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Combining Strings and Necklaces for Interactive
Three-Dimensional Segmentation of Spinal Images

Using an Integral Deformable Spine Model
Sennay Ghebreab* and Arnold W. M. Smeulders, Senior Member, IEEE

Abstract—Segmentation of the spine directly from three-di-
mensional (3-D) image data is desirable to accurately capture
its morphological properties. We describe a method that allows
true 3-D spinal image segmentation using a deformable integral
spine model. The method learns the appearance of vertebrae from
multiple continuous features recorded along vertebra boundaries
in a given training set of images. Important summarizing sta-
tistics are encoded into a necklace model on which landmarks
are differentiated on their free dimensions. The landmarks
are used within a priority segmentation scheme to reduce the
complexity of the segmentation problem. Necklace models are
coupled by string models. The string models describe in detail
the biological variability in the appearance of spinal curvatures
from multiple continuous features recorded in the training set.
In the segmentation phase, the necklace and string models are
used to interactively detect vertebral structures in new image data
via elastic deformation reminiscent of a marionette with strings
allowing for movement between interrelated structures. Strings
constrain the deformation of the spine model within feasible solu-
tions. The driving application in this work is analysis of computed
tomography scans of the human lumbar spine. An illustration of
the segmentation process shows that the method is promising for
segmentation of the spine and for assessment of its morphological
properties.

Index Terms—Energy-minimization methods, functional data
analysis, interactive image segmentation, landmark-based object
segmentation, statistical deformable models.

I. INTRODUCTION

T
HREE-DIMENSIONAL (3-D) image segmentation is an
essential task for image-based analysis of spinal mor-

phology. This is difficult to achieve fully automatically with
current segmentation methods due to the articulate visual ap-
pearance of the spine and its close contact proximity to ribs and
other organs. The shape of vertebrae exhibits many protrusions
and topological accidents, violating the smoothness assumption
under which many segmentation methods operate. Apart from
this, their gray-level appearance is in most cases far from
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evident due to insufficient image contrast, interfering anatom-
ical structures, and other local irregularities. A segmentation
method that does not take into consideration the inhomo-
geneous shape and gray-level appearance of the spine will
encounter serious problems and fail. It is, therefore, desirable to
construct a spine segmentation method that exploits shape and
gray-level inhomogeneities to facilitate image segmentation
rather than being hampered by such inhomogeneities.

Commonly, spinal image segmentation is done by fitting
a priori geometrical models of vertebrae and a priori spatial
models of inter-relationships between vertebrae to edges in the
image. There are three important shortcomings to this. First,
the models only capture a priori shape and spatial information,
while the appearance of the spine in the image is also defined
by gray-level features. There is also a need to model gray-level
appearance [1]. Second, geometrical and spatial models often
lack expressive power to catch the full range of feasible image
appearances of the spine. Third, geometrical and spatial models
often offer no room for human-computer interaction, which
is still crucial for segmentation. In order to construct an apt
spine segmentation model it is natural i) to model shape as well
as gray-level features, ii) to address the natural variability of
these features and iii) to use human-computer interaction for
exploiting inhomogeneities in these features

This paper presents a segmentation method that combines
strings [2] and necklaces [3] into a deformable integral spine
model. Strings focus on learning the most relevant biological
variation in the visual appearance of the spine as a whole under
the premise that this variation can be well captured in a sta-
tistical sense. Learning in this context is reduced to statistical
analysis of multiple continuous shape and gray level features
in a given training set of segmented spinal images. Necklaces
aim to exploit inhomogeneities in multiple continuous shape
and gray-level features of vertebrae that are also deduced from
a given training set of segmented spinal images. The premise
is that feature inhomogeneities can be reliably detected in the
training phase and then interactively used as salient features in
the image segmentation phase. Hence, we enhance the segmen-
tation model with a priori knowledge about natural variation
and anatomical saliency in the visual appearance of the spine
rather than focusing on more a priori geometrical or spatial
knowledge.

The paper is organized as follows. In Section II related
work on segmentation of spinal images is discussed. Section
III briefly describes the image material used in this work and
introduces the proposed method. The following issues are ad-
dressed: the necklace model for capturing vertebral structures,
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the string model for expressing spinal curvatures and the spine

model for segmenting the entire spine by elastic deformation

in the image reminiscent of a marionette with interrelated

structures moved by strings. In Section IV an illustration of the

entire segmentation process is given. Discussion and conclusion

follow in Section V.

