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Abstract 
We propose Satisfiability Checking (SAT) techniques that lead to 
a consistent performance improvement of up to 3x over state-of-
the-art SAT solvers like Chaff on important problem domains in 
VLSI CAD. We observe that in circuit oriented applications like 
ATPG and verification, different software engineering techniques 
are required for the portions of the formula corresponding to 
learnt clauses compared to the original formula. We demonstrate 
that by employing the same innovations as in advanced CNF-
based SAT solvers, but in a hybrid approach where these two 
portions of the formula are represented differently and processed 
separately, it is possible to obtain the consistently highest 
performing SAT solver for circuit oriented problem domains. We 
also present controlled experiments to highlight where these 
gains come from. Once it is established that the hybrid approach 
is faster, it becomes possible to apply low overhead circuit-based 
heuristics that would be unavailable in the CNF domain for 
greater speedup. 

Categories and Subject Descriptors 
J.6 [Computer Applications]: Computer-aided 
Engineering  – Computer-aided design.   

General Terms 
 Algorithms, Performance, Experimentation,Verification. 

Keywords 
Boolean Satisfiability (SAT), Boolean Constraint 
Propagation (BCP), Conjunctive Normal Form (CNF), 
Bounded Model Checking (BMC). 

1. Introduction 
The Boolean Satisfiability (SAT) problem has extensive 
applications in VLSI CAD. Recent advances in SAT solvers 
based on Conjunctive Normal Form (CNF) representation have 
resulted in significantly improved performance. In particular, 
innovative techniques for decision variable selection [1], Boolean 

constraint propagation (BCP) [1, 2], and backtracking with 
conflict analysis based learning [1, 3] have led to high-
performance CNF-based SAT solvers like Chaff [1]. For circuit 
application domains such as Automatic Test Pattern Generation 
(ATPG) [4], equivalence checking [5], and Bounded Model 
Checking (BMC) [6], the Boolean reasoning problem is typically 
derived from the circuit structure. This has also led to interest in 
circuit-based SAT solvers [4, 5, 7, 8], which use circuit specific 
knowledge to guide the search. In general, attempts to include 
circuit structure information into CNF-based solvers have been 
unsuccessful due to significant overhead. Furthermore, it is also 
difficult to integrate CNF-based solvers with other useful 
techniques like BDD sweeping and dynamic circuit 
transformation [5]. On the other hand, CNF-based solvers are 
better than circuit-based solvers in handling conflict analysis and 
learned clauses [1]. 
 
In this paper, we propose techniques that combine the strengths of 
circuit-based and CNF-based SAT solvers. In particular, we 
describe a hybrid SAT solver where the original logic formula is 
processed in circuit form, and the learned clauses are processed 
separately in CNF. We discuss important differences between the 
two approaches, and highlight how we reap benefits from both by 
employing state-of-art innovations in BCP, decision variable 
selection, and backtracking. Our technique leads to a consistent 
performance improvement of up to 3x over state-of-the-art SAT 
solvers like Chaff on representative problem applications. 

2. Motivation for Hybrid SAT  
Boolean Constraint Propagation (BCP) forms the core of 
deduction in many successful and widely studied SAT algorithms 
based on the DPLL algorithm [9]. When a variable is assigned, 
BCP is used to find the consequences of the assignment, like unit 
clauses produced and whether a conflict exists. It constitutes 
about 80% of the total SAT time in our experience. Therefore, 
any improvement in BCP significantly benefits the overall 
performance of a SAT solver. We start by describing the details 
of the circuit-based BCP and CNF-based BCP that we use in our 
approach. Their relative strengths motivate the specific hybrid 
scheme we use. 
  

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

ic permission and/or a fee. 

2.1 Circuit-Based BCP 
Existing circuit-based SAT solvers [4, 5, 7, 8] use a circuit 
representation based on AND and OR gate vertices, with 
INVERTERs either as separate vertices, or as attributes on the 
gate inputs. Constant propagation across AND/OR gates is, of 
course, well known, but the speed tends to be very 
implementation dependent. We use a lookup table for fast 
implication propagation [5]. Based on the current values of the 
inputs and output of the vertex, the lookup table determines the 

specif 

 

DAC 2002, June 10-14, 2002, New Orleans, Louisana, USA. 
Copyright 2002 ACM 1-58113-461-4/02/0006…$5.00. 

