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Abstract

This paper describes a new approach for yield sampling in viticulture. It combines 

approaches based on auxiliary information and path optimization to offer more consistent 

sampling strategies, integrating statistical approaches with computer methods. To achieve 

this, groups of potential sampling points, comparable according to their auxiliary data val-

ues are created. Then, an optimal path is constituted that passes through one point of each 

group of potential sampling points and minimizes the route distance. This part is performed 

using constraint programming, a programming paradigm offering tools to deal efficiently 

with combinatorial problems. The paper presents the formalization of the problem, as well 

as the tests performed on nine real fields were high resolution NDVI data and medium 

resolution yield data were available. In addition, tests on simulated data were performed to 

examine the sensitivity of the approach to field data characteristics such as the correlation 

between auxiliary data and yield, the spatial auto-correlation of the data among others. 

The approach does not alter much the results when compared to conventional approaches 

but greatly reduces sampling time. Results show that, for a given amount of time, combin-

ing model sampling and path optimization can give estimation error up to 30% lower for a 

given amount of time compared to previous methods.

Keywords Yield estimation · Sampling · NDVI · Constraint programming · Simulation · 

Spatial data · Viticulture

Introduction

In order to optimize harvest organization and quality management, the wine industry needs 

to know the yield of each vine field. Ideally, yield has to be estimated a few days before 

harvest with a relative error of less than 10% (Carrillo et al. 2016). Although models have 
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been developed to forecast the yield at the regional level (Cristofolini and Gottardini 2000), 

their results were not precise enough to manage logistic issues in relation to harvest opera-

tions at the farm or at the winery level. Therefore, precise estimation of vine field yield 

always requires fruit sampling and counting (Clingeleffer et al. 2001). This estimation must 

be carried out quickly (few minutes per field) at a time when the workload at harvest or 

for the preparation of the harvest is critical. Practical constraints, like the time available 

to visit all the fields before harvest, limit the number of sampled sites per field. Therefore, 

yield estimation is based on a low number of sites sampled (4 to 5 sites per field) where 

yield components (number of clusters, number of berries per cluster, mean berry weight) 

are manually measured by a practitioner. Due to these practical constraints and the high 

within-field variability of grape yield usually observed (Taylor et al. 2005), the small num-

ber of observations results in high errors in yield estimation (generally around 20 to 30%).

Recent works (Carrillo et al. 2016; Uribeetxebarria et al. 2019; Arnó et al. 2017) have 

shown the interest of integrating auxiliary data to improve sampling strategies and yield 

estimation for perennial crops. Among possible auxiliary information, vegetation index 

derived from multispectral airborne images is of great interest since they permit to charac-

terise the spatial variability of several fields; in one acquisition, with a high spatial resolu-

tion (< 1 m) and at an optimal date. In viticulture, Carrillo et al. (2016) shows the poten-

tial of NDVI to drive target sampling of the main grape yield components (bunch number, 

berry weight, etc.) to improve yield estimation. Although spatial patterns of yield and veg-

etative expression, estimated by vegetation indices (i.e. NDVI) may not match systemati-

cally in all the situations (Bramley et al. 2019). Carrillo et al. (2016) demonstrated, in a dry 

vineyard of southern France, the value of using NDVI information to determine relevant 

within field sampling sites selection based on the distribution of NDVI values.

Although interesting, the methodology proposed by Carrillo et al. (2016) presents a sig-

nificant drawback. Indeed, it does not take into consideration the relative position of the 

sites to be sampled and the fact that vine fields are structured in rows. This peculiarity 

implies that rows cannot be crossed, leading to sampling plans optimized in terms of pre-

diction but potentially unrealistic in terms sampling routes and resulting travelled distance 

(and time) for the operator. This paper proposes a new approach to optimally design within-

field sampling routes which takes into account the spatial organisation of the crop (rows) 

and spatial location of sampling sites. The originality of this approach, called constrained 

sampling, is to combine statistical and computer methods. It can be decomposed into two 

steps. In the first step, potential sampling sites are sorted into different groups according to 

their auxiliary data value in a similar way to traditional targeted sampling. The second step 

finds an optimal route that passes through one sampling site from each group. A constraint 

programming solver is used to build an optimal route in terms of travelled distance. This 

kind of solver has already been used in precision viticulture to solve the differential harvest 

problem (Briot et al. 2015).

The objective of this work is therefore to propose the resolution of a sampling prob-

lem by combining two methodologies from two very different scientific fields: a sto-

chastic approach aimed at considering a large number of representative candidates (the 

sampling sites) with a constraint programming approach whose objective is to search for 

the optimal solution among a number of identified candidates. This combination is an 

interesting scientific question since it is necessary to simplify the exploration of possible 

candidates in order to be able to calculate an optimal route, while preserving the abun-

dance of information provided by the variability provided high spatial resolution data. 

