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Abstract In this paper, we explore the impact of
several sources of uncertainties on the assessment of
energy and climate policies when one uses in a har-
monized way stochastic programming in a large-scale
bottom-up (BU) model and Monte Carlo simulation
in a large-scale top-down (TD) model. The BU model
we use is the TIMES Integrated Assessment Model,
which is run in a stochastic programming version to
provide a hedging emission policy to cope with the
uncertainty characterizing climate sensitivity. The TD
model we use is the computable general equilibrium
model GEMINI-E3. Through Monte Carlo simulations
of randomly generated uncertain parameter values,
one provides a stochastic micro- and macro-economic
analysis. Through statistical analysis of the simulation
results, we analyse the impact of the uncertainties on
the policy assessment.
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1 Introduction

The purpose of this paper is to evaluate the impact of
uncertainty on the economic assessment of long-term
energy policies designed to mitigate climate change. We
identify four classes of uncertainties related to climate,
technology, economy and energy prices, respectively.
We propose a dual approach, based on the combined
use of stochastic programming and Monte Carlo (MC)
analysis to deal with these uncertainties in a technoeco-
nomic analysis involving two complementary models.
A stochastic programming approach is implemented
on a bottom-up integrated assessment model, TIMES
Integrated Assessment Model (TIAM WORLD) [28],
to propose a hedging emission abatement policy for
the time horizon 2030, followed by four typical re-
course abatement policies, compatible with a target of
2.1◦C temperature increase in 2100, under reasonable
assumptions on the uncertainty on climate sensitivity
(Cs) [2]. The scenarios produced by TIAM WORLD
take into account the Cs uncertainty but are based on
perfect foresight assumptions for a lot of technological
and economic parameters that could also impact the
policy assessment.

To take into account the impact of these other
sources of uncertainty on climate policy assessment, we
use MC analysis on a computable general equilibrium
(CGE) model, GEMINI-E3 [8], specifically designed to
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assess climate policies and which is run in a harmonized
way with TIAM WORLD. The CGE is a multi-country,
multi-sector, dynamic model running in annual steps
from the base year 2001–2050. We take into account
several sources of uncertainty pertaining to the general
economic and technological environment, using MC
simulations with Latin hypercube sampling [18] to ob-
tain probability density functions (pdf) for the output
variables of GEMINI-E3 that concern welfare gains,
emissions abatement etc.

Recently, MC-based approaches have been success-
fully implemented on the Emissions Prediction and Pol-
icy Analysis (EPPA) model which is also a world CGE
model [42]. The simulations in the EPPA model use the
Latin hypercube technique for analysing the impacts of
100 uncertain parameters, including labour productiv-
ity growth rates, energy efficiency trends, elasticities of
substitution, costs of advanced technologies, fossil fuel
resource availability and trends in emissions factors for
urban pollutants. These simulations served to evaluate
four climate policy scenarios and showed that energy
demand parameters, including elasticities of substitu-
tion and energy efficiency trends, are the sources of un-
certainty impacting more significantly climate policies.
A previous study, also involving the EPPA model [41],
focused on the uncertainty of the projections of anthro-
pogenic emissions. It reported a range of temperature
change in 2100 comprised between 0.9◦C and 4.0◦C. In
[36], MC simulations have been also performed on the
integrated assessment model MiniCAM 1.0 to analyse
the sources of uncertainty and their relative importance
in the decision policy process. The paper concludes
that the “current targets for atmospheric stabilization
appear excessively ambitious” and that “an adaptive
policy of ‘act, then learn, then act’ appears to offer bet-
ter prospects for balancing uncertain costs and benefits
of controlling greenhouse gas emissions than do rigid
precautionary measures”. More recently, MC simula-
tions have been applied to the MERGE model [23] to
produce probability distribution functions of economic-
and climate-related variables for different possible poli-
cies. Other references concerning MC simulations on
global assessment models are given in [13, 30, 34].

In the present work, we identify four classes of un-
certainties related to technology, economy, energy and
climate, respectively. The first one regroups techno-
logical parameters, i.e. cost and date of availability of
carbon capture and sequestration (CCS) technology,
elasticities of substitution between energy forms and
elasticities of substitution between production factors
and technical progress factors. The second class deals
with economic drivers such as GDP growth of emerg-
ing countries. The third one focuses on energy prices.

Finally, the last category, related to climate, is summa-
rized by the Cs parameter. Recall that Cs is loosely
defined as the temperature increase that would result
from a doubling of atmospheric GHG concentration,
compared with preindustrial level. So, in terms of cli-
mate policies, a variation in the assumed Cs value re-
sults in a different long-term GHG concentration target
and, as a consequence, in a different profile for the
emissions abatement schedule resulting from an adap-
tation of the global energy system. From a policy point
of view, one has to formulate a hedging emission tra-
jectory which will be implemented now and eventually
corrected or adapted when a more precise knowledge
of Cs is available. We assume that the uncertainty on
Cs will be resolved in 2030, and we generate emission
trajectories for different climate sensitivity values using
the stochastic version of the model TIAM WORLD. By
so doing, we get a single trajectory of emissions until
2030 and different profiles afterwards depending on the
revealed climate sensitivity. GEMINI-E3 is run for an
ensemble of scenarios corresponding to sampled values
for all uncertain parameters. In the case of Cs, the
sampled value will determine an emission profile after
2030, obtained by interpolation of the typical emissions
trajectories produced by TIAM WORLD stochastic.
The simulation results represented by the economic
indicators, like, e.g. welfare loss, energy consump-
tion and carbon price, are statistically analysed using
logit and standard regression models. This permits an
identification of the most sensitive parameters and of
their role in the possible infeasibility of energy/climate
policies.

The paper is organized as follows: In Section 2, we
describe the specifications of the bottom-up TIAM
WORLD and top-down GEMINI-E3 models used in
this study. In Section 3, we model the different sources
of uncertainty taken into consideration. In Section 4, we
discuss the stochastic programming and MC implemen-
tation issues, and in Section 5, we analyse the simula-
tion results. In conclusion, we evaluate the new insights
brought by this analysis of uncertainty in a harmonized
use of a bottom-up model (TIAM WORLD) and a top-
down model (GEMINI-E3).

2 The TIAM WORLD and GEMINI-E3 Models

In this section, we give an overview of the two com-
plementary models that are used for climate policy as-
sessment. We also present the process of harmonization
that has been implemented for the combined use of the
two models.
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2.1 Overview of TIAM WORLD

2.1.1 Energy/Technology/Emissions Description

TIAM WORLD is a global technology-rich bottom-
up model that represents the entire energy system of
the world divided in 16 regions: Africa, Australia–New
Zealand, Canada, USA, Mexico, Central and South
America, China, India, Japan, South Korea, other
developing Asia, Middle East, EU30, other east
Europe, Russia, Central Asia and Caucasia. It covers
the procurement, transformation, trade and end-uses of
all energy forms in all sectors of the economy (Fig. 1).

TIMES’ economic paradigm is the computation of
a dynamic inter-temporal partial equilibrium on en-
ergy/emission markets where demands for energy ser-
vices are exogenously specified only in the reference
case and are sensitive to price changes in alternate
scenarios via a set of own-price elasticities at each
period [25]. Although TIMES does not encompass all
macroeconomic variables beyond the energy sector,
accounting for price elasticity of demands captures a
major element of feedback effects between the en-
ergy system and the economy. Thus, the equilibrium is
driven by the maximization (via linear programming)
of the discounted present value of total surplus, repre-
senting the sum of surplus of producers and consumers,
which acts as a proxy for welfare in each region of the
model.

The time horizon of TIAM WORLD extends to
2100. The model contains explicit descriptions of more
than one thousand technologies and 100 commodities
in each region, logically interrelated in a reference
energy system [28]. Residential, commercial, industry,
transport, power plants as well as upstream (from ex-
traction to secondary transformation) are represented
in a highly detailed mode, covering the 42 different
service demands such as space heating, lighting, kilo-
metres driven by cars, by buses, production of iron and
steel, of pulp and paper etc. Such explicitness of the
representation of technologies and fuels in all sectors
allows precise tracking of capital turnover and provides
a detailed description of technological competition and
sectoral and cross-sectoral energy environmental poli-
cies.

2.1.2 The Climate Module

TIAM WORLD includes an endogenous climate mod-
ule that allows the user to impose climate targets, such
as upper bounds on concentrations, on atmospheric
radiative forcing, or on temperature increase, at single
or multiple dates. The emissions of CO2, CH4 and N2O
related to the energy sector are explicitly represented
by the energy technologies included in the model.
The non-energy-related CO2, CH4 and N2O emissions
(landfills, manure, rice paddies, enteric fermentation,
wastewater, land-use) are also included in order to fully

Fig. 1 Reference energy
system of TIAM WORLD
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represent the radiative forcing induced by them, but
they are exogenously defined. Emissions from some
Kyoto gases (CFC’s, HFC’s, SF6) are not explicitly
modelled, but a special radiative forcing term is added
in the climate module. Emissions of chemically active
gases such as NOx, CO, VOC’s are not modelled either,
but their influence on the life cycles of GHG gases is
implicitly accounted for in the concentration equations
for the three main GHG’s, at the calibration phase of
the equations.

