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In order to reduce the memory requirements of quantum reactive scattering calculations based 
on delocalized basis sets, we use a discrete basis in a single interaction region coordinate system, 
resulting in a sparse Hamiltonian matrix. The resulting set of linear equations is solved via an 
iterative method which exploits their sparsity. Other important features of our formalism are the 
use of a truncated grid and distorted waves used to shrink the interaction region, and therefore 
the basis size. We demonstrate the method and assess its efficiency for the reaction 
D + H, -+ DH + H, at a total energy of 0.9 eV and zero total angular momentum (J= 0). 

I. INTRODUCTION 

In recent years, methods using square-integrable ( Y2) 
basis functions have been successfully applied to quantum 
reactive scattering calculations of several three-atom sys- 
tems. A feature common to these methods, whether based 
on the S-matrix version of the Kohn variational principle 
(SKVP)‘-S or on the (Generalized) Newton variational 
principle,6 is the construction of the Hamiltonian matrix in 
an Y2 interaction region basis set and the subsequent so- 
lution of a large set of linear equations. The present paper 
is based on the SKVP (also a log derivative version of the 
Kohn variational principle exists’). Usually, a direct 
method (LU-decomposition8) is used to solve the linear 
equations. This requires storage of the Hamiltonian matrix 
in the fast memory of the computer (if one stores the ma- 
trix on disk then the paging cost becomes great), which 
becomes a bottleneck for problems that require larger basis 
sets. Alternatively, iterative methods can be used to solve 
the linear equations. Such methods only require the Hamil- 
tonian in operator form, i.e., as a subroutine to perform the 
matrix-vector multiplication, y=Hx. It has been pointed 
out that iterative methods will be particularly beneficial in 
the case of sparse Hamiltonian matrices, which arise from 
discrete representations,’ because then the cost of the 
matrix-vector multiplication is much less than the N2 scal- 
ing (where N is the number of basis functions) in the case 
where H is full. In the SKVP method, the wave function is 
written as a linear combination of the asymptotic part of 
the wave function, expressed in Jacobi coordinates of the 
asymptotic arrangements, and of the T2 functions, which 
are set in the exchange, or interaction region. In Miller’s 
formulation,” the Y2 functions are defined as a multicen- 
tered expansion in the Jacobi coordinates of all arrange- 
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ments simultaneously, giving rise to a nondirect product 
basis. However, for discrete representations it is much 
more convenient to use a single interaction region coordi- 
nate system. The latter approach has been demonstrated to 
work very well for collinear reactive scattering by Colbert 
and Miller (CM) .9 Here we will demonstrate that it is also 
suitable for the three-dimensional case. 

Once the fundamental memory limitation problem has 
been solved, the most important task is to improve the 
performance of the method. For this purpose CM used a 
truncated grid. In this paper we will show how the matrix- 
vector multiplication can be implemented to work with 
great efficiency for such truncated grids. Furthermore, dis- 
torted waves have been used to reduce the extent of the 
interaction region, and thus the number of Y2 basis func- 
tions. We show how to construct distorted waves with the 
following very useful features: ( 1) they solve the Schrij- 
dinger equation exactly (i.e., to arbitrary accuracy) out- 
side the interaction region and (2) they are regular and no 
cutoff function is needed, as was required in previous im- 
plementations of the SKVP. Finally, we present a projec- 
tion technique which reduces the number of iterations 
needed to solve the linear equations by eliminating certain 
unnecessary high energy components in the discrete basis. 

Usually, the discrete variable representation (DVR) is 
derived starting with a delocalized (,4p2) basis set, fol- 
lowed by quadrature approximation with the number of 
quadrature points being equal to the number of basis func- 
tions, and finally a specific unitary transformation is ap- 
plied which diagonalizes the potential energy matrix. How- 
ever, we prefer to apply the unitary transformation to the 
delocalized basis, before the quadrature approximation is 
introduced, resulting in a localized ( Y2) basis. Then, 
upon introducing the quadrature approximation, each 
quadrature (or grid) point becomes associated with a lo- 
calized basis function (see Section IV). This interpretation 
of the DVR has some advantages: ( 1) it allows us to unify 
the conventional DVR (based on orthogonal polynomials) 
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and the infinite order (or sine-) DVR introduced by Col- 
bert and Miller’ and (2) it simplifies the implementation of 
symmetry (see Section VI). 

#la2 ..2 
B~“Cr,,za)=-r;;;,~ra+~~+Y~(r,), 

aa a aa 

The resulting formalism can be looked upon as a hy- 
brid method, where the reactive and nonreactive parts of 
the problem are treated separately. The SKVP formalism 
puts the reactive part of the calculation on the same footing 
as a bound-state calculation. Thus, the success of the DVR 
for bound-state problems motivates our choice of the DVR 
for the reactive part of the problem. The nonreactive part 
of the problem, the distorted wave calculation, is almost 
identical to an inelastic scattering calculation, and it is 
treated using a propagation method. Note that our method 
for constructing distorted waves is not linked to the use of 
a discrete representation, i.e. it could also be used in com- 
bination with a “conventional” SKVP calculation using a 
delocalized basis set. 

where VL(r,) is the diatomic potential. The last term in 
Eq. (2) is the interaction potential for which we have 

lim AV,(R,,r,,z,)=O, 
&-.a 

where A V, + Vr, is the full potential. The reduced masses 
in these equations are, for arrangement 1: 

l/p, = l/m,4+ l/(mB+mc), (6) 

l/ml = l/mB+ l/me, (7) 

and similarly for arrangements 2 and 3. 
We now introduce the channel eigenfunctions, <p,, of 

each arrangement, defined as the eigenfunctions of I$‘), 
with eigenvalues E,, : 

II. THEORY 

The method we describe here may be applied to any 
bimolecular reaction. We restrict our discussion to a three- 
atom system, A+BC, with zero total angular momentum 
and assume all nuclei to be distinguishable. Extensions to 
J>O and to larger systems are straightforward, although 
computationally costly. In Sec. VI we will address the issue 
of indistinguishable nuclei. 

A. The triatomic Hamiltonian (J=O) 

We use Jacobi (or +scattering) coordina?s qa 
=(R,,r,,z,), where R,= jRal, r= I?=], and z,=R;$/ 
(R,r,) with a= 1, 2, and 3 corresponding respectively to 
the arrangements A+ BC, B+AC, and C+AB. Thus, for 
example, R, is the distance from A to the center of mass of 
the BC fragment and rl is the vibrational coordinate for the 
diatom BC, etc. The volume element for integration &, is 
given by 

dr, = RzridR&r&za, (1) 

and the ranges of integration are [O,CO] for R, and r, and 
[-l,l] for z,. 

The J=O triatomic Hamiltonian expressed in Jacobi 
coordinates of arrangement (y: is 

a= f,a+&+~~‘(ra.zal +AV,(q,). (2) 
a a 

The first term is the radial part of the relative kinetic en- 
ergy of the two fragments: 

f? 1 a2 
fR,=----TRa. 

214, Ra a& 
(3) 

The second term in Eq. (2) is the corresponding angular 
part, where we have used the fact that for J=O the orbital 
angular momentum of the atom about the diatom (P) is 
equal to the rotational angular momentum of the diatom 
u2>. The third term is the diatomic Hamiltonian: 

(4) 

(5) 

[ri“,“O’(ra,za) --E,1%Ar,,z,) =O. (8) 

Here n= (a,u,j) denotes the arrangement and the vibra- 
tional and rotational quantum numbers. The functions @‘. 
for which E, <E (E being the total scattering energy) are 
the open channels, the remainder being closed channels. 
The channel eigenfunctions are separable into rotational 
and vibrational parts: 

%(ra,zJ =~j(za)4:‘b(ra)/ra. (9) 

The pi are normalized Legendre polynomials, which are 
the eigenfunctions of j2: 

i2~~(z)=~ij(j+l)_isi(z). (10) 

The second factor in Eq. (9) are the solutions of the radial 
Schrodinger equation for the diatom: 

1 
fi2 8 fi2j(j+l) 

-z p+r+ V,‘(r,) -h &b(ra) =O. 
a czcz 1 

(11) 

For each arrangement we can now write down the 
asymptotic form of the Schrodinger equation by subtract- 
ing the interaction potential [Eq. (5)] from the total 
Hamiltonian [Eq. (2)]: 

[fi- AK&J -E:l*,(q,)=O. (12) 

This equation can be separated into a part depending on 
the scattering coordinate and a part depending on the other 
coordinates yielding 

W,(R r z 1 =R~‘u,(R,)Wr,,z,), a, a, n (13) 

where II, is a solution of the radial equation: 

I &+k&j(; ‘)]u,,(R,) =0 
a a 

(14) 

and ki = 2p,(E - e,,)/fi2. Note that for now we are only 
interested in the open channels, so k, is real (and positive). 
The regular solutions of Eq. ( 14) are 

J,(R,) =x~‘~(x)v,“~ (15) 

and the irregular solutions are 

Y~(R,)=x$j(~)v~“~, (16) 
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with x=Jk,,)& and v,=fi)k,I/p,. Herejj(x) and3j(x) 
are spherical Bessel functions of the first kind and the third 
kind, respectively.“*‘2 

