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Abstract

In this paper, we tackle the problem of combining fea-
tures extracted from video for complex event recognition.
Feature combination is an especially relevant task in video
data, as there are many features we can extract, rang-
ing from image features computed from individual frames
to video features that take temporal information into ac-
count. To combine features effectively, we propose a method
that is able to be selective of different subsets of features,
as some features or feature combinations may be unin-
formative for certain classes. We introduce a hierarchi-
cal method for combining features based on the AND/OR
graph structure, where nodes in the graph represent com-
binations of different sets of features. Our method auto-
matically learns the structure of the AND/OR graph using
score-based structure learning, and we introduce an infer-
ence procedure that is able to efficiently compute structure
scores. We present promising results and analysis on the
difficult and large-scale 2011 TRECVID Multimedia Event
Detection dataset [17].

1. Introduction
As recent research in video understanding has shifted

to classifying complex events like “Attempting a board

trick” [17], it is now very difficult for a single feature to

capture the information required to discriminate between

different complex event categories. Although better fea-

ture descriptors have been developed to help characterize

videos, it is commonly observed that combining a set of di-

verse and complementary features is the best approach to

this problem [14]. By extracting features from frames of

video, we have a whole suite of features available from the

image research community that we can leverage. In addi-

tion, there are also video features that utilize the temporal

aspect of videos. Given these features, the problem we seek

to address is finding the optimal way to combine them to-

gether for effective complex event recognition.

When combining features, there are two important intu-

itions we would like to capture.
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Figure 1. Compared to standard methods for feature combination,

our method performs feature selection (grayed features) and con-

siders sets of features independently (separate bubbles). This al-

lows us to select the right features to use and correctly recognize

the video sequence as “Landing a fish”.

• Be selective of features to combine. If we are trying

to recognize events of the class “Landing a fish”, the

motion features would be very important, as we’d like

to find the quick reeling action associated with fish-

ing. On the other hand, if we are trying to recognize

events of the class “Wedding ceremony”, motion fea-

tures may not be as useful, as there may not be dis-

tinctive motion cues that indicate a wedding. Instead,

scene descriptors may be better in this case, perhaps to

help indicate whether or not we are in a church.

• Consider sets of features independently. Different

sets of features may be able to provide complemen-

tary information when considered separately, as op-

posed to considering all features together. For exam-

ple, in “Landing a fish” videos, the information from

color and scene may not be complementary, as the

presence of blue pixels may repeat information already

conveyed by the scene. However, independently com-

bined with other types of features such as motion and
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texture, the two features could provide complementary

information that could be used together.

Together, these intuitions can help alleviate the limitations

in a conventional feature combination approach where all

of the features are combined or considered simultaneously.

As shown in Figure 1, standard methods like kernel averag-

ing [5] do not perform feature selection, and methods like

Multiple Kernel Learning (MKL) [6] consider all features

together in a single combination, making it difficult to dis-

cover complementary sets of features.

To capture these intuitions, we introduce a novel method

for feature combination that represents feature combina-

tions using an AND/OR graph structure, with nodes in the

graph representing combinations of different sets of fea-

tures. The presence of OR nodes allow us to to be se-

lective of the features we want to combine for each class,

and the hierarchical structure of the AND/OR graph struc-

ture allows us to consider sets of features independently to

better discover complementary information. Our method

is able to constrain and search the large space of possible

AND/OR graph structures for the optimal structure, and we

introduce an approximate inference procedure that is able to

efficiently compute structure scores. We present convincing

results on the 2011 TRECVID Multimedia Event Detection

dataset [17] that illustrate the benefits of our approach.

2. Related Work
Many recent works in video understanding have focused

on complex event recognition in large-scale datasets [17],

which is the focus of this paper. Several works have ob-

served significant performance gains from combining mul-

tiple feature types [9, 14, 18, 23], whether through early or

late fusion. However, these works consider standard fea-

ture combination techniques as a means to improve perfor-

mance. In our method, we would like to not only improve

performance, but also understand and incorporate our intu-

itions on how features should be selected.