Greenhouse gas mitigation options available in the
model are energy substitutions, improved efficiency of
installed devices, specific non-CO2 abatement devices
(e.g. suppression and/or combustion of fugitive CH4

from landfills, thermal destruction of N2O in the adipic
acid industry, suppression of leakages at natural gas
transmission level, anaerobic digestion of wastes with
gas recovery etc.), sequestration (CO2 capture and
underground storage, biological carbon sequestration),
mitigation potential of up to 20% of the CO2 and
N2O emitted by the agriculture sector and reductions in
energy service demands in reaction to increased carbon
prices.

2.1.3 Stochastic TIAM WORLD

TIAM WORLD possesses a feature that allows the
modeller to calculate hedging strategies in the presence
of uncertainty for certain key parameters. The treat-
ment of uncertainty is done via stochastic programming
in extensive form. In this method, the model adopts a
single hedging route in the interval of time preceding
the resolution of uncertainty (act then learn), so as
to be best positioned to adapt to any of the possible
long-term futures (after resolution of uncertainty). In a
large-scale model such as TIAM WORLD, due to com-
putational considerations, the stochastic programming
approach is successful when the uncertain parameters
are assumed to have only a limited number of possible
outcomes. The uncertainty is therefore described via
an event tree with a reasonably small number of end-
points. Finally, in our application, the selected max-
imization criterion is the expected value of the total
surplus, but the approach is also valid with other cri-
teria, such as minimizing the savage criterion (MinMax
Regret), as in [27], or a utility function consisting of a
linear combination of expected surplus minus a quan-
tity representing risk (see the TIMES documentation
available at www.etsap.org/documentation).

The main interest of a hedging strategy resides in its
description of what to do prior to the resolution date
(in contrast, traditional deterministic scenario analysis
computes multiple strategies even prior to the resolu-

tion date, leaving the decision maker in a quandary).
Once uncertainty is resolved, the decision maker no
longer faces uncertainty and her decisions result from
optimizing a deterministic problem afterwards. Never-
theless, the computation of the hedging strategy must
also take into account all possible outcomes after the
resolution date. In other words, short-term decisions
are devised while taking the uncertain long term into
consideration. This is the essence of decision under risk
and in particular of stochastic programming.

The TIAM WORLD model in stochastic mode was
used to model a number of energy and environmental
issues [22, 24, 29], with uncertainty assumed on eco-
nomic parameters and/or on climate parameters.

2.2 Overview of GEMINI-E3

GEMINI-E31 is a multi-country, multi-sector, recursive
computable general equilibrium model comparable to
the other CGE models (GREEN, EPPA, MERGE,
Linkage, WorldScan) built and implemented by other
modelling teams and institutions and sharing the same
long experience in the design of this class of economic
models. The standard model is based on the assumption
of total flexibility in all markets, both macroeconomic
markets such as the capital and the exchange markets
(with the associated prices being the real rate of interest
and the real exchange rate, which are then endogenous)
and microeconomic or sector markets (goods, factors of
production) (Table 1).

The model is built on a comprehensive energy-
economy dataset, the GTAP-6 database [12], that
incorporates a consistent representation of energy
markets in physical units, social accounting matrices for
each individualized country/region and the whole set of
bilateral trade flows. Additional statistical information
accrues from OECD national accounts, IEA energy
balances and energy prices/taxes and IMF Statistics
(government budget for non-OECD countries). Car-
bon emissions are computed on the basis of fossil fuel
energy consumption in physical units. For the mod-
elling of non-CO2 greenhouse gases emissions (CH4,
N2O and F-gases), we employ region- and sector-
specific marginal abatement cost curves and emission
projections provided by the Energy Modeling Forum
within the Working Group 21 [40].

For each sector, the model computes the demand on
the basis of household consumption, government con-

1The Web site http://gemini-e3.epfl.ch/ provides all information
about the model, including its complete description.

http://www.etsap.org/documentation
http://gemini-e3.epfl.ch/
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Table 1 Dimensions of the
GEMINI-E3 model

Countries or regions Sectors

Annex B Energy

Germany DEU 01 Coal

France FRA 02 Crude oil

United Kingdom GBR 03 Natural gas

Italy ITA 04 Refined petroleum

Spain ESP 05 Electricity

Netherlands NLD Non-energy

Belgium BEL 06 Agriculture

Poland POL 07 Forestry

Rest of EU-25 OEU 08 Mineral products

Switzerland CHE 09 Chemical rubber plastic

Other European countries XEU 10 Metal and metal products

United States of America USA 11 Paper products publishing

Canada CAN 12 Transport n.e.c.

Australia and New Zealand AUZ 13 Sea transport

Japan JAP 14 Air transport

Russia RUS 15 Consuming goods

Rest of Former Soviet Union XSU 16 Equipment goods

Non-annex B 17 Services

China CHI 18 Dwellings

Brazil BRA

India IND Household sector

Mexico MEX

Venezuela VEN Primary factors

Rest of Latin America LAT Labour

Turkey TUR Capital

Rest of Asia ASI Energy

Middle East MID Fixed factor (sectors 01–03)

Tunisia TUN Other inputs

Rest of Africa AFR

sumption, exports, investment and intermediate uses.
Total demand is then divided between domestic pro-
duction and imports, using the Armington assumption
[3]. Under this convention, a domestically produced
good is treated as a different commodity from an im-
ported good produced in the same industry. Production
technologies are described using nested CES functions
(see Fig. 5).

Time periods are linked in the model through en-
dogenous real rates of interest determined by equilib-
rium between savings and investment. National and re-
gional models are linked by endogenous real exchange
rates resulting from constraints on foreign trade deficits
or surpluses. The main outputs of the GEMINI-E3
model are by country on an annual basis: carbon taxes,
marginal abatement costs and prices of tradable per-
mits (when relevant), effective abatement of CO2 emis-
sions, net sales of tradable permits (when relevant),
total net welfare loss and components (net loss from
terms of trade, pure deadweight loss of taxation, net
purchases of tradable permits when relevant), macro-
economic aggregates (e.g. production, imports and final
demand), real exchange rates and real interest rates and

data at the industry level (e.g. change in production and
in factors of production, prices of goods).

Like other general equilibrium models, GEMINI-
E3 assesses the welfare cost of policies through the
measurement of the classical Dupuit’s surplus, i.e. in
its modern formulation the equivalent variation of in-
come or the compensating variation of income. It is
commonly acknowledged that surplus is preferable to
change in GDP or change in households’ final con-
sumption because these aggregates are measured at
constant prices according to the methods of national ac-
counting and do not capture the change in the structure
of prices, a main effect of climate change policies [7].
Moreover, it is revealing to split the welfare cost be-
tween its two components, the domestic component or
deadweight loss of taxation and the imported compo-
nent or gains from terms of trade.

2.2.1 Aggregate Version of GEMINI-E3 Used

in This Study

The classifications—breakdowns by country/region and
by sector/product—are framed according to the general
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Fig. 2 Nesting CES structure
of electricity production

context and the targets of each study. An important
issue applying Monte Carlo simulations is to make the
procedure consistent with respect to the uncertainty.
One may produce a set of scenarios large enough to
be representative of all possible realizations so that
the result interpretations are well founded. Thus, in
order to perform a high number of Monte Carlo sim-
ulations in a reasonable CPU time, we use an aggregate
version of GEMINI-E3. We use the following reduced
classification:

EUR European Union
OEC Other developed countries
EEC Oil exporting countries (Middle East and For-

mer Soviet Union)
ASI Asian countries
ROW Rest of the world

Using this classification, the CPU time for one run of
GEMINI-E3 is about 5 min.2

2.2.2 Modelling Power Generation in GEMINI-E3

In order to reliably model the role of CCS in power
generation, electricity production is now represented
by a nested CES function including—besides fossil fu-
els, nuclear and hydraulic plants—the new capacities
installed in the renewable technologies, as shown in
Fig. 2. Then power generation is separated from the

2We used a Dual 2.6-GHz Intel Xeon computer for the simula-
tions; thus, we had four available CPUs.

other activities (transmission and distribution) that ap-
pear through their factors of production at the top
of the nesting structure. Power generation involves
only two factors of production, capital and fuel (only
capital for renewables).3 Concerning CCS, we suppose
that this technology could only be used with coal and
CCS is implemented when the cost of carbon per ton
sequestered is inferior to the price of carbon com-
puted by the model at equilibrium. The cost of CCS
is described in Section 3.2.1. With this new nesting
structure, it is possible to better take into account the
power generation portfolio and to represent inter-fuel
substitutability as well as substitutability between fossil
and renewable power generation [43]. This represen-
tation does not distinguish between base and peak
production which will be only possible by representing
differentiated demands. We approximate the fact that
nuclear, renewable and fossil fuel are not completely
substitutable by using different elasticity parameters
with the assumption that σfos > σgen. We assume no
constraint on the deployment of nuclear and renewable
due for example to political acceptability.

