
Abstract
Assertion-Based Verification (ABV) using the PSL lan-

guage is currently gaining acceptance as an essential

method for functional verification of hardware. A basic

technique to implement ABV is to embed temporal asser-

tions in RTL code. This paper describes the use of a PSL-

based ABV methodology in a C++-based system level

modeling and simulation environment. We describe the

considerations of porting a tool which translates PSL to

VHDL/Verilog, to support C++, a language which was

designed for software and does not have concurrent lan-

guage constructs. The translation scheme is shown to be

adaptable to all C-based environments. We exemplify the

wide applicability of this scheme by detailing its successful

deployment in a SystemC-based industrial System-on-Chip

(SoC) project.

1. Introduction and Motivation
As the complexity of hardware designs has grown to the

degree that the traditional approaches have limitations, the

need for a better verification methodology, one with

improved levels of observability of the design behavior and

controllability of the verification process has become clear.

Assertion-Based Verification (ABV) has been identified as

a modern, powerful verification paradigm that can assure

enhanced productivity, higher design quality and, ulti-

mately, faster time to market and higher value to engineers

and end-users of electronics products. With ABV, asser-

tions are used to capture the required temporal behavior of

the design, in a formal and unambiguous way. The design

then can be verified against those assertions using simula-

tion and/or static verification (e.g. model checking) tech-

niques to assure that it indeed conforms to the intended

design intent, as captured by the assertions.

ABV has gained a very strong momentum over the last

years, as evident by the increasing number of verification

of experience reports and case studies, books, commercial

offerings, and standard activities and academic research

efforts in this area. A significant ingredient of this momen-

tum has been the official selection of the language PSL [3],

based on the Sugar language from IBM, as an industry

standard. Over 50% of the respondents of a recent survey

conducted by John Cooley, on the proliferation of ABV [4]

said they use or plan to use ABV on their next project. Of

those that responded positively, PSL was by far the most

popular assertion language of choice.

In most industrial settings, an evolutionary approach to

ABV has been taken where first and foremost assertions

are used as a part of the traditional simulation methodology

– with which most engineers feel more comfortable with.

In accordance with this tendency, and to enable effective

deployment of ABV in a simulation environment, we have

developed a platform called FoCs ("Formal Checkers") [7].

FoCs takes PSL/Sugar properties as input and translates

them into assertion checking modules ("checkers") which

are integrated into the simulation environment and monitor

simulation on a cycle-by-cycle basis for violations of the

property. For each property of the specification, repre-

sented as a PSL Property, FoCs generates a checker for

simulation. This checker essentially implements a state

machine which will enter an error state in a simulation run

if the formula fails to hold in this run. In Section 3 we will

describe the checker generation process in more detail.

The philosophy behind the development of FoCs has

been to provide enhanced productivity to simulation

through automation of the checker creation effort. Check-

ers are, in fact, a traditional part of simulation environ-

ments ([9]). They facilitate effective testing, as they

automate test results analysis. Moreover, checkers facili-

tate the analysis of intermediate results, and therefore save

debugging effort by identifying problems directly - "as

they happen", and by pointing more accurately to the

source of the problems. However, the manual development

and maintenance of checkers is a notoriously high-cost and

labor-intensive effort, especially if the rules to be verified

are complex temporal ones. This has been an impeding fac-

tor to verification productivity. For instance, in the case of

a checker for a design with overlapping transactions

(detailed in Section 3), writing a checker manually is an

excruciating error-prone effort.