The scientific hypothesis of this work is therefore to test and validate the contribution of 

a combination of methods for spatial sampling in agriculture. In particular, the aim is to 
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verify to what extent the introduction of an optimisation approach decreases the quality 

of the estimates by taking conventional sampling approaches as a reference. It will also 

examine whether gains in sampling time compensate for decreases in the quality of the 

estimates. Tests are performed either on experimental data from France or on simulated 

plots to better characterize its performance under different spatial structures.

Materials and methods

Sampling sites and selection principles

Overview

The purpose of constrained sampling (CS) is to select N sampling sites constituting a 

sampling route in the vine field. Accounting for classical sampling practices in viticul-

ture, N will vary between 5 and 10. It is assumed that there is a finite number of sites 

on the plot where sampling can be carried out, these sites are called potential sampling 

sites. For instance, considering the plant as a potential sampling site, a one-hectare 

vineyard plot planted at 4000 vines/ha consists in 4000 potential sampling sites. For 

each potential sampling site (PSS), the method assumes that: (i) the coordinate of the 

PSS, (ii) the row that the PSS belongs to and (iii) the corresponding auxiliary data value 

are known.

The method requires computation of a distance matrix. This matrix gives the dis-

tance between each couple of PSSs. Distance must correspond to the shortest walking 

distance between the two PSSs. It must take into account the structure of the vineyard. 

Each PSS, located on one vine rows, can be accessed through two inter-rows (Fig. 1). 

As a result, each site appears twice in the distance matrix. If the sites are in the same 

inter-row, it corresponds to the classical Euclidian distance. If they belong to different 

inter-rows, the distance is computed considering that the practitioner has to get out the 

row, to reach the desired rows passing by all ends of intermediate rows and finally to 

reach the targeted sampling site (Fig.  1). As rows have two extremities, two different 

distances can be computed and the shortest one is kept.

Fig. 1  Distances across vineyards. The left illustrates how the vineyard structure affect the moving from 

point a to point b. The others illustrate the four different ways of going from point c to point b
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Representative sampling based on auxiliary information

The same approach as Carrillo et al. (2016) was used to consider auxiliary data. It is sum-

marised hereafter. The sampling approach aims at calibrating a linear regression which 

relates the yield (sampled) to auxiliary data. Carrillo et al. (2016) showed that yield com-

ponents, especially berry weight, are linearly related to auxiliary data (NDVI) in non-irri-

gated vineyard of south of France. The sampling approach aims at selecting sampling sites 

(SSs) representatively to build this linear model. This model is then used to estimate yield 

using all available high-resolution auxiliary data.

The approach proposed in this paper relies on the following principle. PSSs are split 

into N homogeneous groups (N corresponding to the number of samples) according to 

their auxiliary data values. Once groups are formed, one PSS from each group is selected 

in order to optimize the length of the route connecting all selected PSSs. This ensures 

the PSSs are representative of the field as selected points are spread across the auxiliary 

data distribution. Quantiles were used to make groups. Related work concluded that this 

approach was adapted to yield estimation (Oger et al. 2015). Quantiles method guarantees 

that the groups have the same number of PSS, K being the number of PSSs and N the num-

ber of samples required, then each group has 
K

N
 elements (Fig. 2).

Route optimisation

The second step of the approach consists in selecting N sampling sites (one sampling 

site per group). These N sampling sites (SSs) must be all different and have to form the 

shortest possible sampling circuit. There are many possible choices to select these SSs 

and many ways to order them to form a circuit. It is therefore a highly combinatorial 

optimization problem. Constraint Programming is one of the programming paradigms 

Fig. 2  NDVI values for groups with quantile approach and N = 5. Each group contains 20% (100/N) of PSS 

according to their NDVI values
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able to deal with such problems. It aims at solving a problem expressed as a set of vari-

ables and a set of constraints on these variables. Such a problem is called a Constraint 

Satisfaction Problem (CSP). A Constraint Solver is used to find a solution to the prob-

lem that satisfies all the constraints. The efficiency of these solvers relies on the imple-

mentation of many methods such as filtering, which allows a quick detection of combi-

nations of values that do not lead to an optimal solution. The interest of constraint 

solvers lies in their ability to address many types of constraints. Without going into 

detail, let S = {1,… , K} be the set of PSSs and 
{

G
i

}

i∈(1,…,N)
 the set of quantile groups 

covering S, formed in the previous step from the auxiliary data. Since all these groups 

are disjoint subsets, 
{

G
i

}

i∈(1,…,N)
 is a partition of S . P

i
 is defined as the selected site for 

group G
i
 . Hence, set S

Selected
 (the set sampling sites) will be equal to 

{

P
i

}

i∈(1,…,N)
.

The first constraint imposes that all P
i
 must be different; because all quantile groups 

are disjoint subsets, it is immediately satisfied in the case of the presented approach. 