II. RELATED WORK

Image-based analysis of spinal morphology predominantly

involves multiplanar images on which two-dimensional (2-D)

segmentation models, e.g., [4] and [5] or 3-D segmentation

models, e.g., [6] and [7], are applied. Here, we discuss a number

of 3-D models for segmentation of 3-D spinal or vertebral im-

ages in terms of boundary model, objective function, model

deformation and interaction.

In [8], an image segmentation model is proposed that uses

prior knowledge of an object’s structure to guide the search

for its boundaries. The boundary model is a 3-D radial sur-

face, which is a direct extension of the radial contour model [9]

that has also been applied for interactive segmentation of ver-

tebral structures. The surface is represented as a series of par-

allel slices, where the center points for the slices are collinear,

forming an axis that runs perpendicular to all the slices. A real-

istic radial surface model of vertebral structures is constructed

on the basis of a training set. The user instantiates a shape model

for a given volume dataset by indicating a set of landmarks in

the volume data. These landmarks define the model’s local co-

ordinate system within the image volume, and may also provide

initial values for one or two radials. A constraint propagation

algorithm is invoked to find the values for the remaining radials

that are consistent with these starting points. The radial surface

is deformed in the image to optimize an objective function such

that in the result radials correspond with highlighted edges in the

volume image. During segmentation, an uncertainty interval is

maintained for each radial so as to keep track of which values

still satisfy the constraints to maintain the trained shape of the

model.

In [10] and [11], a more sophisticated model is introduced

for segmentation of the cervical spine. The cervical spine model

is a finite-element model augmented with additional structures

to locate landmarks, contours, surfaces, and regions. The spine

model is constructed on the basis of a training set of spinal im-

ages. This training set is fed to a tessellation algorithm and a

smoothing and triangle decimation step to produce a typical set

of triangular surface patches comprising each individual ver-

tebra. The surfaces and volumes are used in statistical estimation

modules to interactively localize a number of a priori selected

landmarks in a new image, using the finite-element model as a

road map. Once the landmarks are found they are successively

employed to refine the vertebra models using a nonlinear opti-

mization method that aims to minimize the distance of the model

surface to the vertebra surface in the image. The objective func-

tion that drives the model deformation is based on gray-value

intensity, image gradient and curvature properties. Other works

that apply a finite element model for segmentation of spinal or

vertebral structures include [12].

In [13] and [14], a method is presented which allows the de-

velopment of a statistical shape model of an object’s surface,

in the reference these are vertebral surfaces. A statistical shape

Fig. 1. From left to right: axial, sagittal, and coronal cross sections of a
spinal CT image. The images reveal an infrarenal aortic aneurism, renal and
oesteoporotic fracture of the plate only obvious on the sagittal reconstruction.

model is obtained from a training set by principal component

analysis. For image segmentation, the average shape model is

interactively placed in the image in the proximity of the verte-

bral structure of interest. To this end, mesh cut-lines of the av-

erage shape model are roughly positioned onto orthogonal cuts

of a 3-D computed tomography (CT) image. The average model

is then deformed in statistically feasible ways to find the verte-

bral boundary in the gray-level image. Model deformation re-

duces to optimization of the weights of the first principal eigen-

modes and of the translational and rotational parameters. The

statistical shape model is easily extended to capture multiple

vertebrae, however, without the capacity to explicitly quantify

properties of the entire spine. Other works that use a statistical

shape model for segmentation of spinal or vertebral structures

include [6]. Vrtovec et al. [15] propose a similar shape model

incorporating gray-level information.

The reported methods have in common that an intrinsically

3-D boundary model is constructed from a priori information

and then realistically deformed in a 3-D image using interac-

tively defined and localized landmarks as a guide. However,

with the exception of [15], the methods do not rely on a priori

information about the gray-level appearance of vertebral struc-

tures. The gray-level informahas specific characteristics and is

highly suited to enhance the segmentation model. Apart from

this, most of the 3-D methods rely on manual definition and lo-

calization of anatomical landmarks, which is subjective and la-

borious. To overcome these shortcomings we propose an inter-

active statistical segmentation model of continuous image and

shape features with automatically defined and interactively ap-

plied landmarks.