G. C. Groenenboom and D. T. Colbert: Quantum reactive scattering via DVR-SKVP 9683 

where the functions xn must be regular at R,=O and as- 
ymptotically (R, .+ 03 > must have incoming wave bound- 
ary conditions: 

From these two sets of real functions we can construct 
complex functions with incoming ( - ) or outgoing ( + ) 
boundary conditions: 

tin*)(R,) =J,(R,) *iY,(R,). (17) 

The normalization (0, “2) was chosen such that the radial 

flux is unity. Also, note that (H’-‘)*=H’+‘. 
The closed channels (k: < 0) are obtained by setting 

x= +ijk,,lRo in Eqs. (15) and (16). 

x,,(cJ --R,‘H~-‘(R,)~,(r,,z,). (22) 

To give some insight into the role of the “bound” and 
the “free” parts of the trial wave function we consider the 
case where the interaction potential has a finite range, i.e., 
AV,(q,) =0 for R,> RF. Taking H +HZ as a typical 
example, we find that this is a very good approximation if 
we take RF=: 10 Bohr. We will now call the region where 
R,<Rp (for 01= 1, 2 or 3 ) the interaction region and the 
rest the asymptotic region. We could construct the free 
part of the trial wave function by taking 

B. The S-matrix version of the Kohn variational 
principle 

We solve the time-independent Schrodinger equation 
using the S-matrix version of the Kohn variational princi- 
ple. The SKVP (at total energy E) can be written as 

(18) 

Here S is the S matrix corresponding to the trial wave 
functions $,,. By “ext” we mean that we need a stationary 
point of the expression with respect to first order variations 
in &. 

The crucial step in any variational calculation is choos- 
ing a suitable trial wave function. In the present context, it 
can be written as 

XdqJ =R,‘f(R,)H~-‘(R,)~,(r,,z,), (23) 

where f(R,) is a cutoff function2 that regularizes xn at 
Z&=0, i.e., f(O)=0 and switches on smoothly to 
f(R,)=l for all R,>RmaX. This way the free functions 
form a complete basis for the asymptotic regions and 
bound functions only have to be placed in the interaction 
region. Formally, this basis will only be complete if the 
closed channels are included, giving rise to an augmented S 
matrix (see, e.g., Ref. 7). Alternatively, one can leave out 
the closed channels and converge the calculation with re- 
spect to the size of the interaction region. We use the latter 
approach. Substituting the trial wave function [Eqs. (19), 
(20), and (21)] into the variational expression [Eq. ( 18)] 
yields the following expression for the S matrix:2’4 

+$~“+~;y (19) 

This form of the trial wave function emphasizes the hybrid 
nature of the present approach, discussed in the Introduc- 
tion. In a variational calculation, one has enormous free- 
dom in constructing the trial wave function; the above 
form of $ introduces a separation which allows the profit- 
able use of widely disparate computational methods in the 
same calculation. In particular, we will construct p” us- 
ing a propagation method, and $“‘“nd via a basis set expan- 
sion in the DVR. The “bound” part of the function is a 
linear combination of Z2 basis functions, Yk: 

S=f [B-CT* (B*)-’ *Cl, 

where 

(24) 

B=Mc,c-MM,T+M-’ ‘Me, 

C=M’,e-M 5 M-’ .M,,, 

and 

(25) 

(26) 

$b”“d(a = j, whql. II (20) 

It is important to note that the basis functions (and thus, 
qbund) may may be expressed in whatever coordinates, 2, 
are most convenient. In the examples in this paper we will 
use the Jacobi coordinates of arrangement 1. However, we 
have successfully used other coordinate systems with 
which to expand qbound, including Jacobi coordinates of the 
other arrangements, Radau coordinates,*3 valence (also 
called bond-angle) coordinates, and normal coordinates of 
the transition state. 

The “free” part of the trial wave function is 

(21) 

(M,,,),,/=(x.I~--E(xn~), (27) 

(Ml,dn,n~= (xi! Ifi--ElxnJt (28) 

(%h,n=(~~Ifi--EIx,), (29) 

Mk,k,=(Yk]fi-E]Yk,). (30) 

Here n runs over all open channels and all arrangements 
and k,k’ = l,..., N, where N is the total number of L?* basis 
functions. Note that here we have defined the bra, ( 1, with- 
out the usual complex conjugation. 

If we take a real Y2 basis, M (the bound-bound ma- 
trix) will be a real symmetric matrix. Me (the bound-free 
matrix) is complex rectangular and the number of columns 
is equal to the total number of open channels. 
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III. COMPUTATIONAL STRATEGY 

Since N, the number of Y2 basis functions, is typically 
much larger than the total number of open channels, the 
computational bottleneck is the solution of the linear sys- 

tem 

possible, because both the cost per iteration and the num- 
ber of iterations needed to converge Eq. (3 1) depend on N. 
Currently, we reduce N in three ways. 

M-x=Mc (31) 

in order to calculate M-‘Me in Eqs. (25) and (26). An 
important feature of the SKVP is that it puts quantum 
scattering calculations on the same footing as eigenvalue, 
or bound state, problems. Thus, we may borrow from the 
wealth of methods developed over the years for such prob- 
lems. One successful approach to eigenvalue problems has 
been the use of contracted basis sets in order to minimize 
N. Alternatively, one can use a discrete representation of 
the Hamiltonian in combination with an iterative method 
to solve the linear equations. The latter is the approach we 
are currently investigating. 

( 1) We truncate the grid by discarding all points 
where the potential energy is above some cutoff energy 
( v”‘), an idea already exploited in two-dimensional cal- 
culations by Colbert and Miller.g The implicit physical as- 
sumption is that the wave function will have nearly zero 
amplitude in these regions. This results in yCUt becoming a 
convergence parameter. 

(2) We exploit symmetry. We cannot use the threefold 
symmetry in the H3 system because the Jacobi coordinates 
break the symmetry. However, it is relatively easy to use 
twofold symmetry in Jacobi coordinates. For example, in 
the D+H, system we exploit all the symmetry. 

In a DVR the basis functions are associated with grid 
points in configuration space.14 In a multidimensional 
problem the grid can be constructed as a direct product of 
one-dimensional grids, if a single interaction region coor- 
dinate system is being used, as was done by Colbert and 
Miller.g Since the proposal of Miller in 1969*’ to treat 
exchange in time-independent reactive scattering calcula- 
tions by using a multicentered expansion of the wave func- 
tions (i.e., use basis functions simultaneously in Jacobi co- 
ordinates of all arrangements), this idea has been 
implemented in several computational frameworks, includ- 
ing SKVP.4 Attempts to adapt the DVR to this approach 
have lead to a nonsparse M matrix,i5 however. Therefore, 
following CM, we depart from the multicentered expan- 
sion, and construct our DVR in a single global coordinate 
system. 

(3) In Section II B we already showed that we only 
place y2 basis functions in the interaction region. For a 
discrete representation that means that we only keep points 
for which R, <RF, a= 1,...,3, as was done before.’ Now 
the idea is to minimize Rr by using inelastically distorted 
waves as free functions, as described in Section V. 

The number of iterations required to solve Eq. (3 1) is 
sometimes considerable (we found cases with niter on the 
order of N). It turns out to be possible to reduce the num- 
ber of iterations by projecting out high angular momentum 
components of the grid, without appreciably affecting the 
solution. Appendix A describes the projection technique in 
some detail. This technique is very close to the spirit of 
Friesner’s pseudospectral method.” In our examples the 
number of iterations was reduced by roughly 50% because 
of the smaller condition number (i.e., the ratio between the 
smallest and the largest eigenvalue) of M. After taking into 
account the overhead of the projection (which must be 
done twice at each iteration) this still results in a speedup 
of about 40%. 

In a discrete representation any multiplicative operator 
(such as the potential energy operator in the position rep- 
resentation) will be diagonal. This makes it particularly 
efficient to multiply the M matrix into a vector, which 
makes the use of iterative methods to solve Eq. (31) prac- 
tical (multiplication with kinetic energy terms can be done 
efficiently by exploiting their direct product structure, see 
Section IV C). Since the M matrix is indefinite (it has both 
positive and negative eigenvalues) we use the SYMMLQ 
algorithm’6 to solve the linear system of Eq. (31). The 
SYMMLQ algorithm uses Lanczos recursions to construct 
a Gram-Schmidt orthogonalized basis in the Krylov space 
{b,Mb,M2b,...}, where b is the right-hand side of the linear 
equations. In this basis the linear system is tridiagonal and 
can be easily solved using LQ decomposition. The algo- 
rithm is implemented in such a way that at every iteration 
the LQ decomposition and the solution are updated. The 
advantage of an iterative method is that one only needs to 
store a few vectors of length N, instead of the whole (N 
xN) M matrix. As a result, the method becomes cpu- 
bound, rather than memory-bound. 

IV. DISCRETE VARIABLE REPRESENTATION 

A. General background 

The routine use of the discrete variable representation 
(DVR) in molecular dynamics calculations has already 
been seen a decade go (Ref. 18), though its origins are 
almost 30 years old.” During this time, there have been 
various extensions and reformulations of the basic idea. 
Many have been based on the connection made by Dick- 
inson and Certain2’ between the discrete representation 
that diagonalizes the potential energy matrix, and Gauss- 
ian quadrature points and weights. We redefine the DVR 
in order to unify the DVR based on Gaussian quadratures 
with the DVR introduced by Colbert and Miller.g The 
latter DVR (which we use for radial coordinates) yields an 
equally spaced grid which is particularly convenient in 
scattering calculations, since it does not depend on some 
equilibrium structure. 