The standard approach to combining features is Multi-

ple Kernel Learning (MKL), which has been used for var-

ious tasks in computer vision including object categoriza-

tion [20], object detection [21], multi-class object classi-

fication [5], and complex event recognition [14]. A good

overview of MKL with several representative methods is

given in [6]. Of the works within MKL, most similar to our

method are works that consider a hierarchical combination

of kernels [1, 8]. In [1], the author considers hierarchical

multiple kernel learning using kernels that can be decom-

posed into a large sum of separate basis kernels. Our work

is different in that we make no restrictions on our kernels,

and consider combining a smaller set of well-engineered

features. The work of [8] considers semantic kernel forests

constructed with human knowledge, and introduces a novel

OR node

AND node

Leaf node

K1 K2 K3 K4 K5 K6 K7 K8 K9

Positive videos Negative videos

Extract features from videos
Compute kernel matrices

deos

Figure 2. Example of an AND/OR graph structure. The LEAF

nodes encode the input kernel matrices, which are then combined

using AND/OR nodes up to the root node. The blue edges indicate

a possible configuration for the graph.

regularizer that exploits the hierarchical structure of their

semantic kernels. In contrast, we automatically learn the

structure of our hierarchy without human supervision.

Our method utilizes the AND/OR graph structure as a

representation for combining features. The AND/OR graph

structure has been used for many different applications in

computer vision [2, 3, 7, 24, 25]. In [2], the authors use

an AND/OR graph to infer composite cloth templates. The

works of [3, 25] use a pre-specified AND/OR graph to per-

form object detection, segmentation, and parsing. In [7],

the AND/OR graph is used as a storyline model that en-

codes storyline variation in videos. The authors of [24] use

an AND/OR structure to represent grouplets, discriminative

features that encode structured image information.

3. Model Representation

Given a training set of N videos and their correspond-

ing binary class labels y ∈ {−1, 1}, we can compute a

set of m features for each of our videos. Using a ker-

nel function ki(x, x
′) that defines a measure of similar-

ity between a pair of instances using feature type i, we

can compute the kernel function for all pairs of training

instances to obtain a training kernel matrix for each fea-

ture: K = {K1,K2, . . . ,Km}. Kernel matrices can be

used to train classifiers like the Support Vector Machine

(SVM), and allow us to efficiently represent high dimen-

sional feature spaces. During testing, we can compute the

kernel function between our testing instances and training

instances, and classify examples accordingly.

Our goal is to devise a method to find a combination

of these kernel matrices that can perform effective recog-

nition for a particular event class. Because we associate

features with kernel matrices, the problem of kernel com-
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bination translates naturally to feature combination. We in-

troduce a method that is selective of these kernel matrices,

and simultaneously considers different sets of them inde-

pendently. Our method uses an AND/OR graph structure to

represent the possible combinations, which we describe in

detail below.

3.1. AND/OR model

The AND/OR graph structure is represented by a graph

G = (V,E), where V and E denote the set of vertices

and edges. There are three types of nodes in V , denoted as

“AND”, “OR”, and “LEAF” nodes. The edge setE consists

of vertical edges that define the topological structure of the

graph, connecting nodes between adjacent layers. We de-

fine VAND, VOR, and VLEAF to be the sets of AND, OR,

and LEAF nodes in our graph, respectively. We define TVi

to be the child nodes of node Vi ∈ V . Since we do not con-

sider horizontal edges in E, the structure of our AND/OR

graph is a tree. We define Vroot ∈ V to be the root node

of the tree. An example of an AND/OR graph structure is

shown in Figure 2.

Each node in the AND/OR graph is a variable that en-

codes a kernel matrix. The LEAF nodes encode the base

kernel matrices {K1,K2, . . . ,Km} from our original fea-

tures at the lowest layer of the graph, and the root node en-

codes the final kernel matrix to be used for recognition at

the highest layer of the graph. Because each LEAF node is

just equal to a kernel matrix for one of our original features,

the number of LEAF nodes is equal to m.

In our model, there are three types of potentials that de-

fine the energy of a particular assignment of kernel matri-

ces v = {v1, v2, . . . , v|V |} to our nodes. The first potential

captures the behavior of an AND node in the graph, forc-

ing the node to average the kernels of its children. With

Vi ∈ VAND:

ψAND(Vi = vi) =∞ · 1
[
vi �= 1

|TVi |
∑

u∈TVi

u

]
(1)

The second potential captures the behavior of an OR

node in the graph, forcing it to select a single kernel from

its children. With Vi ∈ VOR:

ψOR(Vi = vi) =∞ · 1[vi /∈ TVi

]
(2)

Finally, the third potential captures the strength of the

root node Vroot in the graph:

ψROOT (Vroot = vroot) = S(vroot) (3)

where S(u) is a scoring function that uses the kernel defined

at node u to compute the cross-validated average precision

on the training data using an SVM. The root node Vroot also

appears in ψAND or ψOR, depending on its node type.