III. MATERIALS AND METHOD

We use image data consisting of CT scans of the abdomen of

a group of 18 elderly people, originally taken to investigate the

aorta (see Fig. 1). All subjects were scanned with a Philips SR

700 CT at 140 KV (Philips Medical Systems, Best, The Nether-

lands) using a maximum field of view (48 cm). Each CT image

contains about 300 slices of 512 512 pixels. Slice thickness

is 0.5 mm, slice interval is 0.5 mm and density resolution is

12 bits. CT source images have been transferred to an offline

computer workstation (EasyScil, Philips Medical Systems) for

viewing and post processing. We concentrate on the lower four

lumbar vertebrae (L2, L3, L4, L5) and demonstrate our method

on 6 CT images of subjects with minimal spinal and vertebral

deformities.

For segmentation of the spine images we use deformable

models (see, e.g., [16]–[18] for detailed information). First in-

troduced by Kass et al. [19] and Staib et al. [20], the idea behind

deformable models is to treat segmentation as an optimization
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problem, typically by minimizing a model fitting function that

rewards locally smooth boundaries passing through high-gra-

dient image regions. A model is deformed in the image trying

to compromise between features derived from the image and

features obtained from a shape model. The deformation stops

when an equilibrium is reached. The deformable model is then

assumed to lie on the target boundary in the image.

We adopt the deformable model approach with the difference

that we aim to learn vertebral features rather than to define them

on the basis of a priori geometrical knowledge. In addition, to

exploit salient and variational information as observed in a given

training set of segmented spinal images we construct 1) models

of the lumbar vertebrae using necklaces, 2) models of the spinal

curvatures using strings, and 3) an integral spine model using

coupled necklace and string models. In the following section

we describe the models one by one.

A. Necklace Models of Vertebral Surfaces

The vertebra surface has many concave and convex surface

parts differing from weakly to strongly curved. Analogous to

diversity in surface shape, the gray-level structure along the ver-

tebra boundary varies from one part to the other. At some parts

the vertebra boundary has well-defined intensity discontinuities,

while at other parts there is vague pictorial evidence and/or none

at all due to insufficient image quality or interfering structures

in the neighborhood.

To appropriately capture and exploit the locally sophisticated

shape and gray-level appearance of the vertebra surface we need

to observe multiple features. For this reason, we employ neck-

laces [3]. A necklace model allows for the analysis of inho-

mogeneous boundaries by recording a repertoire of shape and

gray-level features along a continuous surface. Specifically it al-

lows for exploitation of salient features as landmarks for image

segmentation.

1) Surface Representation: The appearance of the spine is

learned from a set of training objects, consisting of

3-D spinal images and

ground-truth vertebral surface

, one for each vertebra. In order to optimally represent

the continuous vertebral surface we use continuous B-spline sur-

faces. The advantage of a B-spline representation is that quan-

titative information can be analytically computed, allowing for

more complete and accurate measurements. The B-spline sur-

face is a collection of B-Spline curves [21], i.e., the vertebral

surface is defined as the set of all points given by the following

expression for all parameter values of :

(1)

where is the array of control points. The are

B-spline basis functions of degree in direction, which

are times continuously differentiable. The are the

basis functions of degree in , which are times

continuously differentiable. A set of knots in a path parameter

interval relating to the control points is used to define the basis

functions. For an analytic expression of B-splines basis func-

tions see [21].

We control the B-spline surface by interpolation points

rather than by control points . This is beneficial because

TABLE I
SHAPE FEATURES IN OUR IMPLEMENTATION. FIRST PRINCIPAL CURVATURE

VALUES f (u jS ) FORM THE FIRST DIMENSION OF THE FUNCTIONAL

SPACE AND SECOND PRINCIPAL CURVATURE VALUES f (u jS ) FORM THE

SECOND DIMENSION. THE THIRD DIMENSION IS FORMED BY SCALE

INDEPENDENT MEAN CURVATURE VALUES f (u jS )

a restricted number of points are required to define the spine

and to control the spine model when defining ground-truth sur-

faces and when segmenting images. Here, the ground-truth ver-

tebra surface is obtained by interpolating a B-Spline surface

through 12 12 interpolation points using centripetal surface

parametrization to handle very sharp turns [21]. The interpola-

tion points are defined as

(2)

The interpolation points are indicated by a medical expert

in three 2-D orthogonal slices of the volume data once and

within one day. Generally, the interpolated B-spline surface

corresponds to the true vertebral surface. At places where the

B-spline surface locally deviates from the true vertebra surface,

better correspondence can be obtained either by indicating

boundary points more precisely or more densely.

