
Combining Strengths of Circuit-based and CNF-based
Algorithms for a High-Performance SAT Solver

Malay K Ganai, Lintao Zhang1, Pranav Ashar, Aarti Gupta, and Sharad Malik1

NEC USA CCRL, Princeton NJ 1EE Dept, Princeton University
{malay,ashar,agupta}@nec-lab.com {lintaoz,malik}@ee.princeton.edu

Abstract
We propose Satisfiability Checking (SAT) techniques that lead to
a consistent performance improvement of up to 3x over state-of-
the-art SAT solvers like Chaff on important problem domains in
VLSI CAD. We observe that in circuit oriented applications like
ATPG and verification, different software engineering techniques
are required for the portions of the formula corresponding to
learnt clauses compared to the original formula. We demonstrate
that by employing the same innovations as in advanced CNF-
based SAT solvers, but in a hybrid approach where these two
portions of the formula are represented differently and processed
separately, it is possible to obtain the consistently highest
performing SAT solver for circuit oriented problem domains. We
also present controlled experiments to highlight where these
gains come from. Once it is established that the hybrid approach
is faster, it becomes possible to apply low overhead circuit-based
heuristics that would be unavailable in the CNF domain for
greater speedup.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-aided
Engineering – Computer-aided design.

General Terms
 Algorithms, Performance, Experimentation,Verification.

Keywords
Boolean Satisfiability (SAT), Boolean Constraint
Propagation (BCP), Conjunctive Normal Form (CNF),
Bounded Model Checking (BMC).

1. Introduction
The Boolean Satisfiability (SAT) problem has extensive
applications in VLSI CAD. Recent advances in SAT solvers
based on Conjunctive Normal Form (CNF) representation have
resulted in significantly improved performance. In particular,
innovative techniques for decision variable selection [1], Boolean

constraint propagation (BCP) [1, 2], and backtracking with
conflict analysis based learning [1, 3] have led to high-
performance CNF-based SAT solvers like Chaff [1]. For circuit
application domains such as Automatic Test Pattern Generation
(ATPG) [4], equivalence checking [5], and Bounded Model
Checking (BMC) [6], the Boolean reasoning problem is typically
derived from the circuit structure. This has also led to interest in
circuit-based SAT solvers [4, 5, 7, 8], which use circuit specific
knowledge to guide the search. In general, attempts to include
circuit structure information into CNF-based solvers have been
unsuccessful due to significant overhead. Furthermore, it is also
difficult to integrate CNF-based solvers with other useful
techniques like BDD sweeping and dynamic circuit
transformation [5]. On the other hand, CNF-based solvers are
better than circuit-based solvers in handling conflict analysis and
learned clauses [1].

In this paper, we propose techniques that combine the strengths of
circuit-based and CNF-based SAT solvers. In particular, we
describe a hybrid SAT solver where the original logic formula is
processed in circuit form, and the learned clauses are processed
separately in CNF. We discuss important differences between the
two approaches, and highlight how we reap benefits from both by
employing state-of-art innovations in BCP, decision variable
selection, and backtracking. Our technique leads to a consistent
performance improvement of up to 3x over state-of-the-art SAT
solvers like Chaff on representative problem applications.

2. Motivation for Hybrid SAT
Boolean Constraint Propagation (BCP) forms the core of
deduction in many successful and widely studied SAT algorithms
based on the DPLL algorithm [9]. When a variable is assigned,
BCP is used to find the consequences of the assignment, like unit
clauses produced and whether a conflict exists. It constitutes
about 80% of the total SAT time in our experience. Therefore,
any improvement in BCP significantly benefits the overall
performance of a SAT solver. We start by describing the details
of the circuit-based BCP and CNF-based BCP that we use in our
approach. Their relative strengths motivate the specific hybrid
scheme we use.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

ic permission and/or a fee.

2.1 Circuit-Based BCP
Existing circuit-based SAT solvers [4, 5, 7, 8] use a circuit
representation based on AND and OR gate vertices, with
INVERTERs either as separate vertices, or as attributes on the
gate inputs. Constant propagation across AND/OR gates is, of
course, well known, but the speed tends to be very
implementation dependent. We use a lookup table for fast
implication propagation [5]. Based on the current values of the
inputs and output of the vertex, the lookup table determines the

specif

DAC 2002, June 10-14, 2002, New Orleans, Louisana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006…$5.00.