P
0
 represents the point of departure and arrival, it is a fixed parameter representing the 

initial position of the practitioner. The length of the optimum route passing through all 

the P
i∈(0,…,N) must be minimum. This is a particular case of vehicle routing problem 

(VRP) where the goal is not to find a Hamiltonian tour (visiting once every site) but a 

tour covering only a subset of sites. Recent work about the WeightedSubCircuit con-

straint (Vismara and Briot 2018) has proposed a filtering algorithm that is well adapted 

to address this type of situation. All these constraints and variables constitute the con-

straint satisfaction problem. An instance of this problem is built from each dataset and 

solved with the solver in order to get an ordered set of sites that form a sampling circuit. 

The program returns the list of sampling sites, the order in which they are visited and 

the associated walking distance.

Yield estimation

The aim is to estimate Y  , the average yield of the field. For each selected sampling site s 

( s ∈ S
Selected

 ), GW(s) is the grape weight per vine value. A linear model linking the aux-

iliary data ( AD ) to GW is built from these sites (Eq. 1):

For a given site s , ĜW(s) represents an estimate of GW(s) . The parameters a and b are 

obtained from a linear regression on the N sites selected by the sampling method.

With S = {1,… , K} being the full set of PSSs available, Ŷ
CS

 , the yield estimate with 

Constrained Sampling (CS) approach, can be computed from the model using all these 

PSSs (Eq. 2):

Estimation error

Regardless of the method used, the estimation error is a deviation from the actual yield 

value ( Y  ) and its estimation ( ̂Y  ), expressed as a percentage (Eq. 3).

(1)ĜW(s) = a × AD(s) + b

(2)Ŷ
CS

= mean
s∈S(ĜW(s))
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Reference methods

The method is compared to two references:

A conventional random sampling (RS) approach where the N sampling sites are randomly 

selected among all the PSSs. Ŷ
RS

 , the yield estimated with RS, is therefore directly calculated 

from the mean of observed GW values. RS represents what is generally done in practice in 

terms of yield estimation.

The second approach is model sampling (MS) whose method principles have been 

described by (Carrillo et al. 2016). SSs are chosen according to NDVI values. One site is ran-

domly selected for each of the N NDVI quantiles. MS uses a model based on the NDVI/yield 

relationship, as described in Eq. 1. Unlike constrained sampling method, the selection of SS 

does not consider their position on the plot.

To compare the length of the routes between the different methods, the optimal route 

between the selected sites was computed for both reference methods. This was done with the 

R TSP package (Hahsler and Hornik 2007).

Theoretical �elds

Methodology

Simulated data were used to study the properties and limitations of the approach. Theoretical 

fields are intended to compare CS to reference methods in a wide range of known situations. 

Each simulation aims at providing two variables for each theoretical field: auxiliary observa-

tion (i.e. NDVI) and variable of interest (i.e. the yield), both spatially auto-correlated.

The simulation assumed that a main underlying phenomenon (i.e. environmental factors 

like soil, climate, elevation, etc.) drives the within field variability of the plant response. The 

simulation process therefore starts by generating a theoretical auto-correlated variable (noted 

G ), representing the spatial variability of the underlying factor. G is simulated as a spatialized 

Gaussian field with no nugget effect (Fig. 3a). Two new variables, respectively V1 (Fig. 3b) 

and V2 (Fig. 3e), were derived from G by adding a non-auto-correlated noise following a nor-

mal centred distribution of respective variances �
V

1

 and �
V

2

 (Eqs. 5 and  6). V1 and V2 are 

therefore intrinsically correlated with each other, the level of correlation depends on �
V1

 and 

�
V2

 . In the followings, V1 will be used for the variable of interest while V2 will be used for the 

auxiliary variable.

(3)
Error(%) =

|
|
|
Y − Ŷ

|
|
|

Y

(4)Ŷ
RS

= mean
s∈SSelected

(GW(s))

(5)V1
i
= G

i
+ �

V1i
with �

V1i
∼ N

(

0, �
2

V1

)

(6)V2
i
= G

i
+ �

V2i
with �

V2i
∼ N

(

0, �
2

V2

)

With Cor (V1, V2) � [0,1]



Precision Agriculture 

1 3

Fig. 3  Workflow of the theoretical fields simulation process. a Variable G is generated as a fully spatial-

ized Gaussian field. b Variable V1 derived from G by adding a random noise. c Yield variable derived from 