Although storage of M is no longer a problem, it is still 
important to keep N, the number of grid points, as low as 

We start by discussing a one-dimensional problem; the 
generalization to the multidimensional case will be given in 
the next section. The DVR can be introduced in several 
ways. We find the following definition to be most conve- 
nient: 
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A DVR consists of an orthonormal basis set 

C&(x), i= l,...,n} (32) 

and a n-point quadrature with the points and weights 
. 

C(x,c,wd, k= L...,nl (33) 

and the property 

~i(Xk)=Wkl”Sik, (34) 

together with the rule that the potential energy matrix 
(and all other multiplicative operators) are computed 
within the quadrature approximation. Note that the num- 
ber of quadrature points, n, is equal to the number of basis 
functions. We will call the functions $i DVR functions. 

Using this approximation it can be easily shown that 
the potential energy matrix becomes diagonal: 

vij’ (#iI pi 4j> 

= C, sikV(X&)Sjk= vCxi)Sij - (35) 

Using the theory of orthogonal polynomials and 
Gaussian integration we can construct a DVR.20 For ex- 
ample, consider a set of normalized Hermite polynomials 

hi(X) =W(X)1’2Ni_lHi-1(X), i=l,...,n, (36) 

where we have absorbed the square root of the weight 
function [w(x) 1’2] into the functions hi, and Ni is the nor- 
malizationt2 (i.e., the functions hi are harmonic oscillator 
eigenfunctions) . The n-point Gauss-Hermite quadrature 
will be exact for the overlap matrix 

(hil hj> = kil wk hitXk)hjtX&) =sij 9 (37) 

where wk are the so-called adjusted quadrature weights, 
i.e., wk = w@(xk)-“2 and w; are the normal Gauss- 
Hermite quadrature weights. From this equation it follows 
that the matrix 

Uki= W~‘2hi(Xk) (38) 

is unitary and thus the set 

‘$k(X)= i$ Ukihi(x), k= l,...,n (39) 

satisfies Eq. (34), since 

#k(xj) = iz, Ukihi(xj) (40) 

=w k li2 ill ukiuji= wk 1’2skj. 

B. Sinc-function DVR 

(41) 

A DVR does not have to be derived from orthogonal 
polynomials. Consider the following set of functions: 

&(x)=A-1’2 sine r $-PI , 
I( )I 

n= - CO,..., +oc, 

(42) 

[sine (x ) = sin (x ) /x] together with the quadrature 

C(x,,w,> = (n&A), n= - CO,...,+ 03). These functions 
clearly satisfy Eq. (34). The properties of this set of func- 
tions can be understood most easily by realizing that they 
are the Fourier transforms of a Fourier basis in 
momentum-space, i.e., 

hzcx> = (277) -1’2 J+m e-‘P”&(p)dp, 
-03 

where 

(43) 

&l(P) = 
I 

(q 
max 

) - *Rein~Wp,,,) 
7 IPIQmax 

0, otherwise (4.4) 

and Pmax =rr/A. From this it immediately follows that 

C&(x), n= - CO,..., + CO} is an orthogonal basis set, that 

spans all functions that have a highest momentum compo- 

nent p<p,, . This also means that the quadrature, which is 
exact for the overlap matrix, will be exact for any function 
with a highest frequency component 2p,,,. 

The matrix elements for the first and second derivative 
operators can be evaluated analytically for these sine func- 
tions. These formulas have been given before9S2’ but we will 
reproduce them here 

(4n~j&)=(~~~~;, n+m, (45) 

and 

I ll? 
-5-p’ n=m, 

2 (-l)“-m (46) 

-;Iz (n-m)2 ’ 
n#m. 

These matrix elements can also be evaluated using the 
quadrature. This gives the same result, since the quadra- 
ture is exact for the overlap of sine functions (4,) and 
taking the derivative of a sine function does not introduce 
higher frequency components. 

For radial coordinates ( TE [0,03]) we can use the fol- 
lowing set: 

4J;(~)=m9-4Jn(-r), n=l,*.., co, (47) 

which we will call “wrapped” sine functions. These func- 
tions are orthonormal on the range [O,~O] and they satisfy 
Eq. (34) if we use the quadrature { (r,,w,) = (nA,A), 
n= l,..., 00). For the wrapped functions we have 

(,;l$i,,) 
f 1 n2 2 (-l)“+” 

I 
-?jp--p (n+m)2’ n=m, 

= 
2 (--l)“-+ (-l)n+m 

-ii? (n-m)2 + (n+m)2 I 1 
(48) 

’ nZm’ 
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In practice we will of course truncate the sets, which is 
equivalent to assuming that the function that is being rep- 
resented is zero outside a certain range of the coordinate. 

(fJ)jjt= J#j(X)fi$jt(X)dX* (59) 

C. Multidimensional case 

For kinetic energy terms with a coordinate-dependent pre- 
factor, or in general for any product of operators, we insert 
the resolution of identity in the DVR basis 

The generalization of the DVR to more than one di- 
mension is straightforward. One simply uses the direct 
product of one-dimensional DVRs. The only complication 
arises from the truncation of the multidimensional grid. 
Here, we will give the formalism for a general three- 
dimensional interaction region coordinate system x’ 
= (x,y,z). For some bound-free matrix elements one has to 
deal with two coordinate systems, so it will be most con- 
venient to keep the volume element of integration [the 
Jacobian J(s)] explicitly in the formalism. For the scalar 
product between two real functions f(x’) and g(x’> we 
have 

between the factors and use the quadrature approximation 
for the multiplicative terms. For example, 

(Y,If(x,y)~=[Yr,~)=S,,Sjj’f(xi,yi)(~~)kk~. (61) 

We also compute the MO-matrix elements using the 
quadrature approximation. From Eq. (29) we have 

wdp,“= (Y,II;T-EIXn) (62) 

=[w,J(~~)l”2[(~-E)X”l;=~~. (63) 

(f Id =JJj- J(S) f (x’)g(x’)&. (49) 

The ranges of integration depend on the type of coordinate. 
We assume that for every coordinate we have a quadrature 
{ (Xj,~), i= 1 ,...,n,} (and similarly for y and z). Thus, for 
a grid point with the indices p= (i,j,k) we have 

5 3 (xi ,yj ,zk ) * (50) 

Associated with each grid point we have a quadrature 
weight 

w*=wfwjyw; (51) 

and a DVR function 

D. Implementation 

In order to solve Eq. (3 1) with an iterative method we 
need to implement the matrix-vector multiplication: 

d=M.c, (64) 

where the components d,, and cP of the vectors d and c 
correspond to the grid point with the indices (i,j,k). We 
will discuss the implementation for the various terms in M 
separately. 

Potential energy terms are diagonal, so we can store 
them in a one-dimensional array of length N. Operating a 
diagonal operator on a vector is done in a single loop. 

YJX’) =&a -“2~;w~iy(y>~~(z> 

with the property 

(52) 

Yp(?p*,,)= [Wd(~~;?,)]-1’2Sii,Sjj,Skk, * (53) 

This direct product grid of n, X n,, X n, points should cover 
the entire interaction region. We truncate this grid by using 
the criteria given in Section III. 

The M-matrix elements are defined by 

Mp,t=(Y,~f-Epp,) (54) 

The structure of a kinetic energy term depends on the 
ordering of the grid points. For example, if the x index (i) 
is running fastest, the TX operator [Eq. (58)] will be block 
diagonal. The sizes of the diagonal blocks will vary de- 
pending on the number of grid points in each “row”of the 
grid (i.e., after truncation of the grid). So for the TX op- 
erator we just need to store one square matrix of dimension 
n, from which we can “clip” all the differently sized diag- 
onal blocks. Of course we must also store the lowest and 
the highest x index of each row in the grid, which tells us 
what part of this matrix we need. 

= 
Kl- 

J(x’)Y,(x’) (I;r-E)Y&)dx’ . (55) 

For multiplicative terms in ff we get only diagonal terms 
again (within the quadrature approximation of course): 

(Yp 1 V(x’) 1 Ypt) = ~(s?p)sii#sjjfsk-# a (56) 

For kinetic energy terms of the form 

f 
x 
=J(x’) - 1129 J(x’) 112 

x (57) 

like, e.g., the radial kinetic energy operator of Eq. (3)) we 

get 

(Ypl f,IYp,) = (Fl)iitSjjtSkkt, 

where 

(58) 

A problem arises when the truncation of the grid cuts 
a row into two (or more) pieces. We solve this problem by 
treating each piece as if it were a separate row, so that we 
have a diagonal block in TX for each row of consecutive 
points in the grid. This means that we set the kinetic en- 
ergy matrix elements that connect points on opposite sides 
of a “gap” to zero. This procedure is consistent with the 
approximation inherent in the truncation of the grid. As 
discussed before, eliminating grid points is equivalent to 
assuming the potential to be infinite in that region, and the 
coupling across such a region can thus be set to zero. Note 
that there can still be indirect kinetic coupling around such 
a region. If the physical assumption is poor, meaning that 
the wave function has appreciable amplitude in that region, 
one simply must not truncate there. We checked to make 
sure that this approximation does not affect the answer. 
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However, we warn that kinetic energy operators of the 
form #/ax&’ will no longer be symmetric (or, in general, 
Hermitian) when we make this approximation for both 
factors d/ax and a/@ separately. This problem can be 
overcome by working with the symmetrized form (l/ 
2) { ( d2/axdy) + (#/$4x>} instetd. 