 1

next “state” of the gate where the state encapsulates any implied
values and the next action to be taken for the vertex. The
algorithm imply (from [5]), shown in Figure 1 for a generic
vertex type, iterates over the circuit graph. For each vertex, it
determines new implied values and the direction for further
processing. As an example, Figure 2 (from [5]) shows some cases
from the implication lookup table for a two-input AND gate. For
Boolean logic, only one case, a logical 0 at the output of an AND
vertex, requires a new case split to be scheduled for justification.
All other cases either cause a conflict and backtracking, or further
implications, or a return to process the next element to be
justified. Due to its low overhead, this implication algorithm is
highly efficient. As an indication, on a 750MHz Intel PIII with
256 MB, it can execute over one million implications per second.

2.2 CNF-Based BCP
For CNF, we use the BCP scheme called lazy update proposed by
Chaff [1] :
1. For each clause, only two literals are monitored for state

change.
2. The clause state is updated lazily when a variable is

assigned, i.e., only when the two monitored literals coincide.
3. It does not require state change for clauses during the

backtracking process, thus unassigning a variable takes
constant time.

For clauses with many literals, lazy update works significantly
better than other schemes like SATO [2], and GRASP[3]. It is
especially useful for large clauses where it avoids unnecessary
traversal.

2.3 Comparison of BCP Algorithms
There is an inherent overhead built into the translation of circuit
gates into clauses. A two-input gate translates to three clauses in
the CNF approach, while in the circuit-based approach a gate is
regarded as a monolithic entity. Therefore, in the circuit approach
an implication across a gate requires a single table lookup, while
in the CNF approach it requires processing multiple clauses. In
addition, the CNF-based BCP in Chaff does not keep track of the
clauses that have been satisfied in order to reduce overheads.
However, there is an inherent cost associated with visiting the
satisfied clauses. Specifically, even if a clause gets satisfied due
to an assignment to some un-watched literal, the watched literal
pointers could still get updated. Overall, for the generally small
clauses arising from circuit gates, these differences translate to
significant differences in BCP time, usually in favor of the
circuit-based approach.

Algorithm imply (vertex, value) {
 assign (vertex, value);
 lvalue = get_value (vertex->left);
 rvalue = get_value (vertex->right);
 next_state = lookup (value, lvalue, rvalue);
 switch (next_state) {
 case CONFLICT:
 return 0;
 case CASE_SPLIT:
 add_vertex(vertex, justification_queue);
 return 1;
 …
 case PROP_LEFT_AND_RIGHT:
 if (imply (vertex->left, next_state->lvalue) &&
 imply (vertex->right, next_state->rvalue)) {
 return 1;
 }
 return 0;
 …
 }
 return 1;
}

Figure 1: Circuit-based BCP Procedure

On the other hand, learned clauses arising from conflict analysis
are typically much larger than those arising from two-input gates.
Adding a large learned clause as a gate tree can lead to a
significant increase in the size of the circuit. This in turn, can
increase the number of implications, thereby negating any
potential gains obtained from circuit-based BCP. For such
clauses, it is more appropriate to maintain them as monolithic
clauses and take advantage of CNF-based 2-literal watching and
lazy update to process them efficiently.

F

Based on these observations, we propose a hybrid approach in
which we maintain the circuit-based logic expressions using a
uniform-gate data structure, and the learned clauses as CNF. We
process them separately using the appropriate BCP approach.

2.4 BCP Results
Our experimental results for BCP are shown in Table 1. The
times shown are in seconds per million implications on a 750
MHz Intel PIII with 256 MB. The examples used are large logic
formulas derived from the BMC application on a large industrial
circuit. The columns Hybrid and Chaff show BCP times for
the hybrid and CNF approaches, respectively, on learned clauses

PROP_LEFT_RIGHT

STOP

CONFLICT

CASE_SPLIT

PROP_FORWARD

1
X

1
0

X

0

X
X

X
1

X

1

0
X

0
X

X

X

X
X

0
0

X

0

1
1

1
1

X

X

.

Current Next Action

igure 2: 2-Input AND Lookup Table for Fast

Implication Propagation

added during SAT as well as the original circuit formula. The size
of the formula in terms of the number of primary inputs and gates
is indicated in the columns pi and gate. The column CH is the
ratio between the Chaff and Hybrid BCP times. It is clear that
the hybrid approach is consistently faster than the CNF-based
approach in Chaff on these large problems.