 1



next “state” of the gate where the state encapsulates any implied 
values and the next action to be taken for the vertex. The 
algorithm imply (from [5]), shown in Figure 1 for a generic 
vertex type, iterates over the circuit graph. For each vertex, it 
determines new implied values and the direction for further 
processing. As an example, Figure 2 (from [5]) shows some cases 
from the implication lookup table for a two-input AND gate. For 
Boolean logic, only one case, a logical 0 at the output of an AND 
vertex, requires a new case split to be scheduled for justification. 
All other cases either cause a conflict and backtracking, or further 
implications, or a return to process the next element to be 
justified. Due to its low overhead, this implication algorithm is 
highly efficient. As an indication, on a 750MHz Intel PIII with 
256 MB, it can execute over one million implications per second. 
 
 

2.2  CNF-Based BCP  
For CNF, we use the BCP scheme called lazy update proposed by 
Chaff [1] :  
1. For each clause, only two literals are monitored for state 

change. 
2. The clause state is updated lazily when a variable is 

assigned, i.e., only when the two monitored literals coincide. 
3. It does not require state change for clauses during the 

backtracking process, thus unassigning a variable takes 
constant time. 

For clauses with many literals, lazy update works significantly 
better than other schemes like SATO [2], and GRASP[3]. It is 
especially useful for large clauses where it avoids unnecessary 
traversal. 
 
2.3 Comparison of BCP Algorithms 
There is an inherent overhead built into the translation of circuit 
gates into clauses. A two-input gate translates to three clauses in 
the CNF approach, while in the circuit-based approach a gate is 
regarded as a monolithic entity. Therefore, in the circuit approach 
an implication across a gate requires a single table lookup, while 
in the CNF approach it requires processing multiple clauses. In 
addition, the CNF-based BCP in Chaff does not keep track of the 
clauses that have been satisfied in order to reduce overheads. 
However, there is an inherent cost associated with visiting the 
satisfied clauses. Specifically, even if a clause gets satisfied due 
to an assignment to some un-watched literal, the watched literal 
pointers could still get updated. Overall, for the generally small 
clauses arising from circuit gates, these differences translate to 
significant differences in BCP time, usually in favor of the 
circuit-based approach. 

Algorithm imply (vertex, value) { 
    assign (vertex, value); 
    lvalue = get_value (vertex->left); 
    rvalue = get_value (vertex->right); 
    next_state = lookup (value, lvalue, rvalue); 
    switch (next_state) { 
      case CONFLICT: 
        return 0; 
      case CASE_SPLIT: 
        add_vertex(vertex, justification_queue); 
        return 1; 
        … 
      case PROP_LEFT_AND_RIGHT: 
        if (imply (vertex->left, next_state->lvalue) && 
            imply (vertex->right, next_state->rvalue)) { 
              return 1; 
        } 
        return 0; 
        … 
    } 
    return 1; 
} 

Figure 1: Circuit-based BCP Procedure 

 
On the other hand, learned clauses arising from conflict analysis 
are typically much larger than those arising from two-input gates. 
Adding a large learned clause as a gate tree can lead to a 
significant increase in the size of the circuit. This in turn, can 
increase the number of implications, thereby negating any 
potential gains obtained from circuit-based BCP. For such 
clauses, it is more appropriate to maintain them as monolithic 
clauses and take advantage of CNF-based 2-literal watching and 
lazy update to process them efficiently. 

F

 
Based on these observations, we propose a hybrid approach in 
which we maintain the circuit-based logic expressions using a 
uniform-gate data structure, and the learned clauses as CNF. We 
process them separately using the appropriate BCP approach.  
 