2.2.3 GDP Growth Assumptions

Reference scenarios in CGE models are built from
forecasts or assumptions on economic growth in

3Labour in the generation activity is low compared to labour
in the other activities (transport, distribution) and of a similar
relative size for all plants. It is thus represented as a common
factor.
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Table 2 GDP Growth in percentage per year

2010–2020 2020–2030 2030–2040 2040–2050

(%) (%) (%) (%)

EUR 2.3 1.8 1.4 1.4

OEC 2.4 1.9 1.9 2.0

EEC 3.7 3.0 2.1 1.9

ASI 5.5 4.3 2.9 3.0

ROW 4.5 3.4 2.6 2.6

World 3.2 2.6 2.2 2.2

the various countries/regions and national (energy)
policies. Assumptions concerning GDP growth are
consistent with the World Energy Technology Outlook
done by the European Commission4 [16]. Table 2 sum-
marizes the projected annual GDP growth for each
region. The world GDP growth will converge in 2050
to 2.2% per year. The growth would be greater in
developing and emerging countries.

2.3 Harmonization of the Two Models

In this paper, we used a harmonized version of the mod-
els TIAM WORLD and GEMINI-E3, and both models
are run independently except that in the “policy” sce-
narios the climate target is given by TIAM WORLD.
Through harmonization, we ensure that certain key as-
sumptions shared between models are consistent. The
first common assumption is linked to economic growth.
We use the same demographic assumptions and GDP
growth by region, and the energy service demands of
TIAM WORLD are computed using drivers provided
by GEMINI-E3. These drivers in the TIAM WORLD
model are related to household consumption and in-
dustrial outputs (cement, iron and steel productions
etc.) which are directly computed by GEMINI-E3. A
similar procedure is done concerning energy prices. In
this paper, the energy prices are given exogenously
to both models (see Section 3.4). Finally, we use the
same assumptions about the costs of CCS (which is also
given exogenously see Section 3.2.1), and we ensure
that the costs of electricity generation are consistent
across technologies. This harmonization is only done
for the business as usual (BAU) scenario, whereas in
the climate policy scenarios, the only link between the
two models is the GHG target which is computed on
the basis of TIAM WORLD simulations.

4Note that these assumptions, imposed under the FP7 European
project Planets, lead to lower GDP growth than those of the
most recent forecasts [15] that incorporate the impact of the
current economic crisis. This low GDP growth is primarily due
to the conservative growth assumptions for developing countries
and especially Asia. This source of uncertainty is discussed in
Section 3.3.

3 Uncertainties

In this section, we describe the uncertain parameters
taken into consideration, and we give the assumptions
on probability distributions that are used to gener-
ate the ensemble of scenarios via a Latin hypercube
method. We classify the uncertain parameters in four
main categories: climate, technology, economy and en-
ergy prices.

3.1 Climate Uncertainty

Climate modelling is based on a set of critical physical
and technical parameters. Among these parameters,
Cs is one of the most important. Its assumed value
influences strongly the temperature increase projec-
tions computed by climate models and at the same time
Cs is highly uncertain. We suppose, as often assumed
in similar studies that Cs uncertainty will be resolved
in the future,5 around 2030. Therefore, our approach
is two-phased and combines optimal hedging computa-
tions and MC simulations.

In the first phase, we use the stochastic version of the
energy-economy model TIAM WORLD to generate
a hedging strategy from 2005 to 2030, followed by
contingent optimal recourse strategies after 2030. The
uncertainty on Cs is thus represented by a simple event
tree representing a discrete approximation of the Cs
probability distribution. Ideally, we would want to run
TIAM WORLD under a very detailed event tree on
Cs, in order to better approximate its continuous pdf.
This would produce a single hedging decision before
the resolution date (e.g. until 2030) and a large num-
ber of subsequent recourse abatement scenarios on all
the branches of the event tree after that date. Then,
GEMINI-E3 would be run using directly the emission
profiles obtained from TIAM WORLD results.

In practice, this approach is not computationally fea-
sible since the stochastic program resulting from a very
detailed event tree would create too large an instance
of TIAM WORLD, the model becoming then compu-
tationally intractable. Therefore, we discretized the pdf
of Cs and created an event tree with four branches
corresponding to Cs values 1.1◦C, 1.7◦C, 2.9◦C and
4.4◦C. The choice of the continuous distribution and
the discretization issue are detailed in Section 4.1. By
running TIAM WORLD in its stochastic programming
version with this reduced event tree, we obtain a single

5Some recent publications [1, 35] tend to affirm that it might
be impossible to resolve uncertainty about Cs in the foreseeable
future. If this is the case, the decision in 2030 should be based on
the worst-case alternative.
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Table 3 Emission trajectories
from TIAM WORLD
stochastic runs (in Gt of
C-eq)

2005 2010 2020 2030 2040 2050

Cs = 1.1 10.19 10.46 9.09 9.62 15.38 19.20

Cs = 1.7 10.19 10.46 9.09 9.62 15.11 18.60

Cs = 2.9 10.19 10.46 9.09 9.62 11.75 11.96

Cs = 4.4 10.19 10.46 9.09 9.62 5.39 3.17

Cs = 2.9 (det.) 10.19 10.46 11.62 11.99 11.22 10.55

hedging emission profile until 2030 and four recourse
policies after 2030, each one corresponding to a typical
Cs value. The four resulting emission trajectories (in
Gt of carbon-equivalent) are reported in Table 3 and
plotted in Fig. 3. We also indicate in Table 3 and in Fig.
3 the emission trajectories resulting from the determin-
istic version of TIAM WORLD with a Cs value6 of 2.9.

In the second phase, we exploit those four emis-
sion trajectories obtained from TIAM WORLD in the
Monte Carlo simulations. Using Latin hypercube tech-
nique, we generate a large random sample of 2000 val-
ues for the driving parameters of GEMINI-E3. Among
these parameters are Cs values which are sampled from
a triangular distribution in the interval [1.1, 4.4] with
mode 2.9 (see Fig. 4). For each sampled Cs value, we
use linear interpolation of the two adjacent typical val-
ues treated in TIAM WORLD to get a sample emission
trajectory. In the corresponding simulation, GEMINI-
E3 uses this emission trajectory as the imposed climate
policy after 2030.

The comparison of the emission trajectories of the
deterministic and the stochastic scenarios assuming the
same Cs value of 2.9 is quite instructive. In the de-
terministic case, the planner acts as if one knows with
certainty that the Cs value is 2.9. This is a relatively low
value, and therefore, the emissions need not decrease
rapidly until around 2030. In the stochastic case, the
policy maker does not have this knowledge until year
2030 and therefore must hedge against all possible
values of Cs, including the large value Cs = 4.4, and this
induces the model to decrease emissions much earlier
(i.e. before the resolution date of 2030), in order to
be positioned for any future possibility. At year 2030,
still in the stochastic scenario, the true value of Cs is
revealed, and if Cs happens to be equal to 2.9, the future
emissions need not be as small as in the deterministic
case. This crossing over of the two trajectories is quite
evident in Fig. 3 for CO2 emissions and less pronounced
for the other two greenhouse gases. In the experiments,
we use this deterministic run to contrast and discuss the
stochastic results.

6Note that the IPCC AR4 best estimate is 3.

3.2 Technological Uncertainties

3.2.1 Carbon Capture and Sequestration

In several recent studies (e.g. [31, 32]), the implemen-
tation of CCS technologies appears as a key element
of cost-effective GHG abatement policies. In [31], the
authors show that it is possible for the European elec-
tricity generation system to cut 85% of CO2 emis-
sions by 2050 when CCS penetrates significantly after
2020. In TIAM WORLD scenarios corresponding to
severe climate constraints, CCS technologies are used
for electricity production and transport fuel production
(hydrogen, biodiesel, alcohols, Fischer–Tropps, from
coal or biomass).

However, the deployment and the commercial avail-
ability of these technologies are still uncertain. As in
[31, 32], we assume in the CGE that CCS technologies
will be available in the future (e.g. between 2020 and
2050) only in the electricity production sector (coal
based production) with uncertain parameters concern-
ing capture, transportation and sequestration costs and
date of commercial availability.

As discussed in the technical report,7 [20] we re-
tained two contrasted scenarios for the CCS deploy-
ment, combined with high-cost vs. low-cost scenario.
In the first deployment scenario, CCS is available in
2020 and we assume the costs as reported in Table 4. In
the second scenario, CCS is commercially available in
2030 only, and the costs are the same as in the previous
scenario, but with year shifted 10 years on. To simulate
CCS cost trajectories for the stochastic analysis, we first
assume that the two above cost development scenarios
are equiprobable, and for each time period, we straight-
forwardly deduce from the figures in Table 4 a range
of possible realizations for the total CCS costs that is
the sum of transport, storage and capture costs. For
example, the total cost in 2020 for the first scenario will
take values within the interval [15 + 10 + 25, 20 + 10 +

50] = [50, 80]. Finally, we generate a cost trajectory by
sampling uniformly a unique random factor between 0

7Johnsson et al. [20] has been prepared by the working group on
the technology assessment of the PLANETS EU-project.
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Fig. 3 Emission trajectories from TIAM WORLD stochastic
runs (in Gt of C-eq)

and 1 that will be used for all periods to make linear
interpolation in the above-defined cost intervals.