Bottom-up processing

Top-down refinementOR node

AND node

Leaf node

K1 K2 K3

1/3 (K1 + K2 + K3)

K1 K2 K3

AND node OR node

K3

Initial configuration

S(K1) = 0.8

S(K2) = 0.75

S(K3) = 0.95

Refinement #1

Refinement #2

Figure 3. Illustration of the inference procedure. In the bottom-up

processing stage, we construct an initial configuration by assigning

kernel matrices to each node based only on their children nodes.

In the top-down refinement stage, we consider global moves to the

initial configuration that had comparable scores in the bottom-up

processing stage.

Combining the potentials, we can define the energy of a

particular assignment v of kernel matrices to nodes as:

E(v) =
∑

Vi∈VAND

ψAND(Vi = vi)

+
∑

Vi∈VOR

ψOR(Vi = vi)

− ψROOT (Vroot = vroot) (4)

Intuitively, if Vi is an AND node in the graph, then it av-

erages the kernels of its children TVi . If Vi is an OR node

in the graph, then it selects a kernel amongst its children

TVi
. These restrictions give us a set of possible configura-

tions of the graph, where a configuration is defined as an

assignment v that results in a non-infinite energy. Since the

behavior of the AND nodes is deterministic, the number of

possible configurations is only dependent on the number of

OR nodes in the graph.

Note that the space of possible assignments v is not ac-

tually the space of all kernel matrices, as nodes in the graph

are restricted to combinations of the kernel matrices in the

LEAF nodes. Thus, a configuration can be seen as a parse

of the graph (blue edges in Figure 2), where we can trace the

kernels combined for each node down to the LEAF nodes.

Using this interpretation, we can define the magnitude of a
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Figure 4. Illustration of the entire learning pipeline. After initializing an AND/OR graph structure, we propose a set of potential moves in

the space of possible structures. Then, we perform inference for each of these structures, resulting in the best configuration, which is then

used to compute the structure score for each move. Finally, we select the move with the highest score as the new structure. This process is

then repeated until convergence, or a maximum number of iterations is reached.

node |Vi| as the number of LEAF nodes that are combined

into the kernel for node Vi.

4. Inference
The inference problem seeks to find the assignment of

kernel matrices v = {v1, v2, . . . , v|V |} that minimizes the

energy function E(v) in Equation 4. Since the behavior

of the AND nodes is deterministic, our goal in inference

is to choose the children nodes that the OR nodes select.

However, this is difficult because ψROOT computes a score

based on the kernel at the root node, which couples the de-

cisions of all nodes. Thus, the decisions for the OR nodes

cannot be made locally as they could affect the kernel com-

bination at the root node in different ways.

In order to perform efficient inference, we propose an

approach inspired by [2, 3] that combines a bottom-up pro-

cessing stage that proposes configurations for subtrees with

a top-down refinement stage that considers a global set of

moves over the entire graph.

Bottom-up processing. We start from the nodes in the low-

est layer and work our way up to the root node. For each OR

node Vi ∈ VOR, we assume that the best kernel assignment

vi is the child u ∈ TVi
that achieves the best score:

vi = argmax
u∈TVi

S(u) (5)

With this approximation, we can compute the kernel assign-

ments for the OR nodes locally from their children. Com-

bined with the AND nodes, which can also be computed

from their children, we have effectively decomposed the in-

ference operation so that local estimates can be made, as

seen in the top section of Figure 3. Using this approxima-

tion, we can build our configuration from the bottom-up to

obtain a kernel assignment for the entire AND/OR graph.

Top-down refinement. In this stage, we would like to

refine our approximate configuration from the bottom-up

stage. Given the current configuration, we consider global

changes to the configuration that may be able to decrease

the energy function, as shown in the bottom section of Fig-

ure 3. To limit the space of possible refinements, we only

consider changing children of OR nodes for which the local

estimates from Equation 5 were close in score.

5. Structure Learning
Our goal in structure learning is to find the best AND/OR

graph structure and configuration for a particular class, a

difficult problem because of the large space of possible

graph structures. We use a greedy hill-climbing approach

to structure learning, and start by initializing our AND/OR

graph structure using a random initialization. To help con-

strain the space of possible graph structures, we constrain

each node to have at most λchild children and λparent par-

ents. By constraining the number of children a node can

have, we help regularize our graph structures so that we se-

lect the most important kernels. By constraining the num-

ber of parents a node can have, we prevent kernels from

appearing in large numbers of nodes in the graph, allowing

our structure to consider different subsets of kernels.