V1(linear transformation). d Final theoretical yield data after row extraction. e Variable V2 derived from G 

by adding a random noise. f Variable NDVI derived from V2 (linear transformation). g NDVI variable com-

plemented with outlier zones. h Final NDVI data after row extraction
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Four parameters were considered to vary across the theoretical dataset: (i) the distance 

of auto-correlation of G, V1 and V2, defined by the range of the semi-variogram of each 

variable; (ii) the ratio of nugget effect/sill of the V1 variable; (iii) the degree of correla-

tion between V1 and V2 and (iv) the number of outliers on V2. These parameters fit the 

diversity of theoretical data by controlling the link between the two variables and their 

semi-variograms. Hereafter is described the process used to set up these parameters during 

the simulation process:

�
2

V1
 , the variance of the noise added to V1 was chosen to obtain the expected nugget 

effect/sill ratio on V1. G having no nugget effect, �2

V1
 is therefore directly equal to the nug-

get effect of V1 . It can be directly deduced from the ratio and �2

s
 (Eq. 7):

�
2

V2
 , the variance of the noise added to V2 was used to calibrate the degree of correlation 

between V1 and V2 . This was deduced from the covariance and Pearson correlation formu-

las (Eqs. 8 and 9).

Hence:

G , �
V1

 and �
V2

 being independent random variables, their covariance are equal to zero. 

Finally:

With the Pearson correlation formula:

it results in:

And finally:

The variable of interest will be the yield and the auxiliary data, the NDVI. They were 

respectively derived from V1 and V2 by a linear change of scale ( �) to be centred around 

(7)Ratio =
nugget(Y)

sill(Y)
=

�
2

V1

�
2

G

⇒ �
2

V1
= Ratio × �

2

G

(8)Cov(V1, V2) = Cov
(

G + �
V1, G + �

V2

)

Cov(V1, V2) = Cov(G, G) + Cov
(

G, �
V1

)

+ Cov
(

G, �
V2

)

+ Cov
(

�
V1, �

V2

)

Cov(V1, V2) = Cov(G, G) = Var(G) = �
2

G

Cor(V1, V2) =
Cov(V1, V2)

√

Var(V1) ×
√

Var(V2)

(9)
Cor(V1, V2) =

�
2

G

√

�
2

sG
+ �

2

V1
×

√

�
2

G
+ �

2

V2

�
2

V2
=

⎛⎜⎜⎜⎝

�
2

G�
�

2

G
+ �

2

V1
× Cor(V1, V2)

⎞
⎟⎟⎟⎠

2

− �
2

G
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the desired average yield ( Y
theo

 ) and the desired average NDVI ( NDVI
theo

 ) with the appro-

priate dispersion (Eqs. 10 and 11) This transformation does not affect the correlation or any 

of the three other parameters. (Fig. 3c, f and Eqs. 10 and  11):

An optional step consists of adding outlier zones on the NDVI simulated maps. Outlier 

zones intended to represent abnormal phenomenon like weed patches (abnormally strong 

NDVI) or local diseased vines (abnormally low NDVI) who may locally alter the correla-

tion between yield and NDVI.

The number of outlier zones will vary from 0 to 6 (Table  1). The Location of each 

outlier zones was randomly chosen. Their size varies from 10 to 30 pixels and all these 

pixels have the same NDVI value taken from [0.1,0.25] ∪ [0.75,0.9] . All these parameters 

are drawn randomly for each desired outlier zones. Pixels around the outlier zone were 

smoothed in order to simulate a short gradient with “normal” surrounding NDVI values 

(Fig.  3g). Introduction of outlier zones may lead to a slight decrease for the correlation 

parameter.

The final step consisted in extracting the values of both information (Yield and NDVI) 

corresponding to the rows of the vine. The rows take the values of the nearest pixel. 

(Fig. 3d and h).

Implementation

Theoretical fields were designed with an area of one hectare (100 m × 100 m) with a 2.5 m 

distance between rows which corresponds more or less to typical fields area and plantation 

density of 4000 vines/ha found in south of France. The resolution was 1 pixel/m2. For theo-

retical yield data, parameters of the simulation were defined so that average yield corre-

sponds to common average yield of the region ( 
−

Ytheo= 1000g∕vine) and Coefficient of Vari-

ation (CV) to previous works: CV = 30%; �2

G
= (1000 × 0.3)2 (Krstic et al. 1998, Dunn and 

Martin 2000). For theoretical NDVI, the average value was set at 
−

NDVI
theo

= 1∕2 , and the � 

factor in Eq. 11 at  
1

18�
G

 to ensure that all the NDVI values lay within the range of [0,1].

The choice of the different possible values for the four parameters (Table 1) was based 

on observations from literature in precision viticulture (Bramley et al. 2019, Bramley and 

Hamilton 2004, Hall et al. 2010, Li et al. 2017, Taylor et al. 2005, Tisseyre et al. 2008). For 

each parameter, three possible levels were defined (Table 1), encompassing a range of vari-

ability allowing to account for the existing diversity in vineyard fields. Each parameter will 

(10)Y
i
= Y

theo
+ V1

i

(11)NDVI
i
= NDVI

theo
+ V2

i
× �

Table 1  Values for theoretical 

field parameters

Default values are in bold font

Parameter Low Medium High

Range (m) 10 20 40

Ratio Nugget effect/Sill 1/10 1/3 1/2

Pearson correlation coefficient 0.1 0.4 0.7

Number of Outlier zones 0 3 6
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vary individually by setting the others to their default values, indicated in bold in Table 1. 