3.2.2 Energy Ef f iciency Improvement

As most models used to assess climate change poli-
cies, GEMINI-E3 assumes an exogenous rate of energy
efficiency improvement called “autonomous energy
efficiency improvement” (AEEI) [5, 17]. This AEEI
handles the historical trend of efficiency improvement
that is independent of economic changes such that,
e.g. energy prices or economic growth. In GEMINI-
E3, the AEEI lies in the range of 1–2.2% per year
depending on time periods, regions and sectors. We
assume a normal distribution, normalized to a mean
of 1.0 and a standard deviation of 0.4, and apply the
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Table 4 Cost development scenario for transport, storage and
capture in e/ton of CO2

Year Transport Storage Capture Total

(high/low) (high/low) (high/low)

2020 20/15 10 50/25 80/50

2025 10/7 7 40/20 57/34

2030 5/5 5 37.5/17.5 47.5/27.5

2035 3.5/3 3.5 35/15 42/21.5

positive sampled value as a multiplicative factor for
the regionally and time varying AEEIs as specified
in GEMINI-E3. Note that this standard deviation is
similar to that retained by [42].

3.2.3 Elasticities of Substitution

Production is represented in GEMINI-E3 through
nested CES functions as shown in Fig. 5. We assume
that the possibilities of substitution are identical be-
tween countries for a given sector, but differ between
sectors. We focus our analysis on three elasticities
which play a central role in energy consumption in the
GEMINI-E3 model:

• The elasticity between aggregate inputs (i.e. the
elasticity between materials, energy, labour and
capital, represented in Fig. 5 by σ )

• The elasticity between electricity and fossil fuel
energy (σe)

• The elasticity between fossil fuel energies (σef)

In a certain sense, the elasticity of substitution can
serve as an indicator of technological “flexibility”. For
these three parameters, we retain two multiplicative

Fig. 5 Nesting CES structure of production in GEMINI-E3
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Table 5 Mean and standard deviation of historical per-capita
GDP growth rates 1950—2000 (source: [42])

Region Mean Standard

deviation (%)

USA 2.2 2.3

Canada 2.3 2.3

Mexico 2.2 5.2

Japan 4.9 3.5

Australia and New Zealand 2.0 1.8

European Union 2.8 1.6

Eastern Europe 1.1 3.9

Former Soviet Union 1.1 5.3

East Asia 4.3 4.7

China 4.3 3.7

India 2.3 2.7

Indonesia 2.7 5.0

Africa 1.0 1.8

Middle East 2.3 3.3

Central and South America 1.7 2.0

Rest of the world 2.2 3.5

random factors, one for σ and the other for σe and σef.
The two factors have a normal distribution, normalized
to a mean of 1.0 and a standard deviation of 0.3. This
assumption is in line with the standard deviation es-
timated in [39] and used in simulations of the EPPA
model [42].

3.3 Economic Growth Uncertainty

On the basis of the historical per-capita GDP growth
rates computed by [42] (see Table 5), we find that the
variance of this variable is greater in developing coun-
tries and lower in developed countries. Moreover, the
per-capita GDP growth is much higher in developing
countries, and the implications of this uncertainty are in
consequence particularly important on the world GDP
growth. In contrary, the uncertainty concerning the
population growth seems not really different between
these two regions, if we compare the world population
prospects done by the United Nation [38] among the
different assumptions used (i.e. fertility, mortality and
international migration). Consequently, we suppose
that the main uncertainty concerning the GDP growth
is located in developing countries, and this means in our
regional classification ASI and the ROW. In a CGE like
GEMINI-E3, the economic growth is derived from the
growth of production factors (labour, capital, energy)
and from the technical progress associated to each
factor.8 Among them, the most important factors are
the growth of labour force and the evolution of labour

8Note that we take an uncertainty on the technical progress
associated to energy, see Section 3.2.2.

productivity. The technical progress associated to each
factor is calibrated in this study in order to reproduce an
economic growth and energy consumptions consistent
with the World Energy Technology Outlook done by
the European Commission [16]. We retain the same
assumption concerning the growth of labour force in
all scenarios (i.e. stochastic runs) based on the median
variant of the United Nation, but we use different tech-
nical progress associated to labour in ASI and ROW
to represent the uncertainty surrounding the economic
growth of these two regions. For these productivity
factors, we use two different multiplicative random
factors having a normal distribution, normalized to a
mean of 1 and with a standard deviation equal to 30%.
We suppose also that these two technical progress are
correlated with a correlation ratio equal to 0.5, and a
similar assumption is also adopted in [42].

3.4 Oil and Gas Price Uncertainty

Oil price is highly volatile and has an important impact
on economy [33] (for example, it varied quickly be-
tween $40 and $140 between July 2008 and December
2008). The uncertainty related to oil price raises thus
a challenging issue. In the long term, oil price will be
affected by several factors, among which are the de-
velopment of oil reserves, the arrival of new extraction
techniques, the behaviour of oil producers (OPEC), the
emergence of unconventional oil, changes in demand
etc. In the last International Energy Outlook [14], the
US Department of Energy summarized this uncertainty
by choosing three alternative oil price cases which are
displayed on Fig. 6:

• In the reference case, world oil price (in real 2007
dollars) rises from $68 per barrel in 2006 to $130 per
barrel in 2030.

• In the high price case, world oil price climbs to $200
per barrel in 2030.

0

50

100

150

200

1980 1990 2000 2010 2020 2030

Reference

Low Price

High Price

Fig. 6 World oil price in International Energy Outlook 2009 in
2007 dollars per barrel [14]
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• In the low price case, it declines to $50 per barrel in
2015 and remains at that level through 2030.

To model the uncertainty of oil price, we use a
normal distribution with average value of 100$ and
a coefficient of variation of 25% to ensure a 95%
confidence interval [50, 150]. We assume that this price
is reached in 2015 and then remains constant through-
out the duration of the simulation in real value. This
assumption is in line with the DOE scenarios and
based on a panel experts review of the FP7 EU Project
PLANETS.

Natural gas price is strongly related to oil price
and several studies point out this relation. Siliverstovs
et al. [37] analyse the market integration for natural
gas and the link between oil price and gas price, and
their conclusions differ according to regions. They find
that following the liberalization of the US market, a
decoupling of natural gas prices and oil prices occurred.
For the European market, there is in contrary a strong
evidence for cointegration between the oil price brent
and European gas price. In Asia, the price indexation
of natural gas refers to blend of different crude oils.
Awerbuch and Sauter [4] have estimated the oil–gas
price correlation for the 1973–2003. They find that the
long-term oil–gas correlations for the USA and EU
are in range of 0.7 and that this indexation becomes
higher for more recent periods. Several factors explain
this relationship. At the demand side, natural gas and
oil products are substitutes in consumption (especially
for electricity generation and industrial process), and
an increase of crude oil price will increase the gas
demand and so its price. At the supply side, natural
gas is often produced as a co-product of oil, and long-
term contracts of imported gas retain indexation rules
on oil price. According to these studies, we assume an
indexation of gas prices to the price of oil at 0.75 (i.e.
the price of gas increases by 7.5% when the oil price
increases by 10%). For coal prices, we do not introduce
any uncertainty parameter, and the price is based on
the figures computed by the TIAM WORLD for the
BAU scenario. Note that these assumptions concerning
energy prices are only introduced in the BAU scenar-
ios; in practical terms, we calibrate the supply curves
of the energy sector (oil, natural gas and coal) in order
to reproduce these energy prices. In the climate policy
scenarios, we let the GEMINI-E3 model compute these
energy prices endogenously on the basis of supply–
demand equilibrium. Thus, in the case of ambitious
climate policy, the decline in fossil fuel consumption
leads to a decrease of energy prices.

There is an extensive theoretical and empirical liter-
ature on the macroeconomic effects of oil price shocks
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Fig. 7 Unbiased discrete pdf of Cs

[21]. Barsky and Kilian [6] identify a number of mech-
anisms that might provide a causal link from oil prices
to recessions, inflation and economic growth. However,
in a more recent paper, Blanchard and Gal [9] find
that the impacts of oil price shocks have changed over
time, with steadily smaller effects on output. For the
sake of simplicity, we do not consider in this paper
any correlation between energy price and economic
growth, and the two uncertainties are assumed to be
independent.

4 Implementation Issues

4.1 TIAM WORLD Stochastic for Generating
Optimal Hedging Strategies

The stochastic version of the energy economy model
TIAM WORLD [24] is used in the first phase of the
procedure described in Section 3.1 for generating hedg-
ing strategies for different Cs factors. The first concern
of this phase is the choice of an appropriate continuous
probability distribution to represent the uncertainty of
Cs. We have selected a triangular distribution on the in-
terval [1, 5] and with mode 2.9. This choice is motivated
by the observations that the mode 2.9 and the minimum
value of 1 are generally accepted in the literature [19].
Its maximum value is a controversial matter in the
literature. The proposed values are often between 4 and

Table 6 Discrete distribution
of probability for climate
sensitivity

Cs Probability

1.1 0.01

1.7 0.15

2.9 0.66

4.4 0.18
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Table 7 The set of quotas
used for the policy scenario

Regions Starting date of quotas Quotas in 2050 wrt 2005 Share of quotas

(reduction in brackets) (%)

EUR 2015 10% (reduction = 90%) 7

OEC 2015 10% (reduction = 90%) 16

ASI 2025 100% (reduction = 0%) 40

EEC 2025 100% (reduction = 0%) 16

ROW 2025 200% (reduction = 100%) 21

Sum 100

9, some studies proposing even larger maximum values.
In the present study, we choose the value 5 for technical
considerations, since we have observed that GEMINI-
E3 does not produce reasonable solutions for larger
values. Given those parameters (mode and range), we
also have observed that the impacts of the distribution
on the TIAM WORLD results are negligible.