The implementation of the Ty operator is seemingly 
much more difficult. Of course, if the grid points were 
ordered with the y index (j) running fastest we couid use 
the same implementation we just described for the T, op- 
erator. This observation is \he key to the algorithm that we 
propose: before applying Ty we reorder the vector c and 
before we add the result to d we apply the inverse permu- 
tation. The permutation is stored in an integer array of 
length N, and the reordering can be done in a single loop of 
length A’. The cost of finding the permutation is negligible 
since it only needs to be done once, instead of every itera- 
tion. Furthermore, it can be done with a general purpose 
sorting routine.22 For example, for the y ordering, the sort- 
ing criterion is point (p) must come after point (p’ ) if 

zk>zkt or 

(zk=zk, and [Xk>Xkr Or (xk=xk’ and Yj >Yj,)]}. 
(65) 

As such, we can exploit the sparsity and the truncation in 
a straightforward manner by this sorting procedure. 

V. DISTORTED WAVES 

We have already discussed the flexibility one has in 
choosing the y2 basis (here, a DVR). This is, however, 
only a part of the basis that forms the variational wave 
function; one also has considerable freedom in constructing 
the free waves xa. The only requirements on them is that 
they satisfy the boundary conditions at R,=O and R,= CO, 
and that they solve the Schriidinger equation from R,= 00 
inward to R,= RF, the outer boundary of the interaction 
region. Zhang and Miller415 previously proposed using 
“distorted” waves that solve the Schrodinger equation 
from R,= 03 inward to a much smaller value of Ry than 
do simple spherical waves, for example. We follow this 
strategy, but our implementation of the idea differs suffi- 
ciently from their proposal to warrant discussion. 

Suppose we solve the equation 

[k-E+ v’,“hJ lx:l’(s,) =a (66) 

where pa” is some additional potential energy term. Then 
in all regions where v(a’) (q,) =0, the functions XL” ( qa) 
will solve the original Schrodinger equation. Of course if 
we take pa’) to be zero everywhere we are back to the 
reactive scattering problem we started with. The idea, fol- 
lowing that of Baer and co-workers,23,24 is to take a short 
range repulsive potential that separates arrangements from 
one another by turning Eq. (66) into an inelastic scattering 
problem. To better reflect the purpose of this potential we 
prefer to call it a barrier potential, rather than distortion 
potential. When we use the functions xi*’ as distorted 
waves we do not need a cutoff function, since these inelastic 
scattering wave functions are regular at R,=O. In other 

words, the barrier potential takes the role of the cutoff 
function. However, these inelastic wave functions do not 
satisfy incoming wave boundary conditions, as required. 
To construct functions with the desired asymptotic behav- 
ior we could use the irregular solutions of Eq. (66)) but in 
that case we would need a cutoff function again. Instead, 
we determine the regular solutions of another inelastic 
problem with a slightly different barrier potential, v’,), 
and take the correct linear combination of the two sets of 
solutions. One of the advantages of this approach is that we 
can use well established methods to solve the inelastic 
problem. We chose the renorrnalized Numerov method of 
Johnson,25’26 rather than a Log-derivative method, since 
the former allows for an easy calculation of the wave func- 
tions. In the computation of the free-free and bound-free 
integrals we will assume the inelastic solutions to be well 
converged. This means that we must include closed chan- 
nels in the propagation, which prevents us from using a 
simple method like the normal Numerov propagation. At 
the same time, however, the possibility to include closed 
channels in the computation of the distorted waves allows 
us to reduce the size of the interaction region even further. 

To simplify the formalism, we choose barrier poten- 
tials dependent on R, only, although this is not a strict 
requirement. Also, we make sure that the distorted waves 
of different arrangements do not overlap, so that we do not 
have to compute free-free integrals involving different ar- 
rangements. Now we will show how to determine the cor- 
rect linear combination of the two sets of functions. 

The two inelastic problems for arrangement a are de- 
fined by 

[ii--E+ P$“(R,)]#(qa) =0, p= 1’2. (67) 

The solution is written as 

xAp’(qa) = 3 ~,~(r,,z,)U~,~(R,)/R,, (68) 

Here n runs over only the open channels but n’ involves 
both open and closed channels. Note that since we are only 
concerned with one arrangement at a time, n’ = (a$, j’ ) . 
The expansion leads to the coupled channel equations for 
U(P): 

-$ U’P’(R,)=W’P’(R,)U(P)(R,), (69) 
cl 

where 

WCp’ (R )= n,n’ a -A?+ n S,,,r +$ V;;, (&A 

(70) 

with 

V$~.(R,) = (%(ra,za) I v’,pp’UL) 

+AV,UL,r,,z,) I%(ra,za>)ra,za. (71) 

Asymptotically Up) can be written as 

U(p)(R,)-J(R,)+Y(R,)K? (72) 
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In this equation we can take all matrices to be m x m, with 
m being the number of open channels, since the coefficients 
for the closed channels can be set to zero asymptotically. J 
and Y are diagonal matrices with the spherical Bessel func- 
tions of Eqs. ( 15) and ( 16), respectively, on the diagonal. 

First we rewrite this solution with S-matrix boundary 
conditions. From Eq. ( 17) we have 

(g-E)x,,= - i v’,“’ ;&)E$,). 
p=l 

(85) 

All that remains to be done is the evaluation of this func- 
tion at all interaction region grid points. The renormalized 
Numerov propagation yields the U(R,) matrices at a grid, 
i.e., we have (dropping the arrangement labels) 

J(q,) = [H’+‘(G) -H’-‘(q c! )]/2i, 

Y(q,) = W(+)(q a 1 +H(-)(q 1 l/2 n 9 

so we can rewrite Eq. (72) as 

(73) 

(74) 

U’p’(q,)A’p’- -H’-‘(q&+H’+‘(s,) 

with 

(75) 

A(J’)=2( -zl+K(f’))-‘, (76) 

S;= (-zl-K(p)) (-zTI+K@))-‘. (77) 

Note that, using the fact that K@’ is real and symmetric, it 
is easy to prove that these inverses exist. 

Subtracting Eq. (75) with p=2 from the same equa- 
tion with p= 1 we get 

U!p)~u(p)(R.) R.=ih i=no no+1 I 19 I 7 f 9.**, nl, (86) 

where h is a grid spacing. This grid will in general not 
coincide with the interaction region grid. Thus in order to 
evaluate Eq. (68) at some interaction region grid point 
(R,r,z) (still dropping the arrangement labels), we must 
obtain Ucp) (R) by interpolation. Johnson gives a fourth- 
order interpolation formula for this2’ in the one- 
dimensional case (i.e., U being a one-by-one matrix). The 
generalization of his formula for our multichannel problem 
is straightforward, but it requires the evaluation and inver- 
sion of Wcp)(R) [Eq. (70)] at each interaction region grid 
point. However, following Johnson, we managed to derive 
a slightly different fourth-order interpolation formula 
which only requires the Wcp) matrices (and not their in- 
verses) at the renormalized Numerov grid points 

U”‘(q,)A’1’-U’2’(q a )Ac2’-H(-)(q )(S+-St) a 2 

’ (78) 

Defining 

A=S2-S,, 

E”‘=A”‘(At)-I, 

E(2)=-A(2)(At)-1 , 

we get 

(79) 

(80) 

(81) 

W!P’ z W(P) (R .) 
I 1 * (87) 

These matrices can be stored on a disk file during the 
computation of the distorted waves. The derivation of our 
interpolation formula is given in Appendix B; here we just 
give the result. Assume we want to compute the U matrix 
at a grid point R, which lies between the two propagation 
grid points Ri- i and Ri : 

U”‘(q,)E’1’+U’2’(q )Ec2’-H’-‘(q ) a a . (82) 

Finally, we can construct distorted waves with incoming 
wave boundary conditions from the two sets of solutions of 
Eq. (67): 

2 

R,=Ri-Ifah. (88) 

Defining 

b=l-a (89) 

the interpolation formula, with truncation error of order 
h4, is [also dropping the (p) superscript] 

xds,) = psI 5 x$‘(qa)E$,),,, (83) 

where now n and n’ run over only the open channels. 
Note that a problem arises when A is (nearly) singu- 

lar. This will happen, for example, when the difference 
between the two distortion potentials goes to zero, since 
that will make S, and S, [Eq. (79)] identical. However, it 
can also happen for other reasons and then it can actually 
be used to advantage. We will return to this point in Sec- 
tion VIII. 

ab(a-2)h2 
U(R,)=bUi-l+aUi+ 6 Wi- * Ui- 1 

A. Bound-free elements 

To*compute the Me-matrix elements we must operate 
with H-E on the incoming waves. Assuming that the 
inelastic problem has been converged sufficiently well, we 
can use [from Eq. (67)] 

(I;r- E)Jp = - v’,“‘*Lp’ (84) 

and with Eq. (83) we get 

ab(b-2)h2 

+ 6 
WiUj . (90) 

One final note about the application of this formula: usu- 
ally it will not be possible to keep all the U and W matrices 
in core memory and in the most unfortunate case, the pro- 
gram will have to read two U and two W matrices from 
disk for every grid point in the interaction region. Thus, it 
is much more economical to sort the interaction region 
grid points on increasing value of R before the interpola- 
tion is done. This way one will only have to go through the 
file with the U matrices and the file with the W matrices 
once. Afterward, the MO elements can be reordered again. 