2) Feature Definition: After construction of the ground-

truth B-spline vertebra surfaces, they are manually aligned to

prepare them for statistical analysis. Manual alignment reduces

to indicating corresponding landmark points on the different

vertebra surfaces in our training set. Once the B-spline surfaces

are aligned and validated by visual inspection, shape and image

features are sampled at 400 points and conveniently captured

by feature function in the -dimensional functional

space. The functional is a manifold defined as the

B-spline surface that interpolates through the sampled features.

Considering the th vertebrae, the set of multivariate contin-

uous features deduced from the training data by the mapping

is then represented by

(3)

Here, we have chosen to compute the location, rotation and scale

invariant mean curvature as the first local shape feature to be

recorded along the surface outlines. This feature is captured by

. We also compute the principal curvatures to simplify

landmark definition in subsequent steps. They are captured in

and , respectively. The feature values are ana-

lytically computed from the B-spline surfaces and are

then used to construct feature functions by interpolating

smooth B-spline surface through them. Table I lists the shape

feature definitions.

Following [3], we also compute the three image features

listed in Table II. They are obtained from the structure tensor

matrix [22]. This matrix gives for each image point

the local 3-D structure of the image at scale . When all

its eigenvalues are sufficiently large this indicates a point-like

structure. Feature function expresses such

point-like structures. Two eigenvalue, , a multitude larger

than the smallest eigenvalue indicates a point on a curve-like
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TABLE II
IMAGE FEATURES IN OUR IMPLEMENTATION: f (u j I ; s) HIGHLIGHTS

POINT LANDMARKS, f (u j I ;S ) HIGHLIGHTS CURVE LANDMARKS,
f (u j I ;S ) HIGHLIGHTS SHEET POINTS

structure. This is expressed by . Finally, feature

function highlights sheet-like structures. The

distinction between the three types of surface points is made

on the basis of the normalization constant , reflecting the

minimum required image variation for an image point to be

classified as point or curve landmark. This way we can focus on

strong point landmarks and curve landmarks while disregarding

image variations caused by minor bumps or noise.

The extraction of features for each vertebra yields

sets of surfaces in a 6-dimensional functional

space. These surfaces are statistically analyzed for model con-

struction.

3) Landmark Selection: We aim at exploiting landmarks

that are defined by the multiple features recorded along the

continuous vertebra surface. Thanks to the B-spline surface rep-

resentation, no manual or other additional heuristic techniques

are required to compute the positions of landmarks, in contrast

with other approaches such as [4]. Vertebral landmark definition

reduces to localizing peaks in feature function values .

However, rather then separately investigating each training

instance for landmarks, we first compute the elementary

statistics of the training sets. Then we try to identify robust

landmarks from the average feature functions. The population

average for vertebra is computed as

(4)

The functional is a surface in the -dimensional func-

tional space, obtained by averaging each training surface

in each dimension. The corresponding standard

deviation is

(5)

The average feature function is investigated for high cur-

vature points on the basis of its local second order properties

[23]. These properties are obtained from the infinite set of planes

passing through and containing the normal in geometric space

at a specific point on the population average surface . For

example, when the only features considered are the , , and

coordinates of the vertebral surfaces , each of the normal

planes intersects the surface by a planar curve. The curvature at

the point of interest is an identifying curvature measure for the

surface. The pair of directions and are defined such that

these curvatures reach their maximum and minimum curvatures

Fig. 2. Surface point properties are derived from the curves defined by the
intersection of the surface with the two orthogonal planes that go through that
point and contain the normal vector n. The curves with minimal and maximal
principal curvatures in corresponding directions v and w define the type point:
sheet points have low bending and freedom to move in two directions (left),
curve landmark have a fixed position in all but one dimension (middle) point
landmark have no free dimensions and are precisely localized (right).

and as illustrated in Fig. 2. We use these principal curva-

tures and locally associated directions to define landmarks.

We make a distinction between point landmarks, curve land-

marks and sheet points by evaluating the principal curvature

values at each point of . Point landmarks are surface points

where both principle curvatures have an extreme absolute

value. They are precisely localized in three dimensions. Surface

points where the absolute value of one of the principal curva-

tures is extreme, are curve landmarks, denoted by . They are

precisely localized in two dimensions. At sheet points both

values of the absolute principle curvature is low. Typically they

are well-defined in only one dimension. The sets

together contain all relevant path positions. A threshold for the

principal curvature values may be chosen such that the defini-

tion of these sets, i.e., the distribution of geometrical surface

landmarks, largely coincides with anatomical landmarks.