Several solutions have been proposed over the last five

years to avoid the inefficiencies involved with manual

checker writing. Generally speaking, these approaches

include libraries of checkers such as the popular public-

domain OVL library [2] and proprietary libraries such as

CheckerWare from 0-in [1]. These libraries serve as reposi-

tories of checking modules which can be instantiated as

necessary in test-benches and facilitate specific checking

Combining System Level Modeling with Assertion Based Verification
Anat Dahan, Daniel Geist, Leonid Gluhovsky, Dmitry Pidan, Gil Shapir, Yaron Wolfsthal

IBM Haifa Research Lab, Haifa Israel
Lyes Benalycherif, Romain Kamdem, Younes Lahbib

ST Microelectronics, Grenoble, France

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 15,2010 at 03:32:34 EST from IEEE Xplore. Restrictions apply.

goals. For example, OVL has a module for checking that a

specified expression must not change its value for a speci-

fied period of time; and CheckerWare has modules for

checking various arbitration policies. While very useful

when applied for checking specific situations, the largest

deficiency of libraries such as OVL is that they are fixed-

form and thus generally inflexible (though some of them

offer a certain degree of configurability).

Observing the inefficient process of manual checker

writing in ongoing projects, and the limited remedy offered

by libraries of checkers, we recognized that for best results,

and effective ABV solution needs to include two compo-

nents: a formal declarative language for defining the

desired checks, and a mechanism for automatically trans-

forming the definition of the checks into effective checking

modules. This has inspired the development of FoCs as a

means for automatically generating checkers from simple

specifications. For example, SystemVerilog [12] also has a

set of language constructs for writing assertions, called

simply SystemVerilog Assertions (SVA). A similar

approach to ours is proposed by [10] to augment SystemC

with SVA but only considering a subset of SVA and relying

for the translation of SVA into SystemC modules on inter-

nal development.

SystemC [5] was developed about six years ago as the

verification platform for SoC verification and hardware-

software co-verification. SystemC is a set of C++ libraries

that let designers and verification engineers write hardware

like modules in C++. SystemC contains classes that imitate

low level hardware constructs like registers and also higher

level hardware constructs like channels. Despite the energy

and momentum that vendors and chip developers put into

SystemC, the acceptance of SystemC as a way to imple-

ment verification was slower than expected. However, the

last two years have seen a growing interest in the platform

since SoC development is on the rise and is becoming more

popular in design starts [11].

FoCs has been put to multiple types of successful use by

engineering teams in the industry. In those past project,

FoCs was used to translate the assertions directly to native

language of the design (VHDL or Verilog) which have

built-in temporal and concurrent semantics. Generation

Checkers for SystemC required the definition of PSL

semantics for C++. Instead of developing a PSL to Sys-

temC translator, we developed a translation mechanism

that is suitable for any C++ based modeling environment

and not necessarily SystemC. We used this version of FoCs

to implement PSL based ABV on a industrial System-on-

Chip (SoC) which had a SystemC high-level.

The rest of this paper is as follows. Section 2 gives a

brief overview of PSL. Section 3 describes our translation

method to C++. In Section 4 we describe the SoC and the

results of using FoCs for implementing PSL based ABV on

top its SystemC based verification platform. The final sec-

tion details our conclusions and future plans.

2. The PSL Language
PSL/Sugar is a language for the formal specification of

hardware. It is used to describe properties that are required

to hold of the design under verification. For instance, it

might be required that "if a request is made, it must stay

asserted until a grant is received”. This simple English

specification leaves a lot to be desired: Which signals indi-

cate a request, and which indicate a grant? By until do

we mean that the request signal must stay asserted only up

to, but not including the cycle in which a grant is received,

or must they also stay asserted the cycle of the grant?

These questions could of course be answered easily in

English. But for complicated specifications, using English

to explain exactly what is meant can be difficult. PSL pro-

vides a means to write specifications which are both easy

to read and mathematically precise. PSL became an Accel-

lera standard in 2002 and is currently ongoing a standard-

ization process in IEEE (IEEE 1850 working group).

PSL consists of four layers:

1. The Boolean layer is comprised of Boolean expressions.

For instance, a is a Boolean expression, having the

value 1 when signal a is high, and 0 when signal a is

low. PSL interprets a high signal as 1, and a low signal

as 0. The Boolean layer also contains Boolean opera-

tors such as and, or, xor, etc.