This procedure will ensure to test the effect of each parameter on the sampling results.

Real data

Real fields used to test the method come from INRA Pech-Rouge (Narbonne, France). The 

experiment and the data base was detailed by Carrillo et al. (2016). It is briefly summarised 

hereafter. NDVI values from nine different vine fields were considered. All of them are 

non-irrigated and exposed to Mediterranean climate with precipitation occurring during 

spring with hot and dry summer. The characteristics of each plot are shown in Table 2.

NDVI values were derived from a 1 m. resolution multi-spectral image taken the 31th of 

August 2008 by Avion Jaune (Montpellier, Hérault, France). The spectral regions captured 

in the images were: blue (445–520 nm) green (510–600 nm), red (632–695 nm) and near-

infrared (757–853 nm). From these 1 m square image pixels, aggregation method described 

in (Acevedo-Opazo et al. 2008) was used to obtain 9 m square image pixels reducing the 

effect of canopy discontinuity and bare soil on measured values. NDVI was finally com-

puted from processed images according to Rouse et  al. (1973). Mechanical or chemical 

weeding was performed over the inter-row spacing; therefore, row cover crop did not affect 

much NDVI values.

PSSs were selected regularly over the fields with measurement made on each node of a 

15 m2 width sampling grid (Fig. 4). At each node, yield was measured on five consecutive 

vines in the row and average yield was affected to the location corresponding to the central 

vine. The final data base was a set of 313 sites over the nine different fields. It is notewor-

thy that, unlike simulated fields, the number of PSSs is reduced for real fields. Indeed, 

since it was not practically possible to measure the yield on each vine stock, the conse-

quence is that the number of PSSs depends on the number of available measurement sites, 

therefore PSSs per site varied from 19 to 45. Each PSS was then characterized by a Grape 

Weight per vine value (GW) and a NDVI value.

For each field, the average of all available measured GW values was used to estimate the 

average yield of the field ( Y).

Table 2  Description of the experimental fields

Nugget effect could not be estimated because of the resolution of yield data

Field Area (ha) Variety Number of potential 

sampling sites

Range of semi vari-

ogram yield (m)

Pearson correlation 

coefficient (NDVI/

yield)

P22 1.72 Syrah 45 21.14 0.13

P63 1.33 Syrah 42 7.37 0.28

P65 0.69 Syrah 33 27.71 0.86

P76 1.14 Carignan 37 22.20 0.39

P77 1.24 Syrah 19 9.25 0.48

P80 0.54 Syrah 40 20.34 0.63

P82 1.15 Syrah 53 21.69 0.47

P88 0.85 Syrah 21 14.08 -0.04

P104 0.81 Carignan 23 12.96 0.18
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Implementation

The core of the sampling approach was written in Java, the program used the Choco 

solver (Prud’homme et  al. 2014). The calculations to obtain the distance matrix are 

made with Python. Theoretical fields, quantile classification according to their value for 

auxiliary data, estimation errors, and route distance were computed with R. Packages 

“gstats” and “sp” were used to generate Gaussian fields for the G variable.

As explained in the description of the constraints, the approach presented here takes 

into account the starting site of the practitioner to include it in the sampling circuit. Var-

ying the starting site thus changes the result that will be obtained. In order to increase 

the number of situations tested for real data, this starting site is positioned on different 

ends of row across the vineyards. The approach was then applied to 86 different situa-

tions instead of 9. Results for the different starting sites were averaged for each field. 

For theoretical data, thirty simulations per set of parameters are tested (270 in total). 

CS was applied once to each simulated plot. The starting site is located on one of the 

corners of the plot. The two outer rows on each side and the first three vines of each row 

cannot be selected as, in practice, they are subject to border effects. For both theoreti-

cal and experimental data, RS and MS were applied 1000 times. These repetitions were 

possible as they rely on random or partially random selection of SSs. The following 

figures are based on the average of the results obtained on each field, the result of each 

field being the average across repetitions with different starting site.

Fig. 4  INRA Pech Rouge plot 

with row edges in blue and 

potential sampling sites in red 

(Color figure online)
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Results and discussion

Sampling and vine diversity

Number of sampling sites

Figure  5 presents the results obtained for the three sampling approaches, constrained 

sampling (CS), model sampling (MS) and random sampling (RS) for simulated fields 

with parameters set at their default values (Table 1). The different sampling approaches 

were tested on each simulated plot with a number of measurement sites ranging from 

N = 5 to N = 10. Results represent the averages obtained with thirty simulated plots.