B. Free-free integrals 

The computation of the free-free integrals is also based 
on Eq. (85): 
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(~,o),,,=(x,I~-EIx.,) (91) 

= i i 2 2 E$E$,X$$, 
p=l q=l m m’ 

(92) 

where m and m’ run over the open channels and 

x(Pd _ - 
m,m’ - co dRViq’(R) c U:$R)tJ$t(R). 

a 

In this last equation n runs over all channels. Here we have 
used the orthogonality of the channel eigenfunctions Q,, . 
In our implementation the integral is evaluated by sum- 
ming over all Numerov grid points and multiplying by the 
Numerov grid spacing (h). To compute M1,o we also use 
Eq. (92), but with E$ replaced by its complex conjugate 

[Ei!,l*. 

C. Choice of the barrier potentials 

does mean that we cannot exploit all the symmetry in, e.g., 
Hs. In the definition of Jacobi coordinates one has the 
freedom to choose the sign of z,. Assuming we use ar- 
rangement 1 interaction region coordinates, it will be con- 
venient to use a definition of the Jacobi coordinates that is 
symmetric between arrangement 2 and 3, rather than the 
“cyclic” one used by Miller.10’4 Rather than giving the final 
(J>O) formulas, we will limit ourselves to the (J=O) case, 

(93) but give the derivation in some detail, which will illuminate 
how to exploit symmetry in general. 

Let &, &, and &I be the space-fixed coordinates of 
the atoms. Using the notation x= (x’( and a&/x, we de- 
fine the Jacobi coordinates of the three arrangements qa 

= 0% ,r, ,zJ as 

2, =& -L&+&4/2, (95) 

&=&-- (mD~~+rnH~~,)/(rnD+rnH), (96) 

& =&, - h&+m&V(m0+md, (97) 

;,=&-2~, (98) 

&=&-&.,‘, (99) 

&=&-&, (100) 

z,=B, * Pa, a = 1,2,3. (101) 

The only symmetry operation we will con$der here is the 
permutation of the two hydrogen atoms, .Y, which is de- 
fined by 

.+&=x;I, . (102) 

Note that @j-‘=I and that the J=O Hamiltonian (&) for 
DH2, is invariant under @, i.e., [@,&I =O. Thus, in order 
to exploit symmetry, we construct a trial wave function 
that is an eigenfunction of 9’. 

The barrier potentials flp) (R) need to satisfy some- 
what contradictory conditions. First they should be 
strongly repulsive for small R in order to prevent overlap 
of the incoming waves of different arrangements. This con- 
dition can be waived, provided one is willing to compute 
free-free matrix elements off-diagonal in arrangement in- 
dex. This could allow further reduction of the interaction 
region. Furthermore, the barriers need to be placed as far 
inward as possible, since the size of the interaction region 
grid is determined by the range of the barriers. These two 
conditions could be met with a hard wall potential. How- 
ever, if the barrier switches on too sharply, the incoming 
waves will change abruptly in a small range, and we will 
need a high density of grid points in order to obtain accu- 
rate bound-free integrals. In other words, the barriers have 
to be smooth as well. We tried barriers of several analytic 
forms, and obtained good results with a barrier of the fol- 
lowing form: 

cpp’(R)= ( 
ap(R-RmaX)4, R<Rmax, 

0, otherwise, 

where ap is a constant. The discontinuity in the fourth 
derivative of this function caused no problems. Further- 
more, taking a2 to be about 1.1 x al was sufficient to avoid 
problems with the inversion of A in Eqs. (80) and (81). 

VI. SYMMETRY 

For the SKVP based on the multicentered expansion of 
the wave function it has been shown before how to exploit 
the symmetry due to the presence of two or three identical 
atoms in a three-atom system.10t4 In the current DVR- 
SKVP approach we have a single interaction region coor- 
dinate system. This means that in the case of two identical 
atoms we choose (e.g., Jacobi) coordinates of the arrange- 
ment associated with the unique atom. For example, in the 
DH2 system we use arrangement 1 ( D+H,) interaction 
region coordinates. However, in the case of three identical 
atoms, such a choice will always break the equivalence 
between one arrangement and the two others. Of course, 
upon convergence the symmetry will be restored, but it 

The trans3rmation properties of the Jacobi coordi- 
nates under 9 can be easily derived from Eqs. (95)- 
(101): 

(94) ~(ql)~~I(Rl,rl,zl)=(Rl,rl,--zl), (103) 

@142=43, (104) 

@%=Qz. (105) 

Note that here we have +z2=zs, while in^the cyclic defi- 
nition of ihe Jacobi coordinates, one has .Yz2= -z,. The 
effect of 9 on a general function (f > of arbitrary coordi- 
nates (x) is defined by 

.&f(x>~f(~--‘x>. (106) 

Using the property of Legendre polynomials that 

Fj( -z) = (- i)jFj(z) (107) 

we can derive, from Eq. (9)) that 

@%,u,j(rl,zl) = (-- l)j@~,~,j(rl,z~) (108) 

and from Eq. (23) or Eq. (83) 

~Xl,u,j(Sl)=(-l)'~l,u,j(Sl)~ (109) 

For arrangements 2 and 3 we find 
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(&),,=P+(l&& (127) 

Similarly we can derive for the bound-bound matrix ele- 
ments 
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3X2,u,j(q2) =X2,u,j(q3), (110) 

@*3,o,j(q3) =*3,v,j(rlZ)* (111) 

xhus we see that the functions X1,v.j are eigenfunctions of 
9. For arrangements 2 and 3 we wish to construct sym- 
metrized distorted waves. First we note that we can derive 

that X2,u,j ‘X3,u,p P rovided that the barrier potentials flap”’ 
are the same for the two arrangements [see Eq. (67)]. Thus 
it can be shown that the functions 

x *,v,j=2-1'2[X2,u,j(e) =+=X3,u,j(Q3) I (112) 

are eigenfunctions of 9. To simplify the formulas we in- 
troduce the notation 

e= (a= l,U,j=even), (113) 

o= (a= l,v,j=odd), (114) 

b= (a=2,u,j), (115) 

c= (a=3,Ll,j), (116) 

s= (a= fJ,j), (117) 

a= (a= -,v,j). (118) 

Before we can construct symmetrized free waves there 
is one complication: we must show that the trial S matrix 
has the same symmetry as the exact one [see Eq. (21)]. Of 
course, this will happen upon convergence. However, for a 
finite-dimensional calculation we must inspect Eqs. (24)- 
(30). Here, we will just give an outline of the proof that 

sb,bf = ‘%,cf. We start with the first term on the rhs of Eq. 
(25): 

(hl,O)b,b*=((Xb(q2) @-Ekbh2)) (119) 

d$y&) l&-El @‘x&d) (120) 

=(xc(sd I @+&--E)@ Ixcr(q3)) (121) 

= m%,OL,c~ * (122) 

Here we have used 3’3 =I, [s&=0, and xb’xc. The 
complication arises in the second term in Eq. (25), because 
there the interaction region y2 basis enters. We can only 
prove that 

(&);M-‘(w>b*= W?J),TM-‘(WJ,~ (123) 

if the Z2 basis is closed under @; i.e., we may write 

.@ I ri) = C 1 rjjpj,it 
i 

(124) 

where P is the matrix representation of @ in the Z2 basis. 
Using this equation we get 

(Yil~-EIXb(q2))=(Yi[~t(l;T-E)~ IXb(q2)) 
(125) 

M = P+MP. (128) 

Using these two equations and the fact that for a real Z2 
basis PT=Pt, one can easily derive Eq. ( 123). Along the 
same lines we can derive the symmetry properties of the C 
matrix [Eq. (26)] and finally of the S matrix [Eq. (24)]. 

