p 80 -t -e cmd.exe

Netcat was started to listen on port 80 and set to spawn the
shell when it gets connected to by a client. It could be
confirmed from the Volatility scan of open sockets (Fig. 4):
PID Port Proto Create Time Offset

240 80 6 Wed Jun 24 09:19:41 2009 0x0889de98

It can also be noticed, from Volatility list of running
processes that Netcat has indeed received a connection and has
spawned a shell:
Name Pid PPid Thds Hnds Time

nc.exe 240 960 3 47 Wed Jun 24 09:19:41 2009

cmd.exe 1492 240 1 36 Wed Jun 24 09:20:58 2009

Unfortunately, Volatility list of open connections was
empty. It could have been expected since going to hibernation
all open network connections had to be closed. This is
something to keep in mind if using hibernation to preserve
system state. It seems that running netstat and saving its
output to a file should be a step before hibernation. In this way
list of active connections of investigated system could be
preserved.

Another interesting thing was noticed in the list of loaded
DLLs. One instance of Notepad was started on an existing file:
notepad.exe pid: 172

Command line : "C:\WINDOWS\system32\NOTEPAD.EXE"
G:\Secret_document.txt.txt

File is located on a volume named G. Using Windows
Sysinternals utility Strings [28] memory dump was
searched for references to “G:\ “. Results were saved to a file.
This file, which provides (memory offset: string) mappings
was used as an input to Volatility function strings. The output
of this function is process that corresponds to these mappings
(Fig. 5). Several similar entries that connect volume G:\ with
TrueCrypt process (1428) were found.
131967640 [1428:128a98] G:\

Figure 5. Part of memory offset:string mappings

Using the same utilities connections between TrueCrypt
process (1428) and a file on a desktop tc_container.tc
were found in the memory dump.
31472892 [1428:3b4cfc] C:\Documents and
Settings\student\Desktop\tc_container.tc

The file tc_container.tc represents TrueCrypt
encrypted file container. Next step would be to search the
memory dump file for cached passwords and encryption keys
as it was suggested in [19]. As it was previously stated
decryption using memory content is out of scope of this paper
and was not tried.

Above processes, found in the volatile memory copy from
the original system, were started in the virtual machine.
Similarly, the opened files found in the memory copy were
open with the same applications in the virtual machine. No new
information was obtained but the virtual machine was brought
close to the state the original system was in before hibernation.
If need be, this would enable further analysis of relationships
among processes and files on the system.

After testing was over the virtual machine was stopped. All
relevant files: the image of the original hard disk partition,
hiberfil.sys and the memory dump created from it were
checked for changes. Hash values for all three of them had the
same values as for the original files. The system state has not
changed, meaning that evidence was not altered. Also, the
investigation process and steps taken are verifiable and
repeatable. Accepted principles in forensics were not violated.

VII. CONCLUSION AND FUTURE WORK
The proposed combination of static and live digital forensic

analysis in a virtual environment offers new possibilities.
Investigators can now play with a system image and volatile
memory data trying to figure out the exact state of the original
investigated system and sequence of events that led to it. All
advantages of static analysis are still there. In addition, data
usually available only during live analysis is on hand. Even
process hidden from live analysis, like rootkits, are visible
thanks to volatile memory copy. Virtual environment enables
booting the image up for interactive investigation similar to
live analysis. The best thing is that the original image is
preserved and unchanged and that analysis is repeatable. This
should make evidence obtained by using this approach
acceptable in a court of law. It has to be repeated that this is

still research and proposed approach should be thoroughly
tested before real world usage.

There are some ideas on future usage and improvements.
One usage could be to put a virtual copy of the system online
with the same IP address and open network ports acting as a
honeypot. Idea is to attract the same attackers that
compromised the machine for the first time trying to locate
them more precisely.

It would be interesting to establish with authority what are
the changes made to the system in preparation for hibernation
apart from closing network connection. Future work will also
be directed towards trying to enable return from hibernation in
virtual environment. This could be achieved by adjusting
hibernation file for different hardware environment offered by
virtual machine. SandMan project started work on writing to
hibernation file. Another approach to this issue could be to
copy data from hibernation file to snapshot file of virtual
machine. Both files contain picture of the memory plus some
additional info. It should be possible to convert one format to
the other.

REFERENCES

[1] M.A. Caloyannides, “Forensics Is So Yesterday,” IEEE Security and

Privacy, vol. 7, Mar. 2009, pp. 18-25.
[2] B.D. Carrier, “Digital Forensics Works,” IEEE Security and Privacy,

vol. 7, Mar. 2009, pp. 26-29.
[3] B. Hay, M. Bishop, and K. Nance, “Live Analysis: Progress and

Challenges,” IEEE Security and Privacy, vol. 7, Mar. 2009, pp. 30-
37.