The second issue to be resolved concerns the dis-
cretization of the triangular distribution. To limit the
size of the stochastic programming model, we shall use
a four-branch event-tree. The choice of the discrete
values for Cs must satisfy two conflicting conditions.
First, the discrete probability distribution must be an
unbiased approximation of the continuous pdf, but sec-
ond, the discrete Cs values must encompass most (or
all) the true range of possible Cs values. These two
conditions are indeed conflicting because if we choose
a broad range for the discrete Cs values (so as to satisfy
the second condition), the two extreme values (the
lowest and the largest) will not be representative of the
continuous pdf, thus violating the first condition.

In conclusion, we should choose the lowest discrete
value to be sufficiently larger than 1, in order to at-
tribute to it a non-zero probability. We propose Cs =

1.1 (see Fig. 7). In Fig. 7, the discrete value Cs = 1.1 is
an unbiased representative of the range extending from
1 to approximately 1.4. The four discrete probabilities
to be used are also indicated in Fig. 7 and Table 6.

Finally, we still have to motivate the use of different
ranges for the triangular distributions in the two-phase

procedure: [1, 5] with TIAM WORLD in stochastic
programming and [1.1, 4.4] with GEMINI-E3 in the
MC approach. When we perform the MC simulations
with GEMINI-E3, the emission path corresponding to
a particular Cs value will be obtained by linear interpo-
lation of the paths that have been computed by TIAM
WORLD for the four possible branches of the event
tree. Hence, the sampled Cs values must be contained
in the range of the discretized probability distribution
used in TIAM WORLD. Adjusting the triangular dis-
tribution to this range of the Cs pdf thus does the trick.

4.2 Monte Carlo Analysis with GEMINI-E3

We perform MC simulations of the aggregate GEMINI-
E3 model, using Latin hypercube sampling [18] from
the parameter distributions described in Section 3. MC
methods rely on repeated random sampling to gener-
ate values for key uncertain input parameters defining
scenarios and then identify a probability distribution
for some output parameters and/or performance crite-
ria. An experimental design is adopted ensuring that
the set of sample values for the uncertain parameters
defining the scenarios is randomly generated according
to the probability laws governing these processes. If
one wishes to ensure that each of the input parameter
components has all portions of its distribution repre-
sented by input values, one can divide the range of each
parameter component into N strata of equal marginal
probability 1/N and sample once from each stratum.

Table 8 Summarized
stochastic parameters

Uncertainty Probability distribution

Elasticity between aggregate inputs σ ∼ N(x̄, 0.3 · x̄)

Elasticity between energy inputs σe, σef ∼ N(x̄, 0.3 · x̄)

Autonomous energy efficiency improvement aeei ∼ N(x̄, 0.4 · x̄)

Economic growth of ASI gasi ∼ N(x̄, 0.15 · x̄)

Economic growth of ROW grow ∼ N(x̄, 0.15 · x̄)

Oil price poil ∼ N(x̄, 0.25 · x̄)

Year of commercial availability of CCS yccs ∼ Bernoulli(0.5)

Cost of CCS ccs ∼ U(0, 1)

Climate sensitivity Cs ∼ Triangular(1.1, 2.9, 4.4)
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Fig. 8 Energy consumption
in Mtoe in the BAU
deterministic scenario
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These samples for each component are then matched
at random. This is called the Latin hypercube sampling
[18]. This is one of several possible “space-filling” ex-
perimental designs. The output parameters are then
computed optimally for each scenario. In the final step,
these results are analysed through an identification
of their probability distributions. In the E3 case, one
obtains indicators of the likelihood of different long-

term output parameters related to climate, economy
and energy prices.

The advantages of this method are twofold. First, its
simplicity; it does not require any specific modifications
of the model. The user only needs to sample judi-
ciously the set of scenarios, and then simulations can
be run straightforwardly. Second, the model size does
not increase with the sample size and so a large enough

Fig. 9 Electricity generation
in Twh in the BAU
deterministic scenario

0

2000

4000

6000

8000

10000

12000

14000

16000

2
0
1
0

2
0
2
0

2
0
3
0

2
0
4
0

2
0
5
0

2
0
1
0

2
0
2
0

2
0
3
0

2
0
4
0

2
0
5
0

2
0
1
0

2
0
2
0

2
0
3
0

2
0
4
0

2
0
5
0

2
0
1
0

2
0
2
0

2
0
3
0

2
0
4
0

2
0
5
0

2
0
1
0

2
0
2
0

2
0
3
0

2
0
4
0

2
0
5
0

EUR OEC EEC ASI ROW

Renewable

Nuclear

Gas

Oil

Coal



64 F. Babonneau et al.

Fig. 10 GHG emissions in
Gt CO2-eq in the BAU
deterministic scenario
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sample set and scenario computations can be obtained
to identify the probability distributions of the output
parameters of interest.

The simulations presented here are based on 2,000-
member ensembles, and each sample is simulated under
a reference case scenario and under a climate pol-
icy scenario. The latter one has an objective in 2100
in global temperature increase of 2.1◦C above pre-
industrial levels. We suppose that the climate change
target is implemented through a worldwide CO2 emis-
sion market which begins in 2011, and the quotas of
each region are defined in respect to the rules pro-
posed in the second best scenario 2 (SC2) of the FP7

European Research Project PLANETS (see [26]). In
this SC2 scenario, it is assumed that the set of emis-
sions quotas (commitments) is defined, by specifying
the starting date of the commitment (before that date,
emissions are assumed to be those in the reference
case) and the percentage emission reduction in 2050
with respect to emissions in 2005. It is also assumed
that the reductions occur linearly from start date to
2050. Concerning European Union, we supposed that
its objective of 20% emission reduction w.r.t. 1990 by
2020 [11] is also implemented from 2008. On the ba-
sis of these rules, we compute on the period 2005 to
2050 the share of each region in the cumulative CO2

Table 9 CO2 price, GHG
abatement and tradable
permits in the deterministic
scenario

2020 2030 2040 2050

CO2 price in US$ 11 17 44 87

GHG abatement in % wrt BAU

EUR −7.7 −11.3 −22.0 −30.0

OEC −9.8 −15.0 −29.1 −40.4

ASI −18.2 −29.9 −42.8 −52.2

EEC −12.6 −21.9 −33.9 −45.1

ROW −12.0 −19.7 −29.7 −39.0

World −13.3 −22.1 −34.6 −44.7

Exchange of permits in MtC-eq (−): buying

EUR −437 −414 −371 −347

OEC −1,026 −996 −859 −748

ASI +717 +657 +619 +515

EEC +259 +289 +318 +387

ROW +488 +465 +293 +193

Sum 0 0 0 0
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Fig. 11 Change in energy
consumption in 2050 in
percent wrt BAU in the
deterministic scenario
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allocation which gives the weight applied to compute
for each year the allocation of quota by region in
the climate policy scenario. Table 7 summarizes these
assumptions and gives the computed weight.

4.3 Summary on Uncertain Parameters

We summarize in Table 8 the uncertain parameters
under study and the probability distributions used in
the Latin hypercube procedure.

5 Numerical Results

In the numerical study, we draw 2,000 samples with
Latin hypercube technique from the parameter dis-
tributions described in Table 8. For each sample, we
proceed in two steps:

• In step one, we run a BAU scenario, without any
climate policy.

• In step two, we perform a climate policy scenario as
it was described in Section 4.2.

At the end, we have performed 4,000 runs. We give
below our analyses on both types of runs, respectively.

We have also performed a deterministic run that will
be used in the stochastic analysis to compare the output
of this “average deterministic” run and the average of
the output in the MC analysis.

5.1 Average Deterministic Results

In this section, we report the main results from the
average deterministic run for both BAU and climate
policy scenario. We give to all stochastic parameters
their mean values, and we assume the optimistic date
of availability of CCS in 2020.