We can summarize the result as follows: the free waves 
[Eq. (2 1 )] will have the same symmetry properties as the 
xs if thz space spanned by the y2 basis set is invariant 
~~~~r g-and the y2 basis is real. Thus, finally, we have 

+b 
= $p and we can construct symmetrized free waves 

* -E;j=2-“2[qpyq2) *lTjp-(a)]. (129) 

With this definition of the free waves the relation be- 
tween the unsymmetrized S matrix (S) and the symme- 
trized S matrix (which has diagonal blocks S+ and S- ) is 
given by 

se,,= S&v (130) 

%,, = & 9 (131) 

i&-g =2-q+ 
c,e s,e ’ (132) 

ii& = SC,0 = 2 - ‘“f$-- , (133) 

&,b=&,,=#,t-,+~&), (134) 

~,c=;(~~-s~a). (135) 

(One gets the other blocks from S=Sr.) 
Now we give the expression for the M-matrix elements 

in the symmetrized DVR basis. Let p= (i,j,k) be the in- 
dices of an interaction region grid point defined in the 
JacoE coordinates of arrangement 1, i.e., qp = (Ri,ri ,zk) . 
Let yq,,= (Ri,rj, -zk) be a grid point that has the indices 

p= (i,j, z), with zi= -zk. Furthermore, assume that for 

the DVR functions associated with the grid points we have 

i+Y,(s) =Yp(q). (136) 

Note that these assumptions hold for Gauss-Legendre 
DVR. The symmetrized DVR basis is defined as 

Yp’(q) =2-“2(113 )Y,(q). (137) 

where p runs over all points with zk > 0, assuming that we 
have an even number of Gauss-Legendre points, i.e., there 
is no grid point with zk= 0. (It is possible to use an odd 
number of Gauss-Legendre points, in which case the DVR 
function coFesponding to the point zk=O will be even with 
respect to 9 ). For the M matrix in the symmetrized basis 
we find 

= F Pi,j(yjls--EIXc(Q3))* 

(126) 

Thus, in matrix notation we have 

M&=(Ypf I&EIY,‘) 

= M,, * M,, . 

For the bound-free elements we have 

(Wj+)p,,= <y,” Jh--EIxe) 

(138) 

(139) 

(140) 

J. Chem. Phys., Vol. 99, No. 12, 15 December 1993 



=21’2u%)p,e, (141) 

o&i- ),,,=2”2wo)p,o, (142) 

(Mb+ )p,e= (m)p,b+ (&)a,~ (143) 

= (&)p,b* (14.4) 

In this last step we used the assumption that the distorted 
waves of arrangement 3 do not penetrate the region with 
zR < 0. This is equivalent to the assumption that distorted 
waves of different arrangements do not overlap. Similarly 
we have 

(&- )~,a= (Mo)p.t,. (145) 

For the free-free integrals in the symmetrized basis we 
find 

(qo)e,e= wo,o)e,e~ 

m%:o)o,o= mo,0)0,0~ 

(%:o)s,s= (Mo,oh,bt 

(%$a,,= (Mo,oh,b. 

These equations also hold for M1,O. 

(146) 

(147) 

(148) 

(149) 

VII. APPLICATION TO D+Hp 

We demonstrate the convergence behavior of the 
method with respect to the interaction region parameters. 
We also show the effect of using distorted waves on the 
number of interaction region points and we give some de- 
tails about timings. The reaction, 

Di-Hz(j,u)-DH(j’,u’) +H, (150) 

in three dimensions, with total angular momentum J=O 
and total energy E=0.9 eV was chosen, since a benchmark 
calculation of Zhang et at. is available.*’ Like Zhang et al. 
we use the Liu-Siegbahn-Truhlar-Horowitz (LSTH) po- 
tential energy surface.28 Symmetry was exploited in our 
calculation and here we present only results of the sym- 
metric case, i.e., even j. Note that for arrangement 2 (and, 
because of the symmetry, arrangement 3) this calculation 
still includes both even and odd j’. This gives 7 open chan- 
nels for arrangement 1 (D+H,) and 17 for arrangement 2 

(DHSH). 
First, we summarize the steps in our reactive scattering 

computation. 
1. Calculate the channel eigenfunctions {a,,) and ei- 

genvalues {E,) for H, and DH [see Eq. (S)]. 
2. Construct the distorted waves, {xn}, for each ar- 

rangement by renormalized Numerov propagation (see 
Section V). Using these, calculate the free-free matrices, 

W,. WI. (WI and MI,, h. WN. 
3. Construct the truncated interaction-region DVR 

grid (see Section IV), with or without symmetry. 
4. Using the channel functions, distorted waves, and 

the DVR grid, evaluate the bound-free matrix, MO [Eq. 
(29)], for each arrangement, using Eqs. (140)-( 145) in 
case of symmetry. 

TABLE I. Deviation from unitarity of the P matrix in % as a function of 
no and trB. 

3.0 3.5 4.0 4.5 

18 2.9 3.1 3.2 3.2 

20 2.5 2.1 2.0 2.1 

22 0.49 0.46 0.46 0.49 

24 0.30 0.080 0.075 0.076 

26 0.11 0.03 1 0.032 0.028 

28 0.15 0.0044 0.0048 0.0036 

30 0.14 0.0044 0.0048 O.cHlll 

32 0.13 0.0044 O.CQ48 -0SK067 

5. Using SYMMLQ, solve M *x=Mo [Eq. (31)]. 
6. Construct the B and C matrices [Eqs. (25) and 

(26)], and finally, the S matrix [Eq. (24)]. 
7. If symmetry is used the resulting S matrix can be 

transformed back using Eqs. [( 130)-( 135)]. 

A separate program is used for each step and the interme- 
diate results are stored on disk. This modular setup of the 
computation yields not only a savings in memory, but in 
run-time as well. For example, one can test the conver- 
gence with respect to the grid parameters, without the need 
to recompute the distorted waves. 

A. Convergence of the unitarity of the S matrix 

Four parameters specify the interaction region grid: 
R max 

9 vcut, no9 and the grid constant (nB). The first two 
parameters determine the spatial extent and shape of the 
grid as discussed in Section II B. (Here we use the same 
R max for each arrangement, although this is not strictly 
necessary.) ng is the number of Gauss-Legendre points 
and nB is the number of points contained in the shortest 
Broglie wavelength for the two radial Jacobi coordinates 
(based on the total energy). In Table I we show the con- 
vergence of the unitarity of the S matrix as a function of n, 
and nB, setting Rmax =4.5 Bohr and Y c”t=3.0 eV. As a 
measure of convergence we take the largest deviation from 
unitarity of any column of the S matrix in %. Below we 
will show to what extent this measure correlates with the 
error in the individual P-matrix elements, where P = St . S. 
All these calculations were based on the same distorted 
waves (set A in Table II). 

From Table I we see that the unitarity measure gives a 
useful first impression of the convergence of the grid. How- 
ever, for large grids the deviation from unitarity can be 

TABLE II. Distorted wave parameters. RmaX (in Bohr) determines the 
size of the interaction region, the Numerov propagation is done outward 
to R' (Bohr) and all closed channels up to E maX (eV) are included and 
the column labeled rzs gives the number of points per shortest Broglie 
wavelength. The barrier potentials are determined by the parameters 
Rma", at and a, (in atomic units) as shown in Eq. (94). 

Set Rmax R' E man 
nB a1 =2 

A 4.50 15 3.0 40 0.20 0.22 

B 4.75 20 3.5 60 0.10 0.11 
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TABLE III. Relative errors (in %) for reactive P-matrix elements. 

nB n.9 
a 

lo-lb 1o-2 IO-’ 1o-4 10-5 

3.0 18 2.9 6.9 31 110 210 210 

3.0 22 4.9(-l)= 1.9 11 20 56 74 

3.0 26 1.1(-l) 2.0 3.4 19 41 73 

3.5 26 3.t( -2) 0.12 0.89 3.7 3.7 4.0 

3.5 28 4.4( - 3) 0.09 0.92 3.4 3.5 4.9 

4.0 28 4.8( -3) 0.13 2.1 4.1 4.5 11 

4.5 28 3.6(-3) 0.44 1.9 2.0 2.2 3.3 

4.5 30 l.l(-3) 0.37 1.9 2.2 2.3 2.8 

4.5 32 -6.7( -4) 0.38 1.9 2.0 2.1 3.0 

5.0 32 3.6(-3) 0.16 1.4 3.5 3.9 a.5 

Improved distorted wavesd 

4.5 36 2.4( -4) 0.06 0.26 0.55 0.73 1.2 

4.75 36 1.8( -4) 0.20 0.71 3.3 5.8 7.5 

5.0 36 8.1(-3) 0.13 0.32 5.0 5.0 11 

5.5 36 1.8(-4) Oe 0 0 0 0 

Zhang et al. 0.95 8.1 26 98 101 

“The unitarity-error as in Table I. 
bLargest relative error for all P-matrix elements larger than this. 
‘4.9( - 1) denotes 4.9X IO-‘, etc. 
dSet B of Table II. 
‘By definition. 

both positive and negative, suggesting that it can be acci- 
dentally zero without the individual P-matrix elements be- 
ing exact. 

B. Convergence of the individual P-matrix elements 

Zhang et al. give the full P matrix for reaction ( 150) 
at 0.9 eV,27 and they state: “The individual probabilities 
that are greater than 1.0X 10e5 appear to be converged to 
about 8% or better with respect to small changes in the 
numerical parameters.” However, for a few elements 
smaller than low3 we found differences with our best con- 
verged results of a factor of about 2 to 3. It turns out that 
these largest differences all involve the U= 1 channels of 
arrangement 1; channel 6 (v= 1, j=O, ~,=0.786 eV) and 
channel 7 (u= 1, j =2, e7 =0.828 eV). Therefore, we made 
comparisons with and without ignoring row and column 6 
and 7 of the P matrix. Also, we compared the reactive and 
the nonreactive matrix elements separately. 

In Table III we show the relative errors in the reactive 
P-matrix elements, comparing to the largest calculation in 
the series, which has nB=5.5, ne=36, Vcu’=3.5 eV, Rmax 
=4.75 Bohr and is based on improved distorted waves (set 