[4] V. Roussev and G.G. Richard III, “Breaking the performance wall: The
case for distributed digital forensics,” Proceedings of the 2004 Digital
Forensics Research Workshop, 2004, pp. 75-82.

[5] I.I.I. Golden G. Richard and V. Roussev, “Next-generation digital
forensics,” Commun. ACM, vol. 49, 2006, pp. 76-80.

[6] F. Adelstein, “Live forensics: diagnosing your system without killing it
first,” Commun. ACM, vol. 49, 2006, pp. 63-66.

[7] M.M. Pollitt, “Principles, practices, and procedures: an approach to
standards in computer forensics,” Second International Conference on
Computer Evidence, 1995, pp. 10-15.

[8] D. Bem and E. Huebner, “Computer forensic analysis in a virtual
environment,” International Journal of Digital Evidence, vol. 6,
2007.

[9] CERT, “Live View,” http://liveview.sourceforge.net/, Jun. 2009.
[10] C. Waits, J.A. Akinyele, R. Nolan, and L. Rogers, Computer Forensics:

Results of Live Response Inquiry vs. Memory Image Analysis, CERT,
2008.

[11] B.D. Carrier and J. Grand, “A hardware-based memory acquisition
procedure for digital investigations,” Digital Investigation, vol. 1,
2004, pp. 50-60.

[12] A. Schuster, “Searching for processes and threads in Microsoft
Windows memory dumps,” Digital Investigation, vol. 3, Sep. 2006,
pp. 10-16.

[13] A. Schuster, “Pool allocations as an information source in Windows
memory forensics,” International conference on IT-incident
management and IT-forensics, 2006, pp. 104-115.

[14] J.D. Kornblum, “Using every part of the buffalo in Windows memory
analysis,” Digital Investigation, vol. 4, Mar. 2007, pp. 24-29.

[15] A. Schuster, “The impact of Microsoft Windows pool allocation
strategies on memory forensics,” Digital Investigation, vol. 5, 2008,
pp. 58-64.

[16] R.B. Van Baar, W. Alink, and A.R. Van Ballegooij, “Forensic memory
analysis: Files mapped in memory,” Digital Investigation, vol. 5,
2008, pp. 52-57.

[17] N.L. Petroni, Jr, A. Walters, T. Fraser, and W.A. Arbaugh, “FATKit: A
framework for the extraction and analysis of digital forensic data from
volatile system memory,” Digital Investigation, vol. 3, Dec. 2006, pp.
197-210.

[18] B. Shatz, “BodySnatcher: Towards reliable volatile memory acquisition
by software,” Digital Investigation, vol. 4, Sep. 2007, pp. 126-134.

[19] A. Walters, N.L. Petroni Jr, and I. Komoku, “Volatools: integrating
volatile memory forensics into the digital investigation process,”
Black Hat DC, vol. 2007, 2007.

[20] A. Case, A. Cristina, L. Marziale, G.G. Richard, and V. Roussev,
“FACE: Automated digital evidence discovery and correlation,”
Digital Investigation, vol. 5, 2008, pp. 65-75.

[21] C. Betz, “memparser,” 2005,
http://www.dfrws.org/2005/challenge/memparser.shtml, (accessed Jul.
2009)

[22] G.J. Garner, “kntlist,” 2005,
http://www.dfrws.org/2005/challenge/kntlist.shtml, (accessed Jul.
2009)

[23] Volatile Systems, “The Volatility Framework: Volatile memory artifact
extraction utility framework,”
https://www.volatilesystems.com/default/volatility/, (accessed Jun.
2009)

[24] A. Schuster , “Memory analysis: "PTFinder Version 0.3.05",”
http://computer.forensikblog.de/en/2007/11/ptfinder_0_3_05.html,
(accessed Jul. 2009)

[25] N. Ruff and M. Suiche, “Enter Sandman (why you should never go to
sleep),” PacSec applied security conference, 2007.

[26] T.C. Foundation, “TrueCrypt–Free Open-Source On-the-fly
Encryption,” http://www.truecrypt.org/, (accessed Jul. 2009)

[27] M. Suiche, “SandManSHELL Project,”
http://www.msuiche.net/hibrshell/, (accessed Jul. 2009)

[28] M. Russinovich, “ Strings - Windows Sysinternals,”
http://technet.microsoft.com/en-us/sysinternals/bb897439.aspx,
(accessed Jul. 2009)