2. The temporal layer consists of temporal expressions or

properties which describe the relationships between

Boolean expressions over time. For instance, always
(req ->next ack) is a temporal property expressing

the fact that whenever (always) signal req is

asserted, then (->) at the next time (next), signal ack
is asserted. In Section 2.1 we explain how time

progresses in PSL.

3. The verification layer consists of directives which

describe how the temporal expressions should be han-

dle by the verification tools. For instance, assert
always(req -> next ack) is a verification direc-

tive that tells the tools to verify that the property holds.

Other verification directives include an instruction to

assume, rather than verify, that a particular temporal

property holds, or to specify coverage criteria for a sim-

ulation tool. The verification layer also provides a

means to group PSL statements into verification units.

4. Finally, the modeling layer provides a means to model

behavior of design inputs, and to declare and give

behavior to auxiliary signals and variables. The model-

ing layer is also used to give names to properties and

other entities from the temporal layer.

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 15,2010 at 03:32:34 EST from IEEE Xplore. Restrictions apply.

2.1 The Passing of Time in PSL
PSL contains a temporal logic to reason about discrete

time systems (hence the next operator). However,

although PSL has the ability to specify temporal relation-

ships, it does not explicitly define how time progresses.

The designers of the PSL language made it the responsibil-

ity of the tool developer to define how time progresses. For

instance, a cycle-based simulator defines time progression

strictly on clock cycle boundaries, while an event-based

simulator defines time progression to occur on every

change of a signal value. In fact, the same PSL assertion

may evaluate differently on each of those tools (it may pass

on one and fail on another). In order to overcome this, PSL

gives the user the ability to override the tool definition and

explicitly define the temporal expression by "clocking" the

temporal property (see PSL LRM [3] for details). This is

useful when a user wants to reuse PSL code in different

tools.

When the IBM FoCs tool is used to translate PSL to

VHDL or Verilog it assumes that the user will supply an

external signal which will mark the progression of time

every time its value rises from 0 to 1. For C++, we will see

in the next section that FoCs completely delegates the deci-

sion on how time passes to external logic.

3. From PSL to C++
Roughly speaking, the FoCs tool takes an assertion and

generates a state machine that monitors a set of signals and

performs an action whenever a final state is reached. Fig-

ure 1 shows the overall environment in which FoCs oper-

ates. The user provides a design to be verified, as well as a

formal specification written in PSL and a set of test pro-

grams generated either manually or automatically. FoCs

translates the formal specification into checkers, which are

then linked to the design and simulated with it. During sim-

ulation, the checker produces indications of property viola-

tions. It is up to the user to decide what action to take: fix

the design, the property, or the simulation environment. In

addition to checkers, FoCs can also be used to take PSL

coverage statements in order to generate coverage monitors

that report appropriate coverage information.

FoCs translates PSL into the target language – which

can be VHDL, Verilog, or C++ – in the following way:

first, each property is translated into a nondeterministic

finite automaton (NFA). The NFA has a set of distin-

guished error states, and the property specifies that the

NFA will never enter an error state (entering an error state

means that the design does not adhere to the specification

under the test conditions).

To be of any practical use, the NFA has to be converted

into a deterministic automaton (DFA). The number of

states of the DFA may be exponential in the number of

states of the NFA, but simulation is sensitive to the size of

the representation (the number of lines in the checking

module) rather than to the number of states. Practically, it

is almost always linear because of the types of properties

that people tend to write.

Once the generation of the DFA is done then FoCs

translates to the target language, Verilog, VHDL or in the

case of this work C++. This translation is completely

decoupled from the DFA generation. The translation details

are described in [7].