2.4 BCP Results 
Our experimental results for BCP are shown in Table 1. The 
times shown are in seconds per million implications on a 750 
MHz Intel PIII with 256 MB. The examples used are large logic 
formulas derived from the BMC application on a large industrial 
circuit. The columns Hybrid and Chaff show BCP times for 
the hybrid and CNF approaches, respectively, on learned clauses 
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igure 2: 2-Input AND Lookup Table for Fast 

Implication Propagation 

added during SAT as well as the original circuit formula. The size 
of the formula in terms of the number of primary inputs and gates 
is indicated in the columns pi and gate. The column CH is the 
ratio between the Chaff and Hybrid BCP times. It is clear that 
the hybrid approach is consistently faster than the CNF-based 
approach in Chaff on these large problems.  
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To demonstrate the effect of learned clauses, we also present the 
BCP time per million implications for the circuit-based method 
on only the circuit formula for the same problems, shown in the 
Column Structure. Note that this is, in a sense, the best case 
possible, since BCP on the learned clauses is not strictly 
necessary for the search. Now, the column CS (HS) is the ratio 
between the Chaff (Hybrid) time and the Structure 
time, and reflects the overhead due to the extra work in 
performing BCP on the learned clauses as well. Clearly, large 
learned clauses introduce a significant overhead in comparison to 
the circuit formula alone. Our hybrid approach uses the better-
suited CNF approach for large learned clauses.  

3. Hybrid SAT Solver 
A faster BCP with the hybrid approach is only the partial story. 
The additional benefit of a hybrid approach is that circuit-based 
decision heuristics can be easily applied, which are otherwise 
unavailable in a pure CNF approach. Thus, the overall speedup 
we observe with our hybrid solver can be attributed to the 
improved BCP in the deduction engine, and additional use of 
circuit-based heuristics in the decision engine. In this section we 
demonstrate the benefits derived from them. The diagnosis engine 
in our hybrid solver is similar to that in Chaff [1], originally 
proposed by GRASP [3]. In the hybrid approach, conflict driven 
learning records both clauses and circuit nodes as the reasons for 
the failure of search. 
 
Our experimental results are presented in Table 2. The times are 
on a 750 MHz Intel PIII with 256 MB. The logic formulas are 
derived from the application of BMC on three large industrial 
circuits (bus, arbiter, and controller) and some public domain 
benchmarks1 [10] for which circuit descriptions were available. 
(Note that use of our hybrid approach requires a circuit 
description, which is not available for most public benchmarks 
for SAT.) In order not to pollute the results, we ran the hybrid 
approach on more than 70 logic formulas, but report results only 
on those requiring more than 40s of CPU time. The formulas are 
distributed between unsatisfiable and satisfiable instances. The 
size of the formula can be determined from the pi and gate 
columns indicating the number of primary inputs and gates. 

                                                           
1 In the table, 2dlx* is 2dlx_cc_mc_ex_bp_f_new 

3.1 Comparison of Chaff and Hybrid SAT for 
Identical Heuristics Logic pi gate

Formula Hybrid Chaff CH Structure CS HS
230U 5016 228346 1.154 1.589 1.37 0.9 1.76 1.28
252U 5244 242170 1.168 1.586 1.35 0.914 1.73 1.28
272U 5244 238755 1.101 1.411 1.28 0.894 1.578 1.23
274S 3863 179217 1.11 1.52 1.369 0.908 1.67 1.22
275U 5472 255979 1.162 1.566 1.347 0.955 1.64 1.22
276U 5472 256000 1.172 1.571 1.34 0.91 1.72 1.29
405U 6612 325069 1.236 1.605 1.29 0.92 1.74 1.34
406U 6612 325090 1.207 1.639 1.35 0.94 1.74 1.28
407U 6612 325090 1.232 1.694 1.375 0.942 1.798 1.31
409U 6612 325090 1.245 1.639 1.316 0.923 1.775 1.35
435U 6840 338899 1.233 1.668 1.35 0.995 1.676 1.24

2dlx_100 557 33848 1.82 2.22 1.21 0.931 2.38 1.95

BCP Time (sec/million implications)