B in Table II). We show the largest relative error for all 
reactive elements larger than 10-‘,10-2,...,10-5. The first 
8 entries in the table are based on the distorted waves set A 
(Table II and V CUt = 3.0 eV) and the next three entries are 
based on the improved distorted waves (set B, V c”t=3.5 
eV) where the errors of the calculation with nB=5.5 are 
set to zero by definition. A careful inspection of this table 
shows that when the unitarity error is less than, say, 0.1% 
it no longer correlates with the errors in the individual 
P-matrix elements. Furthermore, for the elements greater 
than 10m2 the convergence is better than 2% and the 
agreement with the results of Zhang et al. (the last entry in 
the table) is very good. For the smaller elements there are 

TABLE IV. Like Table III, but ignoring row and column 6 and 7 of the 

P matrix. 

nB ne 10-l 

3.0 18 6.9 

3.0 22 1.9 
3.0 26 2.0 

3.5 26 0.12 
3.5 28 0.09 

4.0 28 0.13 

4.5 28 0.44 

4.5 30 0.37 
4.5 32 0.38 
5.0 32 0.16 

Improved distorted waves 
4.5 36 0.06 

4.75 36 0.20 
5.0 36 0.13 

Zhang et al. 0.95 

10-2 10-3 10-J 10-s 

31 110 210 210 

11 20 56 56 
3.4 9.7 41 41 

0.89 2.5 2.5 2.5 
0.92 1.6 3.3 3.3 

2.1 2.4 2.6 3.7 

1.9 1.9 2.2 2.2 

1.9 1.9 1.9 1.9 
1.9 1.9 1.9 1.9 
1.4 1.6 1.7 3.1 

0.26 0.55 0.73 1.2 

0.7 1 1.5 1.6 1.8 
0.32 0.54 0.68 1.1 

8.1 26 28 50 

variations on the order of 10% but some elements differ 
from Zhang’s results by up to a factor of two. 

In Table IV we show the same calculations, but we 
ignore rows and columns 6 and 7 in the comparison. This 
table clearly shows much better convergence. Also the 
agreement with Zhang’s results for the small P-matrix el- 
ements is improved, although the differences are still larger 
than the 8% Zhang et al. suggested. 

Although the reactive elements are the primary inter- 
est of this work, we do think it is instructive to show the 
convergence tests for the nonreactive elements. In Table V 
the results for arrangement 1 are shown, and Table VI 
shows again the effect of ignoring the u= 1 channels. The 
behavior is similar to what we saw for the reactive ele- 
ments, but the effect of ignoring the U= 1 channels is even 
more dramatic. Apart from this, we also want to draw 
attention to the fact that the first three entries in those two 
tables suggest that in order to converge the arrangement 1 
inelastic elements we do not need very many 8 points. In 
Table VII we show that quite the opposite is true for ar- 
rangement 2 (and 3). This should not be too surprising, 

TABLE V. Like Table III, for the inelastic elements of arrangement 1. 

nB no 10-l 10-2 10-3 1o-4 10-S 

3.0 18 6.1 6.5 6.5 93 93 

3.0 22 6.1 6.5 6.5 93 93 
3.0 26 6.0 6.5 6.5 93 93 

3.5 26 0.42 0.55 0.55 4.6 4.6 
3.5 28 0.44 0.96 0.96 4.6 4.6 
4.0 28 0.41 0.63 0.63 25 25 
4.5 28 1.2 1.2 1.24 5.6 5.6 
4.5 30 1.1 1.1 1.1 5.8 5.8 
4.5 32 1.1 1.2 1.2 5.6 5.6 
5.0 32 0.33 0.49 0.49 20 20 

Improved distorted waves 

4.5 36 0.09 0.09 0.09 1.2 1.2 
4.75 36 0.38 0.87 0.87 20 20 
5.0 36 0.27 0.77 0.77 12 12 

Zhang er al. 7.4 33 33 98 360 
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TABLE VI. Like Table V, but ignoring row and column 6 and 7 of the P 
matrix. 
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TABLE VIII. The effect of vcut on the relative errors in the reactive 
elements P matrix elements. Here we use no=28 and nB=3.5. 

ycut 10-l 10-2 10-3 10-4 10-5 

2.0 0.66 0.88 12 43 44 86 

2.5 0.007 0.83 5.7 15 15 21 

3.0 0.0044 0.09 0.92 3.4 3.5 4.9 

3.5 0.0044 0.13 0.98 2.8 3.3 4.4 

HB “e 10-I 10-Z lo-’ 1o-4 10-S 

3.0 18 6.1 6.4 6.4 6.4 6.4 

3.0 22 6.1 6.1 6.1 6.1 6.1 

3.0 26 6.0 6.0 6.0 6.0 6.0 

3.5 26 0.42 0.55 0.55 0.55 0.55 
3.5 28 0.44 0.96 0.96 0.96 0.96 

4.0 28 0.41 0.41 0.41 0.41 0.41 

4.5 28 1.2 1.2 1.2 1.2 1.2 

4.5 30 1.0 1.1 1.1 1.1 1.1 

4.5 32 1.1 1.2 1.2 1.2 1.2 

5.0 32 0.33 0.45 0.45 0.45 0.45 

Improved distorted waves 
4.5 36 0.09 0.09 0.09 0.09 0.10 

4.15 36 0.38 0.87 0.87 0.87 0.87 
5.0 36 0.27 0.32 0.32 0.32 0.32 

Zhang et al. 7.4 7.4 26 26 26 

V C”t= 3.5 eV. In arrangemect 1 (R > r) we show a con- 
tour plot of the real part of (H---E)x~,~,~,~ [see Eq. (62)] 
for an undistorted wave and in arrangement 2 (R <r) the 
same quantity for a distorted wave. The undistorted wave 
is a Hankel function [Eq. ( 17)] times a cutoff function 

since for the interaction region grid Jacobi coordinates of 
arrangement 1 are being used. 

As a last convergence test we show the effect of the 
cutoff energy V CUt in Table VIII. The table shows that put 

becomes the limiting factor when it is less than, roughly, 3 
eV. The same pattern is repeated for the nonreactive ele- 
ments. 

Regarding the discrepancies with Zhang’s results for 
the smaller probabilities, if it is our results that are inac- 
curate, a possible explanation could lie in our omission of 
closed distorted waves in the free basis (see the discussion 
at the end of Section II B). Although we checked conver- 
gence with respect to Rmax, some barely closed channels 
might demand even larger grids and it might be better to 
explicitly include closed distorted waves. We are currently 
investigation this possibility. 

f(R) = (e--A’R)n (151) 

with A = 4.0 Bohr and n = 14. The distorted wave param- 
eters correspond to set A of Table II. AThe figure clearly 
shows that for the distorted wave, (H--E)x lies com- 

pletely within the g+l with RmaX=4.5 Bohr, while for the 
undistorted wave, (H-E)x extends to approximately 5.5 
Bohr. Note that for the distorted waves (H-e)x must be 
zero outside the grid by construction, while for the undis- 
torted waves it will formally be zero only in the asymptotic 
region where A V,( R, ,r, ,z,) =O. In the three-dimensional 
grid the number of grid points scales with the square of 
Rmax. In the current example, taking n0=28, we have 
n=4964 points for Rmax =4.5 Bohr and n = 6943 for Rmax 
=5.5 Bohr. Furthermore, the number of angular points 
needed for a specified accuracy increases with R”“” since 
the points laid down in Jacobi coordinates of arrangement 

C. Distorted waves 

In Figure 1 we show a two-dimensional cut through 
the PES at 19=0 (i.e., the collinear configuration). The 
dots are the grid points for nE=3.5, Rmax=4.5 Bohr, and 

TABLE VII. Like Table III, for the inelastic elements of arrangement 2 

(and 3). 

nB ne 10-l 

3.0 la 19 
3.0 22 24 

3.0 26 5.4 
3.5 26 4.6 

3.5 28 1.9 
4.0 28 0.98 
4.5 28 3.1 

4.5 30 1.7 
4.5 32 1.3 
5.0 32 0.69 

Improved distorted waves 
4.5 36 0.68 
4.15 36 0.98 

5.0 36 1.3 

10-2 10-3 1o-4 lo-$ 

155 1400 6200 69000 
35 56 280 2900 

a.5 31 150 420 
4.7 12 42 74 

3.6 7.9 16 27 
2.8 9.3 14 32 
4.5 7.8 14 31 

4.4 4.4 6.8 9.7 
2.8 4.9 8.6 8.6 
1.9 6.8 10 10 

0.72 1.2 1.8 2.1 
0.98 1.5 4.7 4.1 

1.3 2.5 2.5 3.4 

2 3 
R (Bohr; 

5 

FIG. 1. Contour lines of the PES are shown for 0.2,0.6,1.0 ,..., 3.0 eV at 
070. In arrangement 1 (R > r) we show a contour plot of the real part of 
(H--E)x,,,,+,~ for an undistorted wave (equidistant, arbitrary units, 
solid lines positive, dashed lines negative) and in arrangement 2 (R c P) 
we show a the corresponding plot for a distorted wave. The dots represent 
the grid points. 
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1 spread out in arrangements 2 and 3. Below we shall see 
that the CPU-time scales roughly with N2 showing the 
importance of the use of distorted waves. 

TABLE IX. A few examples of how the number of grid points (N), the 
number of iterations needed to obtain a residual error of lo-‘, and the 
CPU-time per open channel (t) depend on the grid parameters. In all 
these examples we have Rmax=4.5 Bohr and PC”‘= 3.0 ( niter and t are 
rounded to two significant figures). 

D. Timings 

We report timings for the solution of a single complex 
right hand side of Eq. (3 1) using the SYMMLQ algorithm 
(see Section III), since solving the linear system is the 
most time-consuming part of the Kohn calculation (the 
costs are about the same for each rhs). (Actually, in the 
current examples the construction of the distorted waves 
can be about as expensive as the inversion step, since we 
have not yet fully optimized the parameters in the renor- 
malized Numerov calculation. Also, note that a wave- 
function-following method like the renormalized Numerov 
method cannot be expected to be the most efficient algo- 
rithm to treat the long range part of the potential. All the 
other steps together take less than a few % of the total 
cpu-time.) The SYMMLQ algorithm is an iterative 
method and it must be run separately for each right-hand 
side. Actually, since the columns of Me are complex, 
SYMMLQ must be run twice for each open channel. The 