Example: The following example will demonstrate the

conciseness and ease of use of PSL for checker writing and

the advantage of automatic checker generation. Assume

that the following property is part of the specification: If a

transaction that starts with tag t has to send k bytes, then at

the end of the transaction (identified by the tag t) k bytes

have been sent. The user can formulate this property in

PSL as follows:

forall t in [1:4]
forall k in [1:8]

assert {[*]; trans_strt && tag = t
&& bytes_to_send= k; true[+];
trans_end && tag=t}

(bytes_sent=k);
Manual writing of a checker for this property may

become complicated if transactions may overlap, which

means that a new transaction may start while previous

transactions are still active. The checker writer has to take

into consideration all possible combinations of intervals

and perform non-trivial bookkeeping. The PSL formula is

evidently much more concise and readable than the result-

ing VHDL entity, Verilog module or C program.

3.1 Translation to C++
In order to translate to C++ FoCs needs four additional

inputs on top of those depicted in Figure 1.

a. Mapping file – every assertion includes signals

which need to be mapped to the real design signals.

The users create a mapping file, which indicates for

each signal to which signal in the design it is con-

nected and its type.

PSL
Assertions

Design
e.g. VHDL

Test
Programs

FoCs Checkers

Simulator

Pass/Fail

Coverage

�����������	��
����

������������	��
����

������������	��
����

������������	��
����

�

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 15,2010 at 03:32:34 EST from IEEE Xplore. Restrictions apply.

b. Report template – the checker's output template file,

written in the target language (C++) using special

FoCs directives (it is not mandatory and not detailed

in this paper).

c. Adaptor template file – the vehicle in which the user

customizes the C++ checker output to his simula-

tion environment - described below.

d. FoCs settings file – the file which contains specific

per-checker settings which provide additional infor-

mation necessary for the checker generation.

Since C++ does not have a natural definition for time

progression the design decision was to generate C++ code

separated into two different parts:

1. The checker logic (state machine transition function and

the assertion condition), generated from the PSL asser-

tion. The checker is implemented as class with a

reset, transition and mapping methods: the

reset method initializes the checker internal signals,

the transition method performs the needed compu-

tations of the next state, based on the current state,

inputs and the transition function and the mapping
method receives port name and value and assigns the

value to the port, when port is a signal which behavior

is undefined and the user must connect it to the signal

in the design.

2. The checker control code. This is the Adaptor file which

contains code to call the checker's reset and transition

functions. The Adaptor file is generated from the user

defined Adaptor template. The Adaptor template is

C++ intermixed with special FoCs directives which

provide handles to FoCs generated names used in the

checker, which are not known at the time that the tem-

plate is written. The user has to define when he wants

to invoke the checker's reset and transition functions in

the Adaptor template, and also when to invoke simula-

tor specific functions which sample the design signal

values in order to assign them to the corresponding

checker ports.

In Figure 2 is an adaptor template file for systemC. It

contains a generic wrapper class for the FoCs generated

checker.

@FOCS_CHECKER_CLASS@ in the wrapper class name

on line 2 is replaced eventually by the FoCs checker class’s

type. The data members of the wrapper are defined on lines

6-13. The directive @FOCS_CHECKER_CLOCK@ on line 6 is

replaced by the clock name that is defined in the FoCs set-

tings. For each port, code that is written between the direc-

tive @FOCS_PORT_REPEAT_SECTION_BEGIN@ and the

directive @FOCS_PORT_REPEAT_SECTION_END@, is repli-

cated. Between any two replications, FoCs puts a comma

(,). On line 9, the @FOCS_PORT_ALIAS@ directive is

replaced by the current replication port name. Thus, the net

effect is that all port names are printed out with a comma

separator in between each two. Figure 2 is a simplified ver-

sion of the Adaptor template where all ports are defined as

the systemC type sc_in<bool> but the full Adaptor tem-

plate supports, all other port types by using the type infor-

mation from the mapping file.