At this point we have necklace models: one for each

vertebra. In the segmentation step, the information contained

in and is used as a reference model for feature

selection and qualification. The sets are used for

landmark-based segmentation.

B. String Models of the Spinal Curves

We stack each of the necklace models to obtain a model at

the level of the spine. The stack of necklace models allows us

to model the cervical and lumbar curvatures, characterized by a

convex shape, and the thoracic and sacral curvatures, character-

ized a convex forward shape. These spinal curvatures are almost

always present with some variation across and among subjects.

A model of these curvatures, therefore, is likely to assist seg-

mentation of the spine in an image.

We aim at capturing the spinal curvatures using string models.

As introduced in [2], in contrast to other similar approaches

(e.g., [24]–[26]), the string model has the capacity to build a

detailed underlying statistical model of open and closed bound-

aries from multiple continuous shape and image features. Here,

we use strings to catch the common appearance of the spinal

curvatures observed in our training data and the main modes of

variation therein, in ways similar to [27].

1) Curve Representation: The shape of the spinal curva-

tures is learned from the same training set of example

images and surface outlines described in Section III-A.

Assuming the landmarks on the lumbar vertebrae occur at

approximately the same position, we select point landmarks

for and learn the appearance of

the curves that pass through the surface landmark points
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TABLE III
CURVE FEATURES IN OUR IMPLEMENTATION. THE FUNCTIONAL

f (u j I ; c ) EXPRESSES THE CONTOUR CURVATURE, COMPUTED ON THE

BASIS OF FIRST DERIVATIVE _c AND SECOND DERIVATIVE �c. THE FUNCTIONAL

f (u j I ; c ) CAPTURES THE IMAGE GRADIENT

. We represent the th curve in the th

training image by a th-order tensor product B-spline curve

that handles the mapping . The B-spline curve

is defined by

(6)

Basis functions correspond to the interpolation

points . This way, each curve captures the spatial relation

between corresponding point landmarks on adjacent vertebrae,

derived automatically from the vertebral surfaces .

2) Feature Definition: Image and shape features are ex-

tracted along the curves in the training set and captured

by space curves in functional space. This yields the set of

feature functions

(7)

We observe two features along the curve . The first fea-

ture is the 3-D curvature, which is analytically computed at each

point of . We have chosen this feature because of its in-

variance properties and because it might reveal new and inter-

esting anatomical knowledge. For example, the value and loca-

tion of the maximum curvature along the spinal curves has al-

ready been reported to be a relevant clinical measure for spinal

deformities [27]. Curvature values are computed entirely in 3D.

The second feature measures the image gradient magnitude,

supporting the definition of spinal curvature by means of image

evidence, which is mainly confined at tips of the vertebral struc-

tures. Table III lists the two features and their definition.

The extraction of two features for each spinal curvature yields

sets of curves in a 2-D functional space, to be

analyzed statistically for model construction.

3) Variational Information: We aim at statistically mod-

eling the natural variability of the spinal curvatures in terms of

shape and gray-level features. This differs from the mainstream

methods in that we do not define spinal curvatures on the basis

of a priori geometrical knowledge such as smoothness on

intra- and inter-curve properties of the spine [28]. Learning the

common appearance of the spinal curvatures allows us to base

the search criteria for model deformation on natural variations.

The elementary statistics from our training data are summarized

by average

(8)

Fig. 3. The integral spine model from three different perspectives: axial (left)
sagittal (middle) and coronal (right). It consists of multiple necklace models for
vertebrae coupled by string models as in a marionette.

The one-dimensional (1-D) curve in the multidimensional

functional space is obtained by averaging each training curve

in each dimension separately. The standard deviation is

(9)

The average feature function and variation only

contain elementary statistics of the training data. Variational in-

formation is captured in more detail by functional data anal-

ysis [29], producing string models of the spinal curvatures. The

string models capture the most important modes of variation by

functional principal components analysis. In addition, they in-

corporate a functional principal regression model that allows to

weight features according to these modes of variation and to

explain unknown instances by a statistically determined feature

weighting procedure. We refer to [2] for more detail.

At this point we have a detailed statistical description of the

spinal curvatures. For simplicity, we assume all the relevant in-

formation is contained in and . We proceed with

only these two quantities. The tubes in Fig. 3 illustrates the pop-

ulation average spinal curvatures of the spinal lumbar parts in

our training data.