cost of each run is almost exactly equal to the cost of a 
sparse matrix-vector multiplication times the number of 
iterations. As an example we take a calculation with nB 
=3.5, no=26 VCUt=3.0 eV, and Rmax=4.5 Bohr. The 
resulting number of grid points is N=4599, using symme- 
try. There are 24 open channels and the cpu-time per open 
channel (i.e., to run SYMMLQ twice) is 56 seconds on an 
IBM RS6000/580 workstation. The number of iterations 
needed to converge the linear system to a residual of length 
10m4 ( 10m7) is about 1100 ( 1400). The number of floating 
point operations needed for one matrix-vector multiplica- 
tion is about 4.1 X 105, corresponding to an average of 45 
nonzero matrix elements per row. The estimated number 
of floating point operations per second (counting both ad- 
ditions and multiplications) is somewhat above 25 X lo6 
(please use this figure only as a rough indication). 

n8 no N niter t n,,,JN t/N2 

3.0 18 2291 1100 20 0.49 9.2 
3.0 22 2797 1300 29 0.46 8.8 
3.0 26 3305 1500 40 0.46 a.9 
3.5 26 4599 1400 56 0.31 6.4 
3.5 28 4964 1500 69 0.31 6.8 
4.0 28 6428 2600 160 0.40 9.1 
4.5 28 8202 2100 180 0.26 6.3 
4.5 30 8780 2300 210 0.26 6.6 
4.5 32 9364 2500 260 0.27 7.2 
5.0 32 11532 3400 410 0.29 7.3 

memory problem can be solved by using a discrete repre- 
sentation, resulting in a sparse Hamiltonian matrix. The 
sparsity is further exploited by using an iterative method to 
solve the resulting linear equations. The key to the appli- 
cation of a discrete representation is the use of a single 
interaction region coordinate system. This represents an 
essential departure from Miller’s approach” of using a 
multicentered expansion of the wave function. The price 
one pays is that the representation will typically be less 
efficient than one based on a multicentered expansion of 
the wave function. 

We have shown how the number of grid points can be 
reduced by truncating the grid and by the use of distorted 
waves, in order to speed up the calculation. Our construc- 
tion of distorted waves makes a clean distinction between 
the “interaction region” and the “asymptotic region”, thus 
removing the size of the interaction region as a conver- 
gence parameter. 

For all the calculations in Table I we have plotted the 
cpu-time (t) vs the number of grid points (N) and it turns 
out that the CPU-time scales as t-N’. This scaling cannot 
be derived from a simple operation count (due to the un- 
patterned sparse matrix structure), but is the combined 
effect of the increase of the number of iterations and the 
higher cost per iteration with increasing N. 

Finally, in Tables IX and X we give a few more exam- 
ples of how the number of grid points, the number of iter- 
ations and the CPU-time per open channel depend on the 
grid parameters. Note that the relative number of itera- 
tions (n&N) is the largest for the low-quality grids. The 
last column in these two tables shows that the CPU-times 
scales roughly with N2. 

A disadvantage of an iterative method for solving lin- 
ear equations, compared to, e.g., LU-decomposition, is that 
the cpu-time scales linearly with the number of right-hand 
sides. In work we are pursuing on the H +O, system we 
found that it is possible to eliminate from the open channel 
space linear combinations that barely reach the interaction 
region, thus reducing the number of rhs. [Those linear 
combinations are the ones that do not “feel” the difference 
between the two barrier potentials and thus cause A [Eq. 
(79)] to become nearly singular. Thus, eliminating them 
also solves this singularity problem.] Furthermore, if one 
manages to develop a method for computing one column of 
the S matrix based on solving only one set of linear equa- 
tions, this iterative method will be very competitive com- 
pared to direct methods (see also Refs. 7, 29, and 30). It 

TABLE X. Like Table IX, but with no=28 and n,=3.5. 

VIII. CONCLUSION AND FUTURE WORK 

The main bottleneck for variational quantum reactive 
scattering calculations for larger systems or at higher en- 
ergies is the storage requirement for the interaction-region 
Hamiltonian matrix. We have demonstrated that this 

p/cm N %ter t n&N t/N2 

2.0 3691 2000 59 0.54 10 
2.5 44m 2400 88 0.55 11 
3.0 4964 1600 69 0.31 6.8 
3.5 5367 2ooo 91 0.36 7.6 
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might also be interesting to note that calculations for sev- 
eral rhs can easily be run in coarse grained parallel. Our 
code has been made suitable for this and we have already 
done some calculations on HO2 spread over four worksta- 
tions located on two different continents. 

With the present method one has the freedom to use all 
kinds of interaction region coordinates. In this paper we 
present an example employing the Jacobi coordinates of 
one arrangement. We also employed other coordinate sys- 
tems like valence (bond-angle) coordinates and Radau co- 
ordinates.13 The valence coordinates give a slightly better 
representation for the reactions we have studied, but the 
since the kinetic energy operator has more terms here than 
for orthogonal coordinates, there was no reduction in over- 
all cost of the calculation. It might be interesting to try 
hyperspherical coordinates, since they have been used as 
global coordinates for reactive systems before.31 An advan- 
tage of these coordinates is that they allow the use of the 
full symmetry in systems with three-fold symmetry (like 

H3). 
It might be possible to speed up the matrix-vector mul- 

tiplication by employing other (discrete) representations. 
For example, one could use fast Fourier transform tech- 
niques such as those being used in time-dependent calcu- 
lations.32 Also, finite-order finite difference representations 
of the kinetic energy could be used, giving rise to kinetic 
energy matrices with finite bandwidth. Also the use of so- 
called distributed approximating functions ( DAFs) 33 gives 
rise to banded kinetic energy matrices. 

We conclude that we have presented a viable method, 
with minimal memory requirements, employing several 
techniques to reduce the computational effort, while routes 
for further improvements have been indicated. 

ACKNOWLEDGMENTS 

The authors wish to thank Professor W. H. Miller for 
his enthusiastic support and guidance of this work. We 
thank Scott M. Auerbach for many very useful and en- 
lightening discussions. We also thank Professor A. van der 
Avoird for critically reading the manuscript. This work 
was supported by the National Science Foundation, Grant 
No. CHE 89-20690. G.C.G also acknowledges support 
from the Eindhoven University of Technology, the Neth- 
erlands Organization for Scientific Research (NWO) and 
the Royal Netherlands Academy of Arts and Sciences 
(KNAW). 

APPENDIX A: PROJECTION TECHNIQUE 

Here we describe the projection technique used to re- 
duce the number of iterations (see Section III). For certain 
values of (i) and (j) it might happen that none of the 
points {(Ri,rj,Zk), k= l,..., no} are being eliminated by the 
potential energy criterion ( V c”t). In particular, this can be 
expected to occur for small Ri. In those cases, the angular 
DVR can be transformed back to the Gauss-Legendre 
basis (~j ,j = 0 ,...,ne- 1). The (1D) kinetic energy of func- 

tion pj is given by 

Tj= (Al) 

The idea of the projection technique is to remove the func- 
tions ~j for which Tj > V cut and transform back to point- 
space. This must be done before and after the matrix- 
vector multiplication, i.e., twice for each iteration. The 
projection is also applied to the right-hand side [Eq. (3 1 )]. 
This way we can work in the projected space without the 
need to modify the subroutine for the matrix vector mul- 
tiplication. 

APPENDIX 5: DERIVATION OF THE INTERPOLATION 
FORMULA 

Here we derive the interpolation formula Eq. (90). 
From Eqs. (88) and (89) we have 

R,=Ri-l+ah=Ri-bh (Bl) 

with a+ b= 1. We can now write Taylor expansions about 
Ri_1 and about Ri 

+O(h4). (B3) 

Multiplying Eq. (B2) by b and Eq. (B3) by a and adding 
them gives 

abh2 
U(R,)=bUi-l+aUi+abh(UI-l-U;)+2 [uUY-~ 

abh3 
+bU;l+ 6 - [a2UyLl-b2Uj”] +O(h4). 

(B4) 

To eliminate the first derivatives in this expression we start 
with yet another Taylor expansion 

c/,=Ui-~+hU~-,+~ Uy’l+O(h3), (B5) 

and take its derivative and multiply by h to get 

h(U;-U;-,)=h’U:‘,+;+O(h’). WI 

For the second derivative terms we use [cf. Eq. (69)] 

Us= WjUj (B7) 

and for the third derivative terms we have 

uil,- u;-, 
il&=U~+O(h4) = h +O(h4). w3) 

Substituting Eqs. (B6), (B7), and (B8) into Eq. (B4) 
gives the final fourth-order interpolation formula Eq. (90). 
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