Lines 11-13 define variables to convert the ports to

integers in order to pass the port values to the checker

1 #include @FOCS_CHECKER_H_FILE@
2 class wrapper_@FOCS_CHECKER_CLASS@ :
3 public sc_module
4 {
5 public:
6 sc_in_clk @FOCS_CHECKER_CLOCK@;
7 sc_in<bool>
8 @FOCS_PORT_REPEAT_SECTION_BEGIN
9 @FOCS_PORT_ALIAS@
10 @FOCS_PORT_REPEAT_SECTION_END@;
11 int @FOCS_PORT_REPEAT_SECTION_BEGIN@
12 tmp_@FOCS_PORT_ALIAS@
13 @FOCS_PORT_REPEAT_SECTION_END@;
14 @FOCS_CHECKER_CLASS@ *instance;
15
16 void transition();
17 void update();
18 SC_CTOR(wrapper_@FOCS_CHECKER_CLASS@) {
19 SC_METHOD(transition);
20 sensitive_pos << @FOCS_CHECKER_CLOCK@;
21 SC_METHOD(update);
22 @FOCS_PORT_REPEAT_NL_SECTION_BEGIN@
23 sensitive << @FOCS_PORT_ALIAS@
24 @FOCS_PORT_REPEAT_NL_SECTION_END@
25 instance = new @FOCS_CHECKER_CLASS@;
26 }};
27
28 void wrapper_@FOCS_CHECKER_CLASS@::
29 transition(){
30 instance->transition(
31 @FOCS_PORT_REPEAT_SECTION_BEGIN@
32 tmp_@FOCS_PORT_ALIAS@
33 @FOCS_PORT_REPEAT_SECTION_END@);
34 if (!instance->getStatus())
35 cout <<
36 "@FOCS_CHECKER_CLASS@ failed";
37 }
38 void wrapper_@FOCS_CHECKER_CLASS@::
39 update(){
40 @FOCS_PORT_REPEAT_NL_SECTION_BEGIN@
41 tmp_@FOCS_PORT_ALIAS@ =
42 (int)@FOCS_PORT_ALIAS@.read()
43 @FOCS_PORT_REPEAT_NL_SECTION_END@
44 }

������������������
���	��
��	��
������	��������������������
���	��
��	��
������	��������������������
���	��
��	��
������	��������������������
���	��
��	��
������	��

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 15,2010 at 03:32:34 EST from IEEE Xplore. Restrictions apply.

transition function, which accepts integer parameters.

Finally a pointer to the FoCs checker is defined on line 14.

Lines 16-17 define the wrapper transition and

update methods and lines 18-26 define the constructor.

In the constructor, the clock input is defined as edge

sensitive on line 20, and the rest of the ports are defined as

level sensitive on lines 22-24. This is done using the

directives:

@FOCS_PORT_REPEAT_NL_SECTION_BEGIN@…@FOCS_P
ORT_REPEAT_NL_SECTION_END@.Again, code between

these two directives is replicated for each port but the sepa-

rator is a semi-colon (;). The FoCs checker is dynamically

allocated on line 25.

Lines 28-37 contain the body of the wrapper transi-
tion routine. It calls the FoCs checker transition func-

tion (using the template loop directives to pass all the ports

as parameters) and then checks for a fail on line 34. If there

is a fail, it prints an error message.

Lastly, lines 38-44 contain the body of the wrapper

update routine. This routine uses the template loop direc-

tives to generate code that assigns updated values to all the

tmp_ integer variables.

Note that there are template directives not given in this

example, to handle a reset signals and other requirements.

4. Using PSL to Verify a SoC
STMicroelectronics SoCs are articulated around a sys-

tem bus with several processor cores, a DSP and a large

number of complex IP blocks of dedicated logic such as

decoders (e.g. MPEG), specific functions (e.g. modem),

and standard/ proprietary IO functions (e.g. USB). These

HW components come along with embedded SW such as

an OS, drivers, communication and multimedia applica-

tions, etc. Both the complexity and the mixed HW/SW

nature of the SoC, impose a system level design flow based

on SystemC; the SoC development team undertakes a high-

level modeling and verification effort early in the whole

development process. SystemC models are built for each

HW component and grouped into simulation platforms

according to different abstraction levels: functional, trans-

actional level (TLM) and Bus Cycle Accurate (BCA). The

engineers that build these platforms as well as the ones

who use them, are daily exposed to integration, IP reuse,

debug and functional coverage. These observability and

controllability issues are in fact, not specific to reasoning at

system level and also exist at RTL. But because SystemC

involves C++ types and constructs, these issues are more

difficult to tackle and the challenge to overcome them is

higher.