2

To demonstrate the effect of learned clauses, we also present the
BCP time per million implications for the circuit-based method
on only the circuit formula for the same problems, shown in the
Column Structure. Note that this is, in a sense, the best case
possible, since BCP on the learned clauses is not strictly
necessary for the search. Now, the column CS (HS) is the ratio
between the Chaff (Hybrid) time and the Structure
time, and reflects the overhead due to the extra work in
performing BCP on the learned clauses as well. Clearly, large
learned clauses introduce a significant overhead in comparison to
the circuit formula alone. Our hybrid approach uses the better-
suited CNF approach for large learned clauses.

3. Hybrid SAT Solver
A faster BCP with the hybrid approach is only the partial story.
The additional benefit of a hybrid approach is that circuit-based
decision heuristics can be easily applied, which are otherwise
unavailable in a pure CNF approach. Thus, the overall speedup
we observe with our hybrid solver can be attributed to the
improved BCP in the deduction engine, and additional use of
circuit-based heuristics in the decision engine. In this section we
demonstrate the benefits derived from them. The diagnosis engine
in our hybrid solver is similar to that in Chaff [1], originally
proposed by GRASP [3]. In the hybrid approach, conflict driven
learning records both clauses and circuit nodes as the reasons for
the failure of search.

Our experimental results are presented in Table 2. The times are
on a 750 MHz Intel PIII with 256 MB. The logic formulas are
derived from the application of BMC on three large industrial
circuits (bus, arbiter, and controller) and some public domain
benchmarks1 [10] for which circuit descriptions were available.
(Note that use of our hybrid approach requires a circuit
description, which is not available for most public benchmarks
for SAT.) In order not to pollute the results, we ran the hybrid
approach on more than 70 logic formulas, but report results only
on those requiring more than 40s of CPU time. The formulas are
distributed between unsatisfiable and satisfiable instances. The
size of the formula can be determined from the pi and gate
columns indicating the number of primary inputs and gates.

1 In the table, 2dlx* is 2dlx_cc_mc_ex_bp_f_new

3.1 Comparison of Chaff and Hybrid SAT for
Identical Heuristics Logic pi gate

Formula Hybrid Chaff CH Structure CS HS
230U 5016 228346 1.154 1.589 1.37 0.9 1.76 1.28
252U 5244 242170 1.168 1.586 1.35 0.914 1.73 1.28
272U 5244 238755 1.101 1.411 1.28 0.894 1.578 1.23
274S 3863 179217 1.11 1.52 1.369 0.908 1.67 1.22
275U 5472 255979 1.162 1.566 1.347 0.955 1.64 1.22
276U 5472 256000 1.172 1.571 1.34 0.91 1.72 1.29
405U 6612 325069 1.236 1.605 1.29 0.92 1.74 1.34
406U 6612 325090 1.207 1.639 1.35 0.94 1.74 1.28
407U 6612 325090 1.232 1.694 1.375 0.942 1.798 1.31
409U 6612 325090 1.245 1.639 1.316 0.923 1.775 1.35
435U 6840 338899 1.233 1.668 1.35 0.995 1.676 1.24

2dlx_100 557 33848 1.82 2.22 1.21 0.931 2.38 1.95

BCP Time (sec/million implications)

Table 1: BCP Time per million implications

Our first comparison is between the hybrid solver and Chaff for
exactly the same heuristics, i.e. without use of any circuit-based
decision heuristics. Apart from the different BCP algorithms on
the circuit formula, the two use identical algorithms for order of
processing of implications, conflict-based learning, backtracking,
and decision variable selection. In spite of the same heuristics, a
minor difference can creep in due to the uncontrolled choice of
the conflict node when several nodes are in conflict. This
difference may have a pronounced effect in satisfiable instances,
for which one of the two solvers may get lucky in hitting upon a
solution early. However, it has relatively less effect in
unsatisfiable instances since the entire search space must be
explored. With this in mind, we consider only the unsatisfiable
instances as reasonable data for this controlled experiment. The
columns Chaff and H indicate the times for the Chaff and
hybrid solvers, respectively. Due to unavailability of a circuit-
based solver in public domain, we could not provide any
comparison results with such solvers at this time.