All the sampling methods follow the same trend with a decreasing error as the num-

ber of sampled sites increases. This result is logical, and consistent with the literature. 

As Carrillo et  al. (2016) have already shown, taking into account auxiliary data, MS 

approach slightly improves the quality of yield estimation compared to a RS (Fig. 5a). 

With default values, it seems that the MS approach proposed by Carrillo et al. (2016) 

gives the best results in terms of estimation error. CS and RS both present similar errors 

whatever the number of SSs. Observed errors with CS are higher than for MS (i.e. with-

out constraints). This result may be logical considering that the addition of the con-

straints may limit possibilities when choosing among the PSS.

Figure 5b clearly illustrates the gains brought by CS in terms of travel distance across 

the vineyard. Logically, the travelled distance within the plot increases linearly with 

N, the number of SSs. Travel distances with CS are at least 85% better than with other 

sampling methods. Distances are also less sensitive to the increase in the number of 

SSs with CS. This is explained by the gain brought by considering this criterion when 

selecting SSs. In view of these first results, CS offers a compromise between MS and 

distance criterion optimization, with a higher estimation error in favour of a significant 

reduction in distance.

With the hypothesis of a walking speed of 0.9 m/s and 60 s needed per SS, Table 3 

shows that MS and CS perform better than RS. For a given amount of time, CS allows a 

higher number of observations to be made compared to other sampling approaches and 

therefore the lowest estimation error.

Fig. 5  Results for theoretical data with default parameters in function of the number of sampling sites; a 

estimation error, b sampling route distance
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Impact of the semi-variogram range

Figure 6 shows the estimation error and the distance results obtained with the 3 sampling 

approaches tested on theoretical fields with varying range (10 m, 20 m, 40 m) of semi-var-

iograms. Varying the range does not affect significantly the estimation error in function of 

the number of SSs compared to previous results. MS still presents the best estimation error 

compared to CS and RS (Fig. 6a). For a range of 40 m, CS seems more erratic with the 

highest error for a low number of SSs (N > 8) and an estimation error which tends to the 

error observed with MS for a higher number of SSs (N > 8) As for estimation error, results 

of distances associated with RS and MS do not seem to be affected by the range parameter 

either (Fig. 6b). The increase in range is nevertheless associated with a slight increase in 

distance with CS.

Figure 7 gives an illustration of the sampling route obtained with the method for plots 

with different ranges (10, 20 and 40 m).

The method always promotes the measurement sites in the immediate vicinity of the 

starting site (0.0 coordinates). This is expected as the method aims to minimize travel time. 

A robustness study (result not shown) showed that the results were similar regardless of 

the starting site, the method always promote measurement sites close to the starting point 

whatever the plot characteristics. Figure 7 shows that the average distance between sam-

pling sites tends to increase with the plot range. On these plots, the maximum distance 

Table 3  Sampling time and 

estimation error for RS, MS and 

CS on simulated data

N Random sampling 

(RS)

Model sampling 

(MS)

Constrained sam-

pling (CS)

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

5 14,6 767 10,8 773 15,2 347

6 13,5 877 9,8 881 13,9 411

7 12,8 993 9,1 994 12,9 474

8 12,1 1111 8,5 1111 11,8 537

9 11,5 1192 7,9 1223 10,6 603

10 11,1 1387 7,6 1371 9,5 660

Fig. 6  Effect of the semi-variogram range on sampling strategies. a Estimation error & b sampling route 

distance



 Precision Agriculture

1 3

between sampling points corresponds approximately to the range of the plot; it is of 40 m, 

30 m and 10 m respectively for plot range of 40 m, 20 m and 10 m. This result is expected 

since as the range increases, the distance to find a higher diversity of values also increases 

leading to longer sampling routes for larger ranges. This result is consistent with that of 

Fig. 6b.

One surprising aspect, at first glance, is the close proximity of the sampling points. This 

characteristic is related to the nugget effect, which introduces erratic variance and high 

variability over short distances. This erratic variance makes it possible to find a high var-

iability of values in the immediate vicinity of the starting point and other measurement 

sites. The sampling method takes advantage of this variability to minimize travel time. It 

should be remembered that in these simulations, the nugget effect was defined according to 

literature figures in precision viticulture. It is rather high since it represents more than 30% 

of the plot variability.

Fig. 7  Illustration of sampling routes for N = 9 and three different ranges: a range = 40 m; b range = 20 m; c 

range = 10 m
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A decrease in this nugget effect leads to longer sampling route. For example, if the nug-

get effect is set to 0 (no erratic variability), then the sampling distance is longer since the 

distance needed to find representative values necessarily increases. Conversely in the case 

of no spatial autocorrelation, the method chooses contiguous independent measurement 

sites on a same row and the sampling distance is in this case very short (result no shown). 