After initializing our graph structure G, we select a ran-

dom node Vi in the graph and consider the following set of

moves:

• Add operation. We add a node from the layer below

Vi to be a child of this node, which corresponds to in-

crementing TVi
with an additional node. This move
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Event Class Chance Tang et al. [19] Greedy Average MKL L1 MKL L2 Our Method

1. Attempting a board trick 1.18% 15.44% 22.50% 22.81% 21.66% 23.07% 22.87%

2. Feeding an animal 1.06% 3.55% 5.60% 6.11% 5.05% 6.13% 7.75%
3. Landing a fish 0.89% 14.02% 19.38% 25.43% 27.63% 25.67% 30.31%

4. Wedding ceremony 0.86% 15.09% 34.25% 31.78% 37.43% 31.89% 38.12%
5. Working on a woodworking project 0.93% 8.17% 21.42% 24.96% 18.57% 24.79% 21.50%

Mean AP 0.98% 11.25% 20.63% 22.22% 22.07% 22.31% 24.11%

Table 1. Average Precision (AP) values for the MED DEV-T dataset.

Event Class Chance Tang et al. [19] Greedy Average MKL L1 MKL L2 Our Method

6. Birthday party 0.54% 4.38% 14.83% 8.82% 9.31% 8.84% 15.97%
7. Changing a vehicle tire 0.35% 0.92% 27.00% 24.37% 22.66% 25.04% 31.92%

8. Flash mob gathering 0.42% 15.29% 42.84% 43.64% 41.63% 44.02% 44.11%
9. Getting a vehicle unstuck 0.26% 2.04% 12.01% 17.89% 12.47% 17.68% 16.32%

10. Grooming an animal 0.25% 0.74% 6.52% 6.41% 11.38% 6.43% 11.00%

11. Making a sandwich 0.43% 0.84% 11.12% 14.91% 13.14% 15.36% 14.29%

12. Parade 0.58% 4.03% 12.75% 10.52% 17.64% 10.43% 18.53%
13. Parkour 0.32% 3.04% 25.62% 21.12% 21.01% 21.59% 26.10%

14. Repairing an appliance 0.27% 10.88% 26.52% 23.15% 24.01% 23.22% 27.03%
15. Working on a sewing project 0.26% 5.48% 6.50% 12.50% 11.99% 12.36% 12.49%

Mean AP 0.37% 4.77% 18.57% 18.33% 18.52% 18.50% 21.78%

Table 2. Average Precision (AP) values for the MED DEV-O dataset.

is not permitted if it generates a structure that violates

our constraints on λchild and λparent.

• Remove operation. We remove a child node from Vi,
which corresponds to removing a node from TVi

. This

move is not permitted if TVi
only contains one node.

• Swap operation. We swap one of the child nodes from

Vi with one of the child nodes from another node Vj ,

where Vj is in the same layer as Vi. This corresponds

to swapping a node from TVi for a node in TVj .

Considering each of these moves provides us with a set

of potential graph structures {G1, G2, . . . , Gk}. For each

potential graph structure Gi, we perform inference to find

the best configuration. Then, we compute the structure

score Struct(Gi) using the following equation:

Struct(Gi) = S(Gi(Vroot))− λstruct|Gi(Vroot)| (6)

where Gi(Vroot) corresponds to the root node of the po-

tential graph structure Gi. This score is a combination of

the score of the root node, combined with a regularization

on the number of LEAF nodes selected by the root node to

prevent overly complex combinations. This regularization

is similar to Bayesian scores used in structure learning for

graphical models, such as the Bayesian Information Crite-

rion. Using this score, we select the structure with the best

score, and update our structure to this new structure. We

then repeat this move-making process until convergence or

a maximum number of iterations has been reached. Figure 4

illustrates the whole procedure.

Efficiency. Much of the computation in the bottom-up pro-

cessing stage of our inference procedure can be re-used

for each of the potential structures. Any subtree that re-

mains unchanged by the graph moves does not need to be

re-computed, as the optimal bottom-up configuration will

remain the same. In practice, we use a hash table to keep

track of the scores for all leaf node combinations that have

been computed.

6. Experiments
We perform experiments on the 2011 TRECVID Multi-

media Event Detection (MED) dataset [17], which consists

of a collection of Internet videos collected by the Linguistic

Data Consortium from various Internet video hosting sites.