It is clear that the overall performance of the hybrid solver is
much better than Chaff. The typical ratio of Chaff time to H
Example pi gate Chaff H H-jft C/H C/H-jft

53U 6384 546779 1893.43 1629.05 639.20 1.16 2.96
55U 6612 571185 1585.08 1402.80 715.20 1.13 2.22
51U 6156 524116 1283.82 1010.90 508.80 1.27 2.52
47U 5700 477047 1190.05 863.60 391.87 1.38 3.04
49U 5928 499710 1072.64 738.30 606.70 1.45 1.77

435U 6840 338899 922.61 326.50 317.00 2.83 2.91
3pipe 198 10810 920.50 245.60 566.90 3.75 1.62
45U 5472 452641 888.86 415.27 443.40 2.14 2.00

434U 6840 338899 880.84 532.10 318.00 1.66 2.77
407U 6612 325090 736.49 367.20 588.00 2.01 1.25
438U 6840 338899 647.71 427.20 283.00 1.52 2.29
437U 6840 338899 621.17 281.10 419.00 2.21 1.48
439U 6840 338899 599.14 441.80 453.00 1.36 1.32
436U 6840 338899 559.08 369.60 384.00 1.51 1.46
105U 1017 94528 547.68 248.90 506.30 2.20 1.08
409U 6612 325090 496.31 437.20 329.00 1.14 1.51
406U 6612 325090 486.86 353.90 317.00 1.38 1.54
405U 6612 325069 471.50 585.00 445.00 0.81 1.06
43U 5244 429978 471.13 353.87 181.25 1.33 2.60

109U 1055 101180 441.33 173.70 229.00 2.54 1.93
408U 6612 325090 433.21 358.10 347.00 1.21 1.25
41U 5016 405572 364.03 230.27 233.80 1.58 1.56
39U 4788 382909 307.59 208.87 120.20 1.47 2.56

101U 979 88088 230.97 141.00 117.00 1.64 1.97
276U 5472 256000 193.24 132.30 104.00 1.46 1.86
37U 4560 358503 174.47 146.96 139.12 1.19 1.25
252U 5244 242170 165.46 118.30 93.50 1.40 1.77
35U 4332 335840 165.20 128.90 76.02 1.28 2.17
275U 5472 255979 162.97 132.10 129.00 1.23 1.26
230U 5016 228346 132.54 100.60 77.00 1.32 1.72
33U 4104 311434 98.64 80.10 42.10 1.23 2.34
31U 3876 288771 92.22 51.30 29.30 1.80 3.15
2dlx* 414 25075 89.07 49.30 72.40 1.81 1.23
272U 5244 238755 47.54 27.70 8.00 1.72 5.94

109S 2374 144590 811.12 330.4 182.5 2.45 4.44
105S 2286 134654 432.22 196.4 72.9 2.20 5.93
108S 2367 142198 423.63 766.8 138.5 0.55 3.06
101S 2198 125070 388.35 399.38 111.9 0.97 3.47
102S 2235 127558 344.34 312.7 144.4 1.10 2.38
103S 2242 129818 343.95 481.8 86.7 0.71 3.97
107S 2330 139578 286.1 256.4 178.2 1.12 1.61
104S 2279 132350 270.01 384.4 49.1 0.70 5.50
106S 2323 137230 226.57 198.58 94.4 1.14 2.40
100S 2191 120305 153.41 374.8 97.8 0.41 1.57

2dlx_100 557 33848 120.12 76.8 17 1.56 7.07

Unsatisfiable Instances

Satisfiable Instances

Table 2: Comparison of Hybrid SAT Solver and Chaff

 3

time, shown in the Column C/H, is greater than 1.3, with the
maximum being 3.75. The ratio of the total time spent in Chaff to
the total time spent in the hybrid solver for all the unsatisfiable
instances is 1.48. Due to possibly a bad choice for a conflict node,
we do see a larger time with the hybrid solver in a few cases, e.g.,
405U.

For the satisfiable instances shown in Table 2, the Chaff to
Hybrid ratio is distributed evenly on either side of 1.0 with a large
standard deviation. This is most likely due to the randomness in
choice of a conflict node, as explained earlier.