C. A Deformable Integral Spine Model

To form an integral model of the spine we couple the necklace

models of vertebrae and the string models of the spinal curva-

ture as illustrated in Fig. 3. The spine model is deformed onto

new image data such that it fits best the spine visualized by that

image.

1) Qualification: The deformable integral spine model

consists of deformable surfaces and deformable curves

, which account for variability among vertebral struc-

tures and their interrelationships, respectively. For all

necklace models, the initial surfaces are and curve

and for all string models the initial curves are

the population average. That is, assuming models and

are properly aligned and uniformly parameterized to

establish point correspondence the initial models are defined as

(10)

(11)

The fit quality is determined on the basis of features

and emanating from and respectively.



1826 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, NO 10, VOL. 51, OCTOBER 2004

The model fitting function is a compromise between the

fit quality of the necklace models and the string models.

When the set is represented by and

by we have

(12)

The first term measures the distance between the expected and

the sampled values for each vertebra . To ensure a controllable

distance measure, the Mahalanobis distance [30] is computed

using mean and variation information obtained from the training

data. For the th vertebra this means

(13)

The fit is controlled by means of the function which

weights the fit at each point of the deformable surface .

Weighting is done according to the type of surface point under

consideration: for point landmarks there is a predefined weight

, for curve landmarks and for sheet points . For

example, interactive landmark-based image segmentation is

performed using settings . The

weights may also be set such that features along the entire

surface contribute by setting all values larger than 0, but are

constrained to add up to one.

The second component in (12) measures the distance between

the expected and the sampled values for each of the mod-

eled spinal curvatures. This way the deformable integral spine

model seeks resemblance between the reference spinal curva-

ture and the deformed curve normalized by the common

modes of variation. For the th string model the fit quality is for-

mulated as

(14)

The model fitting function is regulated by means of weights

and , which are positive and add up to one. Their value is de-

fined by the user and generally tuned such that they emphasis ei-

ther the fit of the necklace models or the fit of the strings models.

The fit quality forms the basis for optimization.

2) Optimization: Having specified the model fitting func-

tion, we must choose how to optimize the degrees of freedom

of the deformable integral spine model. The degrees of freedom

are specified by the number and types of points that control the

spine model. Each of the necklace models is controlled

by 12 12 interpolation points (see Fig. 4). We, thus, have a

total of 448 control points which we need to reposition in order

to optimize the spine model. Optimization of the spine model

is done progressively: a single necklace model is optimized and

fixed, results are propagated to the remaining necklace models

via the string models, the next adjacent necklace model is re-

fined and fixed and results are propagated to the remaining neck-

lace models, etc. Optimization only effects the surface geometry

of the necklace models: in our implementation the curves con-

stituting the string models are automatically derived from them.

Fig. 4. A wire-frame representation of the vertebral surface. Left: the sample
points are the intersection points of the wire-frames. Middle: the interpolation
points are a subset of the sample points (green). Right: classification of the
sample points into point landmarks (green), curve landmarks (blue) and sheet
points (purple). The six points designated for user interaction are a subset of the
point landmarks.

Fig. 5. For each type of surface point the search area is specified in terms of
local surface properties. Left: sheet points are optimized in the normal direction
(small stripes indicate the direction at each sheet point) perpendicular to the
surface. Middle: curve landmarks in a 2-D area spanned by the normal and first
principal direction. Right: point-landmarks in a 3-D area specified by the normal
and principal directions.

We discuss optimization of a necklace model and propagation

of its results via string models to obtain the optimal spine model

(15)

Optimization of a single necklace model involves two main

steps. In the first step, a new position is suggested for an

interpolation point on the necklace model and the model fitting

function value is recomputed for the spine model. This is fol-

lowed by deformation of the necklace model to move the point

to the newly suggested position if the model fits better this way.

Interpolation points are optimized either in a 3-D, 2-D, or 1-D

space, depending on the type of surface points: point landmarks

are optimized in three dimensions, curve landmarks in two

dimensions, and sheet points in one dimension. The 3-D search

space is defined by a linear combination of the vectors ,

and as defined in Fig. 5. The 2-D search space is defined by

a linear combination the vectors and . The 1-D search space

is defined by . Optimizing a point landmark, for example,

reduces to finding optimal values for scalars , and that

define the point movement

(16)

Apart from the differences in degrees of freedom per surface

point, we also differentiate between priority per surface point.