5.1.1 BAU Scenario Analysis

Figure 8 shows the resulting energy consumption in the
five parts of the world that we distinguish. The world
energy consumption would increase by 1.6% per year,
and the key driver of energy consumption is the GDP
growth: The growth of energy consumption would be
sustained in Asia and in the rest of the world (respec-
tively +2.3% and 2.2% per year) and moderate in the
OECD countries (0.7% in EUR and 1% in OEC). In

Table 10 Welfare cost (surplus in percent of household con-
sumption) in the deterministic scenario

2020 2030 2040 2050

(%) (%) (%) (%)

EUR −0.07 −0.01 −0.13 −0.55

OEC −0.29 −0.31 −0.65 −1.20

ASI 1.73 2.05 3.42 3.69

EEC −2.76 −4.30 −10.22 −16.45

ROW −0.16 −0.38 −1.98 −4.21

World −0.03 −0.01 −0.37 −1.16
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Table 11 Logit model on the
BAU scenario convergence
(0 if convergence; 1
otherwise)

In bold: most significant
values

Estimate Standard error z value Pr(> |z|)

Intercept 11.86 1.37 8.669 <2e−16

aeei 0.00 0.26 −0.004 0.996

σ −15.69 0.93 −16.911 <2e−16

σe, σef −0.06 0.33 −0.185 0.854

gasi −0.88 0.67 −1.315 0.189

grow 0.38 0.68 0.568 0.57

poil −0.36 0.41 −0.867 0.386

2050, DCs (EEC, ASI and ROW) represent 66% of
energy consumption against 56% in 2010. The energy
mix of the economy is mainly driven by the change of
the relative energy prices and by technological change.
As in this scenario, we do not assume different trends
in fossil energy prices and technological breakthrough,
and the energy mix remains almost unchanged over
the period. In 2050, oil would continue to remain the
dominant energy: Oil represents 32% of world energy
consumption, and the transport sector would remain
the main user of oil without significant penetration of
biofuels and other potential substitutes. Electricity and
coal contribute to 25% each of the energy balance, and
gas equals only 18% of energy consumption.

Figure 9 gives the electricity generation by fuel, and
world electricity generation rises from 22,600 TWh in
2010 to 38,000 TWh by 2030 and to 46,000 TWh by
2050. Without any constraint on the deployment of
power plants (such as a nuclear phase out) and taking
into account the fact that the hierarchy among energy
prices remains unchanged, the new installed capacities
do not modified the structure of electricity generation
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Fig. 12 Probability of convergence in function of σ

within each region. Coal remains the dominant energy
in electricity generation in Asia, and in less extent
in OEC, electricity generation from nuclear is mainly
located in developed countries, and energy exporting
countries continue to use mainly oil and natural gas to
produce electricity. Without any climate change policy
or environmental constraint (such as local air pollution
control or EU target on the penetration of renewable
energy by 2020), there is no strong penetration of re-
newable in the energy mix. Finally, in Fig. 10, we show
the resulting evolution of GHG emissions levels from
the five groups of countries under consideration.

5.1.2 Climate Policy Scenario Analysis

In the average deterministic case, the emission trajec-
tory is obtained from the deterministic run of TIAM
WORLD with 2.9◦C value for Cs (see Table 3). Table 9
shows the price of CO2; in 2030, the permit price would
be equal to US $11 and in 2050 to US $87. Mitigation
opportunities are comparable between regions, even
if they are significantly higher in Asia and energy ex-
porting countries. The exchange of tradable permits
results from the abatement opportunities and the initial
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endowments of permits, as it can be seen in Table 9
that industrialized countries would be net buyers and
other countries net seller. Figure 11 shows the change in
energy consumption by fuel in percent with respect to
baseline in 2050. The changes in consumption depend
on the energy mix in the baseline, the possibilities
of substitution, the CO2 content of each energy and
the existing energy taxation. Electricity consumption is
less affected, and the possibilities to produce electricity
from non-CO2 energy sources (nuclear, renewable) and
to use CCS with coal power generation limit the impact
of the CO2 price on the price of electricity. At the world
level, 74% of electricity generation done with coal
power plan uses CCS in 2050. The use of CCS limits the
drop in coal consumption which remains important, and
this decrease is mainly due to the declining use of coal
in the economy (excluding electricity generation) and
to the decrease of electricity consumption, which im-
pacts the production of coal power plant. The decrease
of oil and natural gas consumption is also important and
comparable in magnitude.

Table 10 presents the welfare cost; at the world level,
this cost reaches 1.2% of the households consumption
in 2050. The welfare cost by regions are quite different,
and they depend mainly on three factors:

• The cost of mitigation (i.e. deadweight loss of
taxation)

• The initial endowment of GHG permits
• The gains or loss coming from terms of trade

Asia benefits from the selling of permits and gains
coming from terms of trade, and its surplus is positive
and equals to 3.7% of the household consumption in
2050. On the contrary, despite sales of permits, energy
exporting countries is severely penalized by a drop in
its revenue coming energy exports, and its welfare cost

reaches 16% of its household consumption in 2050. The
ROW is in a situation comparable to that of energy
exporting countries because this region includes sub-
stantial energy exporting countries such as Venezuela,
Nigeria, Algeria and Libya, and the cost is evaluated
at 4.2% of the household consumption. Finally, the
cost for industrialized countries is rather limited, with
these countries benefitting from gains related to terms
of trade and to low abatement since GHG emissions do
not increase much over the period of simulation. This
is particularly the case in European countries where
weak GDP growth combined with low-energy intensity
leads to a GHG emissions increase at the end of the
simulation in the baseline scenario which is half of that
concerning the OEC region. The cost for EUR is equal
to 0.5% of the household consumption, to be com-
pared with the cost for OEC (1.2% of the household
consumption).

5.2 Analysing Uncertainty on BAU Scenarios

We report, in the section, the main results from the
BAU scenarios. We also have noticed that the out-
put of the deterministic BAU scenario corresponds
approximately to the average of the stochastic output.
This results was expected as no climate policy con-
straint is imposed on the BAU scenarios.

5.2.1 Economic Flexibility and Convergence

In 17% of BAU scenarios, GEMINI-E3 does not con-
verge, and these runs are infeasible. To interpret this re-
sult, we use a logit model where the dependent variable
is equal to one if the run is infeasible and 0 otherwise
and where the explanatory variables are the uncertain
parameters. In Table 11, one observes that only one

Table 12 Estimate of the
log(emission) in 2050

World EUR OEC ASI EEC ROW

Intercept 9.848 7.336 8.305 8.946 7.753 8.101

(11710.3) (9025.7) (11771.3) (8445.5) (8266.3) (15911.1)

log(aeei) −0.168 −0.178 −0.143 −0.201 −0.192 −0.096

(−102.8) (−112.7) (−104.7) (−98.1) (−105.6) (−97.2)

log(σ ) −0.012 0.033 −0.012 −0.012 0.036 −0.064

(−3.3) (9.4) (−3.9) (−2.6) (8.9) (−29.3)

log(σe) 0.003 0.001 −0.003 0.017 −0.014 −0.008

(1.3) (0.3) (−1.7) (6.0) (−5.8) (−6.3)

log(poil) −0.131 −0.203 −0.210 −0.072 −0.132 −0.131

(−40.3) (−64.9) (−77.3) (−17.8) (−36.6) (−66.7)

log(gasi) 0.295 0.029 0.006 0.688 0.076 0.026

(58.3) (−64.9) (1.5) (107.8) (13.5) (8.5)

log(grow) 0.065 0.010 0.007 0.011 0.010 0.332

(13.0) (5.9) (1.7) (1.8) (1.8) (109.6)

Adjusted R2 0.90 0.91 0.91 0.93 0.89 0.94
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parameter is significant, namely σ which is related9 to
the elasticity of substitution between aggregate inputs
(labour, capital, energy and other materials); this is a
measure of flexibility of the economy. When the value
of the σ parameter is small, the economic flexibility is
too weak, and GEMINI-E3 could not find any solution
and does not converge.

Figure 12 gives the probability of non-convergence
of a scenario as a function of the σ values. All σ values
simulated in the experiments are plotted (in small dia-
monds) either at the top or at the bottom of the figure
depending on non-convergence or convergence of the
scenario, respectively. One observes that the critical
value of the elasticity multiplier σ for convergence
with probability 1

2
is around 0.7. This means that when

the value of the elasticities is reduced by 30%, the
probability of convergence is equal to 1

2
.

5.2.2 Impact of Energy Consumption Uncertainty

on GHG Emissions

If we consider the runs that have converged (1,660
runs out of a sample of size 2,000), it is interesting to
take a look at the uncertainty regarding greenhouse gas
emissions. Figure 13 presents the GHG emissions of the
BAU scenarios and gives the 50% (dotted lines) and
100% (bold dotted lines) probability bounds of these
emissions. In 2050, the median value of GHG emissions
is located at 19.1 Gt of C-eq, the higher value is equal
to 27.3 and the lowest value is less than 13.6. Our
scenarios overlap the range of emissions covered by the
SRES scenarios published by the IPCC [19], except the
scenario A1FI in which the GHG emissions reach more
than 30 Gt of C-eq in 2050. We draw on Fig. 13 (dot-
ted line with asterisk marker) the emission trajectories
coming from the TIAM WORLD stochastic climate
constraint runs, and we observe that when the climate
sensitivity is low, there are some runs which would not
be constrained in 2050. On contrary, it should be noted
that all runs are constrained in 2030.