There are 15 events split into two sets, the DEV-T set with

5 events, and the DEV-O set with 10 events. There are ap-

proximately 150 training videos for each event, and in the

two testing sets for DEV-T and DEV-O, we are given large

databases of videos that consist of both the events in the set

as well as null videos that correspond to no event. There are

a total of 10,723 videos in the DEV-T test set, and 32,061

videos in the DEV-O test set. Similar to [19], we consider

results for the two sets separately, as it is stated that there

may be unidentified positive videos of events from the DEV-

T set in the DEV-O test set, and vice versa.

6.1. Implementation Details

We extracted 13 types of image features using code

from [22]. These features include variants of GIST [16],

HOG [4], SIFT [13], LBP [15] descriptors, and other de-
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Figure 5. Performance of individual features versus our method for

the DEV-T and DEV-O datasets.

Dataset Layer 2 Layer 3 Layer 4 Layer 5

DEV-T 9.91% 12.80% 18.27% 24.11%

DEV-O 7.30% 11.26% 15.69% 21.78%

Table 3. Average Precision (AP) values for datasets using graph

structures with different numbers of layers.

scriptors capturing texture, color, and geometry. We com-

puted these image features on sampled frames every 4 sec-

onds, and component-wise averaged each of them to ob-

tain our video feature. We also extracted HOG3D [10]

and ISA [12] video features, and computed video-level his-

tograms for both. For all features, we used the Histogram

Intersection Kernel for our kernel matrices, normalized us-

ing spherical normalization [11], as this kernel provided us

with the best individual feature results. For all methods that

define a combination of kernels, we train an SVM over the

kernel combination, and cross-validate to determine the C
parameter. For each class, we train a one-versus-all classi-

fier and compute average precision on the test set.

For our method, we chose λchild = 7 and λparent = 5
based on the number of kernels we had. The value of λstruct
was determined by cross-validation. From our experiments,

we found that the choice of these parameters did not make
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Figure 6. Performance of our method over iterations of structure

learning for each class in the DEV-T and DEV-O datasets. We also

show the averaged performance over all classes in each plot. Class

numbers are given in Tables 1 and 2.

a big difference after a certain threshold, as the best per-

formance is typically obtained using a small subset of the

kernels anyways. To constrain our search space, we consid-

ered 5-layer AND/OR graphs (see Figure 8), with alternat-

ing layers of AND nodes and OR nodes. To help alleviate

the problem of local optima in our structure search proce-

dure, we considered multiple random initializations, and se-

lected the graph structure whose configuration provided us

with the lowest energy.

6.2. Comparisons

Greedy. This method iteratively selects the best individual

performing feature through cross-validation, and combines

this feature with all previously selected features using ker-

nel averaging. This combination is evaluated using cross-

validation, and the algorithm stops when the newest combi-

nation decreases the cross-validated performance.

Average. This method averages the kernels for all the fea-

tures, which has been show to be very competitive to more

complicated methods such as MKL [5].

MKL. This method is Multiple Kernel Learning, which

solves a joint optimization problem that simultaneously se-

lects the weights to combine kernels with, as well as the

2701



C
om

pl
ex

 E
ve

nt
 C

la
ss

de
ns

eS
IF

T

ge
o−

co
lo

r

ge
o−

m
ap

8x
8

ge
o−

te
xt

on

gi
st

Pa
dd

in
g

gi
st

ho
g2

x2

lb
ph

f

lb
p

sp
ar

se
−

si
ft

ss
im

te
xt

on

tin
y−

im
ag

e

H
O

G
3D IS

A

1

2
3

4
5

6
7

8

9
10

11
12

13
14

15

C
om

pl
ex

 E
ve

nt
 C

la
ss

de
ns

eS
IF

T

ge
o−

co
lo

r

ge
o−

m
ap

8x
8

ge
o−

te
xt

on

gi
st

Pa
dd

in
g

gi
st

ho
g2

x2

lb
ph

f

lb
p

sp
ar

se
−

si
ft

ss
im

te
xt

on

tin
y−

im
ag

e

H
O

G
3D IS

A

1

2
3

4
5

6
7

8

9
10

11
12

13
14

15

C
om

pl
ex

 E
ve

nt
 C

la
ss

de
ns

eS
IF

T

ge
o−

co
lo

r

ge
o−

m
ap

8x
8

ge
o−

te
xt

on

gi
st

Pa
dd

in
g

gi
st

ho
g2

x2

lb
ph

f

lb
p

sp
ar

se
−

si
ft

ss
im

te
xt

on

tin
y−

im
ag

e

H
O

G
3D IS

A

1

2
3

4
5

6
7

8

9
10

11
12

13
14

15

Our Method MKL L1 MKL L2

Figure 7. Visualizations of the feature combinations learned by various methods for each of the complex event classes. The matrix visualizes

the weights learned for each of the features. Lighter colors correspond to higher weights. Class numbers are given in Tables 1 and 2.
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tire” classes. The blue edges indicate the optimal configuration chosen after inference. We show sample frames for each event on the side.