Table 1: BCP Time per million implications

Our first comparison is between the hybrid solver and Chaff for 
exactly the same heuristics, i.e. without use of any circuit-based 
decision heuristics. Apart from the different BCP algorithms on 
the circuit formula, the two use identical algorithms for order of 
processing of implications, conflict-based learning, backtracking, 
and decision variable selection. In spite of the same heuristics, a 
minor difference can creep in due to the uncontrolled choice of 
the conflict node when several nodes are in conflict. This 
difference may have a pronounced effect in satisfiable instances, 
for which one of the two solvers may get lucky in hitting upon a 
solution early. However, it has relatively less effect in 
unsatisfiable instances since the entire search space must be 
explored. With this in mind, we consider only the unsatisfiable 
instances as reasonable data for this controlled experiment. The 
columns Chaff and H indicate the times for the Chaff and 
hybrid solvers, respectively. Due to unavailability of a circuit-
based solver in public domain, we could not provide any 
comparison results with such solvers at this time. 
 
It is clear that the overall performance of the hybrid solver is 
much better than Chaff. The typical ratio of Chaff time to H 
Example pi gate Chaff H H-jft C/H C/H-jft

53U 6384 546779 1893.43 1629.05 639.20 1.16 2.96
55U 6612 571185 1585.08 1402.80 715.20 1.13 2.22
51U 6156 524116 1283.82 1010.90 508.80 1.27 2.52
47U 5700 477047 1190.05 863.60 391.87 1.38 3.04
49U 5928 499710 1072.64 738.30 606.70 1.45 1.77

435U 6840 338899 922.61 326.50 317.00 2.83 2.91
3pipe 198 10810 920.50 245.60 566.90 3.75 1.62
45U 5472 452641 888.86 415.27 443.40 2.14 2.00

434U 6840 338899 880.84 532.10 318.00 1.66 2.77
407U 6612 325090 736.49 367.20 588.00 2.01 1.25
438U 6840 338899 647.71 427.20 283.00 1.52 2.29
437U 6840 338899 621.17 281.10 419.00 2.21 1.48
439U 6840 338899 599.14 441.80 453.00 1.36 1.32
436U 6840 338899 559.08 369.60 384.00 1.51 1.46
105U 1017 94528 547.68 248.90 506.30 2.20 1.08
409U 6612 325090 496.31 437.20 329.00 1.14 1.51
406U 6612 325090 486.86 353.90 317.00 1.38 1.54
405U 6612 325069 471.50 585.00 445.00 0.81 1.06
43U 5244 429978 471.13 353.87 181.25 1.33 2.60

109U 1055 101180 441.33 173.70 229.00 2.54 1.93
408U 6612 325090 433.21 358.10 347.00 1.21 1.25
41U 5016 405572 364.03 230.27 233.80 1.58 1.56
39U 4788 382909 307.59 208.87 120.20 1.47 2.56

101U 979 88088 230.97 141.00 117.00 1.64 1.97
276U 5472 256000 193.24 132.30 104.00 1.46 1.86
37U 4560 358503 174.47 146.96 139.12 1.19 1.25
252U 5244 242170 165.46 118.30 93.50 1.40 1.77
35U 4332 335840 165.20 128.90 76.02 1.28 2.17
275U 5472 255979 162.97 132.10 129.00 1.23 1.26
230U 5016 228346 132.54 100.60 77.00 1.32 1.72
33U 4104 311434 98.64 80.10 42.10 1.23 2.34
31U 3876 288771 92.22 51.30 29.30 1.80 3.15
2dlx* 414 25075 89.07 49.30 72.40 1.81 1.23
272U 5244 238755 47.54 27.70 8.00 1.72 5.94

109S 2374 144590 811.12 330.4 182.5 2.45 4.44
105S 2286 134654 432.22 196.4 72.9 2.20 5.93
108S 2367 142198 423.63 766.8 138.5 0.55 3.06
101S 2198 125070 388.35 399.38 111.9 0.97 3.47
102S 2235 127558 344.34 312.7 144.4 1.10 2.38
103S 2242 129818 343.95 481.8 86.7 0.71 3.97
107S 2330 139578 286.1 256.4 178.2 1.12 1.61
104S 2279 132350 270.01 384.4 49.1 0.70 5.50
106S 2323 137230 226.57 198.58 94.4 1.14 2.40
100S 2191 120305 153.41 374.8 97.8 0.41 1.57