The following scheme is employed: 1) optimize point landmarks

on the necklace model in a 3-D area, resulting in a rough esti-

mate of the position of the vertebra boundary by its point land-

marks; 2) optimize curve landmarks in a 2-D area departing

from 1), resulting in the location of surface curve points de-

termining the outline of the vertebrae; 3) optimize sheet points

in a 1-D area departing from 2), resulting in the location of all

boundary points; and 4) optimize all points one more time in

their respective dimensions departing from 3) to fine tune the

result and to obtain a global optimum. This scheme allows us

to interactively search for a limited set of well-defined points in
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the image and then to exploit solutions thereof to constrain the

deformation of the entire necklace model.

We also distribute the force working on a point landmark to

the entire necklace model. That is, we preserve the shape of the

deformable surface as much as possible when fitting a specific

surface point by simultaneously estimating the correct position

for deformable surface points that have not yet been optimized.

This means that, given drive working on surface point

, the following movement of points is

performed to compute

(17)

where denotes the Euclidean distance

between surface points and . The constant

is a predefined value controlling the magnitude of the distribu-

tion.

Optimization of a single necklace model effects adjacent

necklace models by propagating the deformation of one neck-

lace model to the others via the string models. That is, in

searching for a specific vertebra we also estimate the position

of other vertebrae. We do the estimation only when optimizing

point landmarks so that only movement of one point landmark

effects the entire spine model. We accomplish this by dis-

tributing the force that works on a single point on one necklace

model to all other points on all necklace models, in this case,

weighted according to distance. For example, if there is a drive

working on surface point , which is also

the connection point for a string model, this yields the

following estimation for for all other necklace models

(18)

The distance between points

and is used to determine the extent of the distribution.

Here too, a small value for the distribution constant influences

the shape of the deformable necklace model above or beneath

the one being optimized, while a large value also effects the

shape of the surfaces at large distances. This way segmentation

of a single vertebra influences the entire spine model.

IV. APPLICATION

We illustrate interactive segmentation of part of the Lumbar

spine from a CT image that was excluded from the training data.

First the fourth lumbar vertebra is segmented using a necklace

model, then part of the lumbar spine is segmented with help of

the spine model.

For initialization of the necklace model in the image data in

the vicinity of the L4, a fixed point is selected to enable a quick

correspondence between the model and the target boundary. The

necklace model is interactively bootstrapped by pointing and

clicking at the corresponding point in the image. In this seg-

mentation session no translation, rotation or scaling is required

as the initialization by point correspondence results in an ac-

ceptable starting point for the necklace model. The first row in

Fig. 6 shows the condition after initialization from three dif-

ferent perspectives, with the image data rendered with opacity

0.5 and the model in it with opacity 1. The local fit quality at a

number of control points is indicated with colored spheres. The

color varies from green, indicating a good fit to red, expressing

a bad fit. The local fit quality, in this case, is evaluated by mea-

Fig. 6. The segmentation scene for three different perspectives. The image
data is rendered transparently and the deformable model in it opaquely. First
row: the initial necklace model. Second row: the deformation result.

suring the distance of the features measured at that point of the

necklace model to the corresponding features observed in the

training set [see (12)].

Following the priority scheme described in the previous sec-

tion, in the first step point landmarks are automatically fit to the

image data after interactive marking of their approximate posi-

tion. The following point landmarks are used for human-com-

puter interaction: two points corresponding to the two tips on the

spinal process, and the two tips at the two transverse processes.

This produces a preliminary solution which is closer to the target

boundary than was the starting condition. In the second step,

curve landmarks, in particular at the lower part of the vertebral

body, move toward the target boundary. In the third step, the

lower and the upper planes of the vertebral body are reason-

ably found by deformation of the surface in one dimension. The

result after optimizing all surface points once again in their re-

spective dimension is illustrated in the second row of Fig. 6. In

this case, the necklace model has found an optimal solution. The

majority of the surface points is fitted well to the target vertebra.

At some parts the necklace model moves away due to attraction

by neighboring structures or due to locally too much deviation

of the target boundary from the population average. A valida-

tion of the necklace model on CT images of vertebrae is given

in [3].

To illustrate how the spine is segmented using the spine

model, segmentation of part of the lumbar spine is performed.