3.2 Incorporation of Circuit-Based Heuristics
Once it is established that the hybrid approach is, in fact, faster, it
becomes possible to apply low overhead circuit-based heuristics
that would be unavailable in the CNF domain to obtain an even
higher speedup. Information regarding gate fanout/fanin, paths,
and signal direction becomes readily available without overhead.
We find that such an approach works much better than the circuit-
oblivious decision heuristics used in the pure CNF-based
methods. As an example, the column H-jft in Table 2 shows
the time in our hybrid SAT solver with the use of the justification
frontier heuristic [7]. This heuristic restricts the decision nodes to
be those that justify the values on their fanout node. The use of
this heuristic further improves performance in 24 of the 34
unsatisfiable instances. The ratio of the total time spent in Chaff
to the total time spent in the hybrid solver for the unsatisfiable
instances is now 1.89 versus the earlier 1.48, with the maximum
ratio being 5.94 versus the earlier 3.75.

Now consider the satisfiable instances in Table 2. Where there
was wide variation in the speedups (or lack thereof) earlier, we
now have consistent and significant speedup over the CNF
approach. The ratio of the total time spent in Chaff to the total
time spent in the hybrid solver is now 3.24 for the satisfiable
instances with the maximum ratio being 7.07. Clearly, the circuit
heuristics lead to a satisfying solution much faster than the
decision heuristics in Chaff.

Based on these data, there appears to be a clear benefit in using
the circuit-based heuristics for both the satisfiable and
unsatisfiable instances. In a sense, the hybrid approach allows us
to exploit the benefits of the circuit-based as well as the CNF-
based heuristics.

3.3 Impact on Verification Applications
SAT is a core engine in many verification applications like
equivalence checking [5], and BMC [6]. In fact, it is typical for a
long BMC run to last for multiple days, requiring thousands of
applications of the SAT solver. A speed up by a factor of two in
the core engine, therefore, can prove to be very significant since it
would lead to a large absolute saving in the run time. Another
practical aspect of our hybrid approach is that it is unnecessary to
incur the overhead of copying the entire circuit into a CNF data
structure for the purpose of SAT. This has the benefit of reducing
the memory requirement of these applications, allowing them to
scale to larger circuits, or in the case of BMC, also to a larger
number of time frames.

4. Conclusions
We have presented a hybrid SAT solver that combines the
strengths of circuit-based and CNF-based SAT solvers. We
demonstrated it to be the highest performing SAT solver in
circuit-based application domains. Our approach is based on an
analysis of the source of efficiencies in state-of-art techniques for
BCP, decision variable selection, and backtracking. We apply this
understanding to develop SAT techniques leveraging off the
circuit nature of these application domains while maintaining
advantages arising from the CNF representation. Moreover, any
future improvements in the performance of circuit-based and
CNF-based SAT solvers can directly translate into improvements
of the hybrid SAT solver as well.

References

[1] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, "Chaff: Engineering an Efficient SAT Solver," in
Proceedings of Design Automation Conference, 2001.

[2] H. Zhang, "SATO: An efficient propositional prover," in
Proceedings of International Conference on Automated
Deduction, vol. 1249, LNAI, 1997, pp. 272-275.

[3] J. P. Marques-Silva and K. A. Sakallah, "GRASP: A Search
Algorithm for Propositional Satisfiability," IEEE
Transactions on Computers, vol. 48, pp. 506-521, 1999.

[4] M. Schulz, E. Trischler, and T. Sarfert, "SOCRATES: A
highly efficient ATPG System," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 7, pp. 126-137, 1988.

[5] A. Kuehlmann, M. Ganai, and V. Paruthi, "Circuit-based
Boolean Reasoning," in Proceedings of Design Automation
Conference, 2001.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, "Symbolic
Model Checking without BDDs," in Proceedings of
Workshop on Tools and Algorithms for Analysis and
Construction of Systems (TACAS), vol. 1579, LNCS, 1999.

[7] H. Fujiwara and T. Shimono, "On the Acceleration of Test
Generation Algorithms," IEEE Transactions on Computers,
vol. C-32, pp. 265-272, 1983.

[8] P. Goel, "An implicit enumeration algorithm to generate
tests for Combinational circuits," IEEE Transactions on
Computers, vol. C-30, pp. 215-222, 1981.

[9] M. Davis, G. Longeman, and D. Loveland, "A Machine
Program for Theorem Proving," Communications of the
ACM, vol. 5, pp. 394-397, 1962.

[10] M. N. Velev, "Benchmark Suites.
http://www.ece.cmu.edu/~mvelev," October 2000.

 4

http://www.ece.cmu.edu/~mvelev,