2dlx_100 557 33848 120.12 76.8 17 1.56 7.07

Unsatisfiable Instances

Satisfiable Instances

Table 2: Comparison of Hybrid SAT Solver and Chaff
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time, shown in the Column C/H, is greater than 1.3, with the 
maximum being 3.75. The ratio of the total time spent in Chaff to 
the total time spent in the hybrid solver for all the unsatisfiable 
instances is 1.48. Due to possibly a bad choice for a conflict node, 
we do see a larger time with the hybrid solver in a few cases, e.g., 
405U.  
 
For the satisfiable instances shown in Table 2, the Chaff to 
Hybrid ratio is distributed evenly on either side of 1.0 with a large 
standard deviation. This is most likely due to the randomness in 
choice of a conflict node, as explained earlier. 

3.2 Incorporation of Circuit-Based Heuristics 
Once it is established that the hybrid approach is, in fact, faster, it 
becomes possible to apply low overhead circuit-based heuristics 
that would be unavailable in the CNF domain to obtain an even 
higher speedup. Information regarding gate fanout/fanin, paths, 
and signal direction becomes readily available without overhead. 
We find that such an approach works much better than the circuit-
oblivious decision heuristics used in the pure CNF-based 
methods. As an example, the column H-jft in Table 2 shows 
the time in our hybrid SAT solver with the use of the justification 
frontier heuristic [7]. This heuristic restricts the decision nodes to 
be those that justify the values on their fanout node. The use of 
this heuristic further improves performance in 24 of the 34 
unsatisfiable instances. The ratio of the total time spent in Chaff 
to the total time spent in the hybrid solver for the unsatisfiable 
instances is now 1.89 versus the earlier 1.48, with the maximum 
ratio being 5.94 versus the earlier 3.75.  
 
Now consider the satisfiable instances in Table 2. Where there 
was wide variation in the speedups (or lack thereof) earlier, we 
now have consistent and significant speedup over the CNF 
approach. The ratio of the total time spent in Chaff to the total 
time spent in the hybrid solver is now 3.24 for the satisfiable 
instances with the maximum ratio being 7.07. Clearly, the circuit 
heuristics lead to a satisfying solution much faster than the 
decision heuristics in Chaff. 
 
Based on these data, there appears to be a clear benefit in using 
the circuit-based heuristics for both the satisfiable and 
unsatisfiable instances. In a sense, the hybrid approach allows us 
to exploit the benefits of the circuit-based as well as the CNF-
based heuristics. 

3.3 Impact on Verification Applications 
SAT is a core engine in many verification applications like 
equivalence checking [5], and BMC [6]. In fact, it is typical for a 
long BMC run to last for multiple days, requiring thousands of 
applications of the SAT solver. A speed up by a factor of two in 
the core engine, therefore, can prove to be very significant since it 
would lead to a large absolute saving in the run time. Another 
practical aspect of our hybrid approach is that it is unnecessary to 
incur the overhead of copying the entire circuit into a CNF data 
structure for the purpose of SAT. This has the benefit of reducing 
the memory requirement of these applications, allowing them to 
scale to larger circuits, or in the case of BMC, also to a larger 
number of time frames. 

4. Conclusions 
We have presented a hybrid SAT solver that combines the 
strengths of circuit-based and CNF-based SAT solvers. We 
demonstrated it to be the highest performing SAT solver in 
circuit-based application domains. Our approach is based on an 
analysis of the source of efficiencies in state-of-art techniques for 
BCP, decision variable selection, and backtracking. We apply this 
understanding to develop SAT techniques leveraging off the 
circuit nature of these application domains while maintaining 
advantages arising from the CNF representation. Moreover, any 
future improvements in the performance of circuit-based and 
CNF-based SAT solvers can directly translate into improvements 
of the hybrid SAT solver as well. 
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