We estimate a log-linear model concerning the GHG
emissions and energy consumption by fuels in 2050 with
uncertain parameters as explanatory variables, and
Tables 12 and 13 present these estimations at the world
level and by regions. The results of these estimations
are always statistically significant, as can be easily seen
from the adjusted R2 which are never below 0.87. GHG
emissions are of course negatively related to technical

9Because the elasticities are different among sectors, we use here
the parameter σ which is used as a multiplier to the nominal
elasticities (i.e. when GEMINI-E3 is used without uncertainties).
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Fig. 14 Energy consumption in 2050

progress on energy (aeei). At the world level, the im-
pact of economic growth in Asia is crucial to global
emissions (0.295), and the economic growth of ROW
is of secondary importance (0.065). This is due to the
weight of Asia in global energy consumption, and its
energy mix based largely on coal. We find also that
the economic growths of ASI and ROW increase the
emissions of the other regions due to the trade effect,
and again the impact of Asia is more important than
the ROW. An increase in oil prices reduces emissions
of greenhouse gas emissions (−0.131) and despite its
positive impact on coal consumption, but this negative
impact is much more important in industrialized coun-
tries and quite less important in Asia; again the expla-
nation comes from the energy mix of each region. The
effects of elasticities (σ and σe − σef) are weaker and
more ambiguous and must be connected to energy mix
and industrial structure of each region. The effect of the
elasticity directly related to substitution within energy

0 10000 20000 30000

Coal BAU

Coal scenario

Oil BAU

Oil scenario

Gas BAU

Gas scenario

Nuclear BAU

Nuclear sc.

Renew. BAU

Renew. sc.

Twh

Fig. 15 Electricity generation in 2050
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Table 14 Logit model on the
climate policy scenario
convergence (0 if
convergence; 1 otherwise)

In bold: most significant
values

Estimate Standard error z value Pr(> |z|)

Intercept 9.64 27.29 0.353 0.72383

yccs 0.00 0.01 −0.046 0.96307

ccs −0.07 0.23 −0.293 0.76941

aeei −1.51 0.20 −7.601 2.95e−14

σ −9.88 0.75 −13.17 <2e−16

σe, σef −0.73 0.23 −3.105 0.0019

gasi 0.68 0.47 1.456 0.14542

grow −0.83 0.45 −1.839 6.60e−02

poil 3.64 0.39 9.347 <2e−16

obj2050 −0.05 0.01 −9.254 <2e−16

(σe − σef) is more clear on energy consumption. Coal
and electricity consumption are positively related to the
parameters σe and σef; in contrary, oil and natural gas
are negatively related. When these elasticities increase,
it is more easy to replace oil and natural gas when the
oil price increase10 by electricity and coal, and all other
things held constant.

Figures 14 and 15 present the uncertainties on energy
consumption and electricity generation by fuels in the
form of Tukey box plots in which the box indicates
the 50% probability range, the line within the box
gives the median value and the whiskers indicate the
95% range. When a climate constraint is taken into
account, this induces a decrease of energy consumption
in average, but the uncertainty range is more important.
In the case of electricity generation, the climate policy
scenarios result in a large increase of generation from
renewable with a quite important range of uncertainty.
The nuclear generation increases also but in a smaller
proportion. The case of generation from coal is inter-
esting, and the figures between climate policy scenarios
and the BAU scenarios are comparable showing that
the use of CCS allows to continue to burn coal for
electricity generation.

5.3 Analysing Uncertainty in Climate Policy Scenarios

On the basis of the 1,660 BAU scenarios which have
converged, we run the climate policy scenarios. Among
these 1,660 runs, 9% become infeasible under a climate
policy. Therefore, we estimate a new logit model where
the dependent variable is equal to one if the run is
infeasible and 0 otherwise with uncertain parameters
as explanatory variables. Table 14 gives the estimation.
Compared to the estimation done for the BAU scenar-
ios, we add three variables: the cost of CCS (ccs), the
year of CCS availability (2020 or 2030, yccs) and the

10Note that we suppose that the natural gas price is indexed on
oil price, see Section 3.4.

GHG target in 2050 (obj2050). Three factors explain
this infeasibility:

• The first factor is related to the “state of technol-
ogy” which is represented in a CGE by the value
of the elasticities (σ , σe, σef). The probability of
achieving the climate target is increasing with the
value of these elasticities. The parameter aeei may
also be included in this category because it repre-
sents the technical progress associated to energy
consumption.

• The second factor is of course linked to the climate
target itself (obj2050); if the climate sensitivity is
too high (which means that obj2050 is too low),
then the model could not reach this target. This
impossibility to meet stringent (ambitious) climate
target has been highlighted recently in the study
done by the Energy Modeling Forum [10]. This
study shows that the 450-ppmv CO2-eq concentra-
tion target is infeasible for 12 of 14 models used
if concentrations are not allowed to temporarily
exceed their long-term targets. If overshooting is
allowed, eight of 14 models were able to produce
a 450-ppmv CO2-eq case. Remember that with a
climate sensitivity equal to 3, the 450-ppmv CO2-
eq concentration target will result in a temperature
change relative to preindustrial around 1.9–2.2◦C.

• Finally, the oil price also affects the possibility
of reaching a target climate, when it increases
the probability decreases. This result is counter-
intuitive because we see that GHG emissions are
related negatively to oil price in the BAU scenarios.
We interpret this result by the fact that high oil
prices led to a more intensive use of coal (see
Table 13) and ex-post to an economy in which all
decarbonization becomes more difficult.

The uncertainties related to the other parameters do
not seem to affect the probability of achieving the
climate target, especially the variables related to the
CCS (yccs and ccs). The analysis that follows below
focuses now on the runs that have converged both in
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Fig. 16 CO2 price in US$ in 2030 (left) and 2050 (right)

the BAU scenarios and in the climate policy scenarios,
that is to say 1,508 runs.

5.3.1 Impact of Uncertainty on CO2 Price

Figure 16 shows the probability distributions of carbon
prices in 2030 and 2050. We estimate these carbon
prices on the uncertain parameters, and these estimates
are presented in Table 15. The results of these estima-
tions are statistically satisfactory, and all the explana-
tory variables are significant and have the expected
sign.

In 2030, there is no uncertainty in the GHG emis-
sions target due to the used hedging strategy (we
find a single hedging emission profile until 2030, see
Section 3.1), and the variable related to uncertainty
on GHG emissions target could not be used. The CO2

price follows a distribution similar to a log normal, the
probability range is US $15 to $126 and the mean of
the distribution is US $63. The most important factors
which explain the uncertainty related to CO2 price are
in order of decreasing importance the σ parameter
elasticity of substitution between aggregate inputs), the
economic growth of Asian countries, the oil price and
the aeei coefficient. Based on these estimates, we com-
pute the relationship between the CO2 price and the
σ parameter and the rate of growth in Asia. Figure 17
presents these links. The elasticity between σ and the
CO2 price is equal to 0.7. The relation between the
GDP growth of Asian countries and the CO2 price
could not be directly computed on the basis of the es-
timation presented in Table 15 because the coefficient
gasi represents the technical progress on labour which is
one of the determinants of the growth rate of the GDP.
We proceed in two steps: First, we estimate the impact

of the technical progress on the GDP, and secondly, we
compute the relationship between the GDP growth and
the CO2 price based on the estimation of the CO2 price
on the uncertain parameters. As it can be seen in Fig. 17
when the annual growth rate of Asia on the period 2010
to 2030 increases by one point, the CO2 increases by
US $16.

In 2050, the probability density of the CO2 price
appears quite different from that of 2030. Firstly, the
shape of the probability distributions is clearly asym-
metric which comes from the climate constraint in

Table 15 Estimate of the log(CO2 price)

In 2030 In 2050

Intercept 4.261 23.211

(1015.5) (101.2)

log(aeei) −0.313 −0.849

(−58.8) (−22.9)

log(σ ) −0.692 −0.507

(−58.9) (−6.0)

log(σe, σef) −0.194 −0.261

(−28.5) (−5.5)

log(poil) −0.406 −0.577

(−40.7) (−8.3)

log(gasi) 0.566 1.190

(36.4) (10.8)

log(grow) 0.140 0.432

(9.2) (4.1)

log(ccs) 0.022 0.068

(9.1) (4.0)

yccs −0.203 −0.099

(−42.3) (−2.9)

log(obj2050) – −5.266

– (−86.0)

Adjusted R2 0.90 0.86

In bold: most significant values
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Fig. 17 Relation in 2030 between σ and the CO2 price (left)—annual GDP growth of ASI and the CO2 price (right)

which low climate sensitivities lead to weakly binding
emission levels. These low emission constraints in 2050
combined with carbon-free investments made before
the revelation of uncertainty in climate sensitivity in
2030 led to a zero CO2 price in 19% of cases. Again
in contrary to the year 2030, the probability range of
the CO2 price is much more important (US $0–1,112)
even if the mean of the distribution is quite close (US
$84). If we remove observations in which the price
is equal to zero and estimate the CO2 price on the
uncertain parameters, we obtain the estimate presented
in Table 15 for the year 2050. The parameters σ , gasi,
poil and aeei remain significant, but the variable which
is the most important is the climate target (obj2050).

4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

Fig. 18 Relation between GHG emissions target (in GtC-eq) and
the CO2 price in 2050

Figure 18 shows the relation between the climate target
(obj2050) and the CO2 price; when the GHG emission
constraint is below 7 GtC-eq, the price increases very
rapidly reflecting the difficulty in reaching the climate
target.