PSL plays a major role in verification and reuse of veri-

fication IP across the different verification platforms of the

design flow. PSL assertions are part of the dynamic verifi-

cation at RTL level and system level. The assertions are

also mapped into an emulator and run at system speed

using their synthesizable HDL views generated by FoCs.

FOCS checkers are combined to RTL and submitted to

SW-based simulations when using simulators not support-

ing PSL. In addition to that, PSL assertions have been

exhaustively checked statically at block level using the

RuleBase formal verification tool[8]. The ability to trans-

late PSL to C++ enabled the deployment of these and other

assertions in the SystemC simulation platform; they are

translated into C++ checkers by FOCS and wrapped into

SystemC modules that are later on connected as read-only

monitors.

4.1 Case Study
Our SystemC BCA level model of the SoC was verified

on the SystemC BCA platform. The SoC was composed of

5 blocks:

1. SH4 - a processor that executes C test programs and

loads or stores) across the interconnect to the local

memory controller (LMI).

2. TG - a traffic generator that sends dummy data to satu-

rate the bus

3. A 32 bits STBus interconnect

4. FEMI - an external memory controller and its associated

ROM that shelters the code run by the processor

5. LMI - the local memory controller and its DR-SDRAM

The main purpose of this SystemC BCA platform was

to perform architectural performance evaluation, analyzing

the latency between the processor and the LMI, the bus

occupancy of transactions to the LMI, the throughput of

transactions to the LMI and the bandwidth allowed by the

LMI. The other purpose of this platform was to validate the

SystemC BCA models to be reused in other platforms for

different SoCs. We focused for this validation on the inter-

faces of the SystemC BCA models and in particular on the

adherence to the bus protocol since its rules and signaling

information are implemented by the SystemC BCA

abstraction level.

For checking the STBus, we deployed a library of PSL

assertions specifying the protocol rules. These same asser-

tions are largely used to check the adherence to the proto-

col at the RTL level. The SystemC platform was

SH4 TG

STBus Interconnect

FEMI LMI

����������

�����������
����	��
�����������

�����������
����	��
�����������

�����������
����	��
�����������

�����������
����	��
�

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 15,2010 at 03:32:34 EST from IEEE Xplore. Restrictions apply.

augmented with the PSL assertions involving the STBus

signals of each of the SystemC BCA model.

For example, The STbus protocol specifies for the LMI

interface that "if grant is asserted, it must remain asserted

until request is asserted. This is expressed by the following

PSL assertion:

assert always((lmi_gnt & !lmi_req)
->next lmi_gnt);

where lmi_gnt and lmi_req are sc_signals (sys-

temC signals) of the LMI STBus interface.

The PSL assertions are embedded in the systemC code

as smart comments and are picked up by a perl script from

the systemC code and then copied in a separate file. The

assertions file is then submitted to FOCs, which uses the

extended version (supporting all port types) of the Adaptor

file in Figure 2, to generate for each assertion a C++

checker and wrapper. The so generated FOCS code is

attached to the SystemC platform as a read-only monitor.