Figure  7 therefore represents the result of optimal sampling that takes into account the 

combined effect of the nugget effect and the range considering realistic figures of spatial 

variability in viticulture.

Impact of the ratio nugget/sill

Figure 8 shows the impact of the ratio for the three sampling strategies. Whatever the sam-

pling method and the number of sampling points, an increasing ratio affect the estima-

tion error (Fig. 8a). This result is logical since the increase in the ratio corresponds to an 

increase in the proportion of erratic (non-autocorrelated) variance in the total variance of 

the NDVI. Thus, sampling methods tend to select SSs whose NDVI value is not necessarily 

correlated to the expected yield value. Note that for a high ratio (ratio = 0.5), the estimation 

error with CS is more affected compared to other approaches. CS approach appears to be 

more sensitive to high ratio values. Indeed, the short-range variability introduced by higher 

erratic variance increase the chance to have sites in different quantile groups close to each 

other. The CS approach that minimizes the route from the starting site might select close 

SSs. Close SSs often provide redundant information, which leads to an increase in estima-

tion error. On the other hand, the ratio does not seem to have any significant influence on 

the length of the sampling circuits (Fig. 8b).

Impact of the correlation level with auxiliary data

As expected, RS is not affected by a low level of correlation since SSs selection is not 

based on the NDVI data (Fig. 9a). This is not the case for MS and CS which both show 

lowest estimation errors when correlation between yield and NDVI is high while they show 

high estimation errors decreases when the correlation decreases. Since, MS and CS use 

the relationship between the two variables, it was expected that the quality of prediction 

decreases when this relationship is weakened. When the correlation is close to 0, MS tends 

Fig. 8  Effect of the proportion of the ratio nugget/sill on sampling strategies. a Estimation error & b sam-

pling route distance
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to have the same results as RS while CS presents the worst estimation error. For the theo-

retical dataset, a very low correlation corresponds to a strongly noisy NDVI (Eq. 9). The 

resulting short range erratic variability in NDVI could explain this result for CS. It follows 

the same phenomenon as already observed in the previous section for an increasing ratio. 

These results highlight the sensitivity of CS to noise in NDVI for the selection of SSs aim-

ing at optimising the distance. As for previous result, sampling distance does not seem 

much affected by the correlation, apart for CS for which it seems to slightly decrease with 

the correlation (Fig. 9b). This result supports the idea of a decreasing correlation allowing 

the CS approach to find SSs closer to each other.

Impact of outlier zones

The addition of local outlier (Fig. 10a) seems to slightly affect all methods, including the 

RS which should not be affected by changes in auxiliary data. The effect of outlier zones is 

still more important on the CS. It is difficult to draw conclusions as the effect is not propor-

tional to the number of outlier zones. As it could be expected, the length of the sampling 

circuits is not affected by these local outlier zones (Fig. 10b).

Fig. 9  Effect of the correlation between NDVI and yield on sampling strategies. a Estimation error & b 

sampling route distance

Fig. 10  Effect of outlier zones on sampling strategies. a Estimation error & b sampling route distance
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Evaluation of sampling strategies on real data

Figure 11 shows the averaged result of the three sampling methods on real fields. The 

same logical decrease in error as the number of sampled sites increases is observed 

(Fig.  11a.) The irregularity of the curves associated with CS can be explained by 

a smaller number of experiments compared to results obtained with theoretical 

fields. With N = 6 put aside, CS estimation errors are just halfway between those of 

RS and MS. Considering the characteristic of real fields in terms of ratio and corre-

lation between yield and NDVI (Table 1), these results are consistent with the results 

obtained on the simulated data. CS has been shown to be sensitive to the correlation 

between yield and NDVI and noise in NDVI values. The average correlation between 

yield and NDVI being quite large for real data (0.38 on average, Table  1) and NDVI 

values being smoothed, real fields present average characteristics close to the default 

values for theoretical fields. The reduction of erratic local variability in NDVI may have 

favoured results observed with real fields with CS. Figure  11b illustrates the gains in 

terms of travel distance across the vineyard when using CS compared to other sampling 

approaches. Distance is reduced by approx. 50% with CS compared to MS and RS. This 

result is again consistent with those observed with theoretical data. However, the gain 

here is much smaller than with theoretical data because of the lower number of PSSs 

available for real fields Considering the minimum distance between two PSSs is 15 m, 

the distance required to travel through the selected SS is necessarily higher for real 

fields because of the impossibility for the algorithm to find SSs closer than 15 m to each 

Fig. 11  Results on real data. a Estimation error & b sampling route distance

Table 4  Sampling time and 

estimation error for RS, MS and 

CS on real data

N Random sampling 

(RS)

Model sampling 

(MS)

Constrained sam-

pling (CS)

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

5 24,4 755 19,2 761 22,7 506

6 22,3 855 17,9 863 27,2 611

7 20,5 949 15,5 961 18,7 696

8 18,9 1042 14,3 1052 15,8 797

9 17,8 1129 12,9 1144 13,9 892

10 16,8 1214 12 1225 14,7 981
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other, while this was possible for theoretical fields. Overall, this method offers a good 

compromise between the quality of the estimate and the travel constraint on the plot.