weights of the classifier. The L1 and L2 variants use L1

and L2 normalization on the kernel weights. We use code

provided by [20]. There are many complicated variants of

MKL, but as noted in [6], the difference in terms of accu-

racy between methods is usually quite small.

Tang et al. [19] This method uses temporal structure for

complex event recognition with only HOG3D features. This

method is shown only to give an idea of the performance of

previous works on the same split of the dataset.

6.3. Results

Our results for the DEV-T dataset are given in Table 1,

and DEV-O dataset in Table 2. Our method outperforms

all other methods in mean AP. Note that a 2-3% increase

in mean AP on these datasets is significant, as the test

set consists of a large number of videos. As observed

in [5], the performance of kernel averaging is comparable

to MKL. Although kernel averaging is a special instance of

our method where an AND node combines all LEAF nodes,

our method sometimes performs worse than averaging. This

is because we place several forms of regularization on our

model including the λchild and λparent parameters so that

our method prefers simpler kernel combinations, and con-

strains the space of AND/OR graphs we must search over.

However, it is possible to search an even larger space of

AND/OR graph structures that includes kernel averaging,

and that would help improve performance further.

We show results comparing our method to the individual

features in Figure 5. In this work, we considered several

image and video features, some of which work better than

others. Note that we could extract many additional features,

such as audio features, and get an additional boost in perfor-

mance. However, our goal is to illustrate the benefits of our

method for combining features, and not to try to exhaust all

types of features for the best possible performance.

The performance of our method over iterations of struc-

ture learning is plotted in Figure 6, where we see that it

seems to converge to a local optima by iteration 50. The

convergence will likely be much slower if we considered

more complicated graph structures or additional types of

moves. However, we found that the moves we proposed

gives a good balance between exploring the full space of po-

tential structures and efficiency. In both datasets, we obtain

a 4-5% gain in mean AP over all classes after our structure

learning procedure ends. Note that the performance of the

initial graph structures are decent, as we perform inference

on these structures to obtain their optimal configurations. In

Table 3, we also show the performance of graph structures

with different numbers of layers. As we increase the num-

ber of layers, we generally see an increase in performance.

In Figure 7, we illustrate the feature combinations cho-

sen by our method and the two variants of MKL. Not
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surprisingly, MKL L2 is unable to do feature selection,

and non-zero weights are used to combine all features.

More interestingly, MKL L1 extensively favors the dens-

eSIFT, geo-color, hog2x2, HOG3D, and ISA features for

all classes. Our method considers additional features such

as geo-texton, lbphf, lbp, sparse-sift, ssim, and texton. From

Figure 5, we see that many of these features don’t perform

well individually. However, because our method consid-

ers features independently in a hierarchical setting, it allows

us to discover complementary features otherwise missed by

MKL L1. We visualize two of the learned graph structures

and configurations in Figure 8. We can see how the hier-

archical structure of the graphs allow us to consider dif-

ferent features in conjunction with others. The “Changing

a vehicle tire” graph visualization shows how our method

prefers SIFT image features for this class, possibly because

the presence of tires is very indicative. Note that our method

is also able to do implicit kernel weighting, as seen in the

graph visualization for “Wedding ceremony”, where the

HOG3D feature is deemed important and combined twice.

7. Conclusion
In conclusion, we have presented a method for combin-

ing features that incorporates our intuitions for how features

should be combined. Our method uses an AND/OR graph

to represent possible feature combinations, and automati-

cally learns the structure of the graph. Using the AND/OR

graph structure, our feature combination method is able to

be selective of features, consider different subsets of fea-

tures in a hierarchical manner, and achieve convincing re-

sults on the 2011 TRECVID MED dataset [17].

There are many possible directions for future work. We

placed several restrictions on our AND/OR graphs to de-

crease the number of potential structures we had to consider.

Designing efficient methods to utilize additional layers and

nodes with non-linear behavior could be a possible direc-

tion. In addition, it would be interesting to draw connec-

tions between our method and objectives that are optimized

by kernel combination techniques such as MKL.
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