First the is segmented by deformation of the corresponding

deformable surface as before. Simultaneously, the position of

the is estimated by changing the geometry of the corre-

sponding deformable surface according to the solution for the

. On the basis of the preliminary solution for the , point

landmarks on the are sought under the constraints that the

expected spatial relation is maintained as much as possible,

i.e., spinal curvatures comply to the statistics. No interaction

is required as the spine model is accurate enough to find the

desired solution from that position. Then curve landmarks and

sheet points are sought in the image data. The position of the

initial deformable surfaces and curves and their position after

optimizing are illustrated in Fig. 7. The step-by-step automatic

segmentation of the and succeeds reasonably despite the

articulated vertebral structures and their complex interrelation-

ship.
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Fig. 7. Landmark-based segmentation of the third and fourth lumbar
vertebrae. The spine model is visualized together with gray-level planes
through the original image and transparent renderings of the high intensity
objects: initial condition (left), condition after fitting the third lumbar necklace
model (middle) and condition after fitting the fourth lumbar necklace model
(right).

V. DISCUSSION AND CONCLUSION

We accentuate some important issues of our method. First,

our method works completely in three dimensions, allowing to

measure truly 3-D properties of vertebral structures and spinal

curvatures, rather than relying on 2-D features. Second, we cap-

ture not only shape properties but also image properties as they

also define the appearance of the spine. Multiple continuous fea-

tures are extracted, then statistically analyzed by multivariate

functional techniques [29] to obtain subtle but important popu-

lation statistics. This is done 1) to exploit natural patient-to-pa-

tient variation of the spine appearance for constraining the de-

formation of the spine model and 2) to exploit salient infor-

mation, defined as differential geometrical multifeature surface

landmarks, for reducing the complexity of the image segmen-

tation problem. Furthermore, we do a step-by-step interactive

image segmentation departing from geometrically well-defined

landmarks on a particular vertebra rather than a one shot integral

solution for the spine using manually marked anatomical land-

marks. We incrementally and elastically deform the spine model

in the image reminiscent to a marionette with interrelated struc-

tures moved by strings.

We have illustrated how interactive CT image segmentation

of the spine is facilitated using the integral deformable spine

model. The segmentation was of exemplary nature, showing

only the essential concept of our method. Clearly, a larger image

data set with more accurate ground-truth segmentation is re-

quired to asses the accuracy of the method and its usefulness for

clinical use, e.g., using statistically large number of spine im-

ages with ground-segmentations such as in [6] and [15]. Large

training sets are both crucial and viable for construction and val-

idation of accurate statistical image segmentation models. For

further validation a particular interest is in the long term goal of

analyzing average and variation characteristics of normal spines

from longitudinal studies [1], in ways similar to [27] and [31],

for the purpose of calculation of local and global deformity

quantifying parameters.

We note that we have only considered CT images of normally

appearing spine. When dealing with spinal deformities such as

scoliotic spines that exhibit lateral curvatures and vertebral ro-

tations, segmentation using the integral spine model may face

problems due to too large deviations from the normal spine. In

this case, it is essential to select invariant features in order to

capture a broad range of natural variations and simultaneously

minimizing the effects of nonessential variations in ground-truth

delineations. Also, it is important to carefully handle the align-

ment problem as this will be difficult, if not impossible, when

dealing with much variation. A possible solution is to construct

statistical spine models for different classes of abnormalities.

This has already been proposed in [27]. However, as stated by

Aykroyd and Mardia, even when different spine models are con-

structed for different spinal conditions, there would still be sub-

stantial variability within these conditions to obtain good statis-

tical information. This remains an open problem.

A drawback of the reported method is the inherent difficulty

of deformable models often getting trapped in local minima of

optimization. It has been acknowledged previously that proper

initialization is required to guarantee satisfying results in view

of the presence of disturbing attractors in the image [32]. This

is particularly true for complex images such as of the spine. As

automatic initialization of deformable models is still an open

problem [33], we deal with these problem by minimal human-

computer interaction. The user simply points and clicks in the

image to make one-to-one correspondence between model and

image by means of six point landmarks per vertebra. The use

of point landmarks alleviates the problem of interaction in 3-D

space [33] due to their zero-dimensional property. During seg-

mentation the user controls the entire spine model as a mari-

onette by interaction with a few point landmarks and propaga-

tion of landmark solutions to other parts of the spine.

We conclude that the deformable integral spine model is a vi-

able solution for interactive segmentation of 3-D spinal images.

Future work will concentrate on improving and validating the

constituents of the spine model, i.e., the necklace and strings

models, on a statistically large number of segmented training

images.
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