5.3.2 Welfare Loss Indicator

Figure 19 presents the world welfare loss expressed
by an indicator which consists of the discounted world
surplus (compensative variation of income) divided by
the discounted household consumption. Its density dis-
tribution is similar to the one of the CO2 price for
the year 2050 (see Fig. 16). The world welfare loss
ranges from US $−14 trillion to $89 trillion with a

2 1 0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

Actualized world cost in % of household consumption

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

Fig. 19 World welfare loss indicator pdf
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Table 16 Estimate of the
welfare cost

In bold: most significant
values

World EUR OEC ASI EEC ROW

Intercept 8.418 8.872 6.533 21.442 7.208 9.617

(107.4) (37.5) (90.1) (12.1) (87.9) (109.2)

log(aeei) −0.681 −0.863 −0.509 −1.785 −0.440 −0.585

(−48.7) (−20.1) (−39.4) (−6.9) (−30.1) (−37.3)

log(σ ) −0.448 −0.805 −0.876 −1.484 −0.448 −0.374

(−14.2) (−8.1) (−30.1) (−3.1) (−13.9) (−10.8)

log(σe, σef) −0.293 −0.307 −0.202 −1.194 −0.217 −0.340

(−16.4) (−5.6) (−12.2) (−5.1) (−11.6) (−16.9)

log(poil) −1.405 −3.621 −1.390 −1.343 −0.588 −0.511

(−53.9) (−41.9) (−57.7) (−3.2) (−21.6) (−17.5)

log(gasi) 1.051 0.638 0.638 7.049 0.457 0.399

(25.8) (5.1) (16.9) (8.9) (10.8) (8.7)

log(grow) 0.209 0.077 0.060 −0.332 0.062 0.880

(5.2) (0.6) (1.6) (−0.6) (1.5) (19.6)

log(ccs) 0.017 0.001 0.025 0.039 0.021 0.010

(2.7) (0) (4.3) (0.3) (3.3) (1.4)

log(obj2050) −2.407 −2.817 −1.847 −6.943 −1.354 −2.519

(−117.4) (−45.2) (−97.4) (−11.6) (−63.1) (−109.4)

yccs −0.031 0.135 −0.074 −0.354 −0.121 0.052

(−2.5) (3.5) (−6.4) (−2) (−9.3) (3.7)

Adjusted R2 0.93 0.76 0.91 0.76 0.79 0.90

mean of $8 trillion. These figures are comparable to
those found in [10]. In some very few cases, the world
cost is negative (i.e. the climate policy scenario leads
to a welfare increase). These are situations in which
the climate sensitivity is low and the increase of oil
prices high. In these cases, investments made before
2030, leading to lower energy consumption, coincide
with a situation of high energy prices, resulting in a way
of a perfect foresight in energy prices. Of course, this
result must be related to the structure of GEMINI-E3
which assumes adaptive anticipation. Table 16 presents
the estimate of the welfare cost on the uncertain pa-
rameters. Because we use the logarithm of this welfare
cost as an explanatory variable, we remove the negative
values of the sample. The results of these estimates
are consistent with those of the CO2 price. The most
important parameter is the climate target, after come
at the world level, the oil price, the growth of Asia
and the autonomous energy efficiency improvement.
At regional level, we find the same effects with minor
differences

5.3.3 Uncertainty in CCS

One objective of this paper was to study the role of
technology and especially the CCS in climate policies.
A cursory reading of our results might suggest that
this technology has a limited impact in our scenarios.
Indeed, it is true that the parameters linked to CCS
(ccs and ycss) have limited impacts and the estimates
related to them are not always significant. This does not

mean that this technology does not contribute to GHG
abatement, but rather that the uncertainty surrounding
its costs is of limited scope particularly in respect to the
CO2 price. Indeed, in 2030, in 74% of cases, the cost
of CCS is lower than the carbon price, and the use of
this technology is a viable proposition. Is it interesting
to look at the percentage of effective GHG emission
reduction via CCS in Fig. 20. When the climate sen-
sitivity becomes high, the contribution of the CCS to
the GHG abatement converges to 20%. The figure
also shows that when the climate constraint is low, this
share is much higher and may even exceed 100%. This
result must be related to the hedging strategy that we
have taken into account, and when the climate sensi-
tivity is very low, the investment in CCS done before
2030 leads to an amount of CO2 sequestration above

60%
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40%
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Fig. 20 Percentage of emission reductions effected via CCS in
2050 in respect to the GHG emissions in Gt C-eq
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Table 17 Percentage of
emission reductions effected
via CCS in 2050

DEMETER 38%

GEMINI-E3 19%

TIAM WORLD 75%

TIAMEC 43%

WITCH 11%

the GHG abatement required in 2050. We suppose in
GEMINI-E3 that the CCS installed would not be re-
moved, and it might be more realistic to assume that
in these situations the sequestration facilities are dis-
connected from the power plant. This result also shows
that sequestration is used first, and then when the
abatement increases, the potential for sequestration is
used to its maximum and peaks at 20% to the total
reduction. We compared the results of GEMINI-E3
concerning the share of emissions sequestered with
four other models in the case of a scenario in which
we assume that the total atmospheric radiative forcing
resulting from long lived greenhouse gases would not
exceed 3.5 W/m2 at any time during the twenty-first
century.11 Table 17 indicates the percentages of CO2

emission reductions that are done via CCS in 2050. CCS
appears to play a major role in the TIAM WORLD
approach to CO2 abatement, an important role for
TIAMEC and DEMETER and a more modest role
for GEMINI-E3 and WITCH. These wide differences
come not only from widely different assumptions on
the potential for sequestration allowed in each model
but also from the fact that TIAM WORLD is the only
model having technological options for producing elec-
tricity, hydrogen and synthetic fuels from biomass with
CCS, which result in negative emissions of CO2. Such
technologies are powerful ones when strong reductions
are needed, and they are heavily adopted by the TIAM
WORLD model. They go a long way in lowering the
cost of abatement and thus the price of carbon as we
saw in previous sections.

5.3.4 Deterministic Equivalent Solution vs. MC

Simulations

To conclude this analysis on climate policy scenarios,
we compare the results in the “average deterministic”
run and the average of these results in the MC analysis
runs. The most significant results are shown in Table 18.

These output values are remarkably different. We
notice that the average deterministic run underesti-
mates the carbon price in 2030 and the total cost.

11This corresponds roughly to a mean surface temperature in-
creases between 2.23◦C and 2.52◦C with a climate sensitivity
equal to 3 according to the TIAM WORLD model.

Table 18 Deterministic equivalent solution vs. MC simulations

Deterministic Averages of MC

equiv. sol. simulations

CO2 price in 2030 $17 $63

CO2 price in 2050 $87 $84

Discounted world −3.8 −8.0

cost (trillion $)

% of electricity 74% 66%

generation done

by coal using CCS

This shows how misleading could be an analysis based
only on the use of average values in a deterministic
model, and this demonstrates the added insight on
policy analysis that is brought by a stochastic analysis
of these two models.

6 Conclusion

The purpose of this paper was to show the impact
of uncertainty on the integrated assessment of climate
policies. We identified four classes of uncertainties
related to climate, technology, economy and energy
prices, respectively. Several conclusions emerge from
this work.

The main uncertainty is related to the climate sen-
sitivity, and it is necessary to determine its value as
soon as possible. Indeed, we showed that if the climate
sensitivity is too high, simply the climate target cannot
be achieved in the CGE model. This impossibility to
meet stringent climate target has been also highlighted
in the study done by the Energy Modeling Forum [10].
We also showed that the cost of climate policy is very
dependent on the climate sensitivity, and when the
GHG emission constraint is below 7 GtC-eq in 2050,
the cost increases very rapidly reflecting the difficulty
in reaching the climate target.

Concerning the technological aspects of climate pol-
icy, we found that the availability of carbon-free tech-
nologies is also determinant and that there is no single
silver bullet to combat carbon emissions. Thus, ac-
cording to the model, CCS alone cannot provide the
solution to the problem of GHG emissions increase,
and we must promote the development of a basket
of carbon-free technologies. From this perspective, we
must encourage not only the development of substitu-
tion among energy forms but also between energy and
other inputs. This means also that we must encourage
all substitutions and that the transition to a carbon-
free economy asked to modify not only our production
process but also our way of life itself.
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Our simulations have shown, however, that other
factors are liable to affect the success and the cost of
climate policy. The price of oil and behind it the behav-
iour of OPEC affects the possibility of reaching a target
climate. The climate negotiation must therefore incor-
porate the specificities of these countries. Note that the
oil exporting countries have always conditioned their
participation in such an agreement to financial compen-
sation transfers. The economic development of Asia is
also a decisive factor in the cost and the success of a
climate policy. China and India have to be integrated
as soon as possible in the climate agreement.

Finally, we found that in 9% of runs, the climate
target cannot be reached, and this means that if miti-
gation policies should be implemented, climate change
adaptation policies must also be set up in parallel in
case it would be simply impossible to achieve the target.
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