Table  4 compares the performance of the different approaches on sampling time and 

estimation error for real data. Walking speed is set at 0.9 m/s and 60 s are required for each 

SS. As for simulated data, CS perform better (up to 30%) than other approaches for a given 

amount of time.

Further re�ections

The method presented in this paper aims to select SSs accounting for variability high-

lighted by auxiliary data and the practitioner constraints simultaneously. It is intended to 

be general enough to be applicable to various combinations of auxiliary data and variable 

of interest. This type of strategy could be applied to any type of crop where the travel route 

of operators is constrained by the organization of the crop (trellised structure). It may be 

necessary to keep in mind the assumptions on which the approach is based on: the fact that 

there is a correlation between the variable of interest and the auxiliary variable and the rel-

evant auxiliary variable is available with a high spatial resolution.

The choice of the auxiliary variable depends on the variable of interest to be estimated 

and the pedo-climatic context of the crop. Returning to the application case presented in 

this paper, it is based on preliminary studies that indicate that the NDVI measured at verai-

son was a relevant auxiliary variable to guide yield sampling in the specific context of 

non-irrigated Mediterranean vineyard. However, this same auxiliary variable may not be 

relevant in other soil and climatic contexts. As a result, the choice of the variables used 

requires prior knowledge and expertise for the correct implementation of the approach.

Overall, it seems that CS offers a strategy with relevant compromise between estimation 

error and sampling distance. It significantly improves the performance of the latter crite-

rion for a small increase of the estimation error. For a given amount of time, CS presents 

better results than reference methods. For a given number of SSs, the gap for the average 

error between CS and MS, which also uses a model for estimating the variable of interest, 

could be explained by two points. First, the optimization of the distance tends to regroup 

the SSs around the starting point (Fig. 6), and it has been shown that this could be a dis-

advantage when the auxiliary data is noisy, indeed in this case, CS favours the choice of 

different NDVI values very close to each other and not necessarily correlated with the vari-

able of interest. Conversely, the other methods can be more representative as they are more 

likely to choose SSs anywhere over the plot. The second reason is that choosing points 

close to each other reduces the distance of the circuit but might increase the autocorrelation 

between measurements. Two close sites will provide more or less redundant information 

depending on the distance between them. It should be noted that on the plot, practition-

ers generally rely on a random sampling limited to a fraction of the plot (often a pair of 

rows) as they cannot cover the whole field. The results obtained would then correspond to a 

degraded version of the random sampling due to the same auto-correlation problem.

A potential solution to minimize the gap between MS and CS would be to set a min-

imum distance between two SSs. This minimum distance could be derived from spatial 

auto-correlation of available auxiliary data or historical yield maps. This distance would be 

determined with the range of the experimental semi-variogram obtained with the auxiliary 

data. Depending on the value, this could make it possible to avoid or limit the autocorrela-

tion issue between the SSs and to better results of CS for slightly longer sampling times. 

Another practical option when the auxiliary data is particularly noisy (ratio > 0.33), would 
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be to smooth the data using, for example, a moving window average. This was done on real 

fields of this study and gave particularly interesting results. The methodology proposed 

by Tisseyre et al. (2018) could be used to decide on the size of the smoothing window to 

be used according to the erratic variance that is to be eliminated. Each of these areas for 

consideration could improve the sampling method presented here with reduced estimation 

errors and more widely spaced measurement sites.

Other areas for improvement are possible, such as, for example, the ability to integrate 

multiple auxiliary data or to use more complex models.

Conclusion

The methodology presented in this paper describes a new approach, Constrained Sam-

pling (CS), for yield sampling in viticulture. The originality of the approach comes from 

the association of method from Carrillo et  al. based on auxiliary data and optimisation 

algorithms to propose relevant sampling routes in term of estimation error and travelled 

distance. While the model sampling principle guides sampling points choice considering 

auxiliary information, optimisation through constraint programming ensures the relevancy 

of the chosen route in term of walking distance for the practitioner. CS appears however 

sensitive to unfavourable situations (low correlation, poor spatial structure, erratic variance 

of the auxiliary data) while other methods relying on random aspect may fare better. In 

favourable situations (good correlation between auxiliary data and yield and strong spatial 

structure), CS gives very good results. The estimation error is close to what is proposed by 

Carrillo et al. However, CS makes it possible to obtain much shorter sampling in distances 

and times. This saved time can then be used to increase the number of measurements and 

the reliability of the estimation.
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