The wrapper corresponding to the assertion above is:

class wrapper_TM1 : public sc_module {
public:
sc_in_clk clk;
sc_in< bool>lmi_req, lmi_gnt;
int tmp_lmi_req, tmp_lmi_gnt;
TM1 *instance;

void transition();
void update();
SC_CTOR(wrapper_TM1) {

SC_METHOD(transition);
sensitive_pos << clk;
SC_METHOD(update);
sensitive << lmi_req;
sensitive << lmi_gnt;
instance = new TM1;

}};

void wrapper_TM1::transition()
{

instance->transition(
tmp_lmi_req,tmp_lmi_gnt);

if (!instance->getStatus())
cout << " TM1 failed “;

}
void wrapper_TM1::update()
{

tmp_lmi_req = (int) lmi_req.read();
tmp_lmi_gnt = (int) lmi_gnt.read();

}
To complete the picture wrapper instantiation and ini-

tialization code is inserted in the appropriate systemC

sc_module (in this case the top level), as follows:

wrapper_TM1 *inst_wrapper_TM1;
inst_wrapper_TM1->clk(Clock);
inst_wrapper_TM1->lmi_req(LMI.req);
inst_wrapper_TM1->lmi_gnt(LMI.gnt);

4.2 Results and Discussion
This platform which represents about 27000 lines of

SystemC code has been simulated under Linux on a dual

processor Pentium Xeon 3 GHz. Two assertions out of a

total of 160, failed during simulation. The failures con-

cerned the STBus interface of the SH4 processor and

revealed a bug according to which 2 control fields of the

protocol signaling were not correctly handled in the

response pathway. The SystemC BCA model of the SH4

model has been corrected accordingly, permitting the

architecture evaluation to be pursued. The test programs

which ran on the SH4 processor during simulation

involved a total of 3200000 transactions, which were simu-

lated in 9 seconds with the assertions disabled. The asser-

tions increased simulation time by a factor of 2.

5. Conclusion and Future Plans
By using FoCs, we found the translation of PSL to Sys-

temC very simple and straightforward.

If we exclude the simulation time increase, PSL asser-

tions on SystemC BCA were as beneficial as expected per-

mitting to find a bug, localize it and fix it very quickly. In

the near future, we plan to optimize the instantiation of the

assertions by recognizing similar generic assertions and

keeping only one C++ class for similar assertions. Further

benefits from using PSL assertion in SystemC can be

achieved by considering assertions beyond the SystemC

BCA models interfaces to cover internal SystemC imple-

mentation aspects. It is also envisaged to augment with

PSL, SystemC higher abstraction levels such as the TLM

level.

References
[1] CheckerWare: http://www.0-in.com/products_monitors.html

[2] Open Verification library: http://www.eda.org/ovl/

[3] Property Specification Language: Reference Manual. Version

1.1, Accellera, June 2004.

[4] PSL Survey:http://www.deepchip.com/items/dvcon04-06.htm

[5] SystemC: http://www.systemc.org/

[6] [VRMIEEE Standard VHDL Language Reference Manual,

ANSI/IEEE Std 1076-1993, published by IEEE.

[7] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, Y. Wolfsthal

FoCs: Automatic Generation of Simulation Checkers from Formal
Specifications. CAV 2000: 538-542

[8] I. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky, T.

Heyman,, A. Landver, P. Paanah, Y. Rodeh, G. Ronin, Y.
Wolfsthal RuleBase: Model Checking at IBM, CAV 1997.
[9] D. Geist, G. Biran, T. Arons, Y. Nustov, M. Slavkin, M.

Farkash, K. Holtz, A. Long, D. King, S. Barret, "A Methodology
for Verification of a System on Chip", Proc. DAC'99.

[10] A. Habbibi, S. Tahar, On the Extension of SystemVerilog As-

sertion, CCECE/CCGEI 2004 May Niagara Falls, IEEE.

[11] G. Smith, "The New SoC Economy or It’s the Gates Stu-
pid", Dataquest Gartner, DAC 2004.
[12] S. Sutherland, S. Davidmann, P. Flake, P. Moorby, "System
Verilog for Design: A Guide to Using System Verilog for Hard-
ware Design and Modeling", Kluwer, 2004.

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 15,2010 at 03:32:34 EST from IEEE Xplore. Restrictions apply.

