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Abstract In this chapter, we review metaheuristics for solving multi-objective com-
binatorial optimization problems, when no information about the decision maker’s
preferences is available, that is, when problems are tackled in the sense of Pareto
optimization. Most of these metaheuristics follow one of the two main paradigms to
tackle such problems in a heuristic way. The first paradigm is to rely on Pareto dom-
inance when exploring the search space. The second paradigm is to tackle several
single-objective problems to find several solutions that are non-dominated for the
original problem; in this case, one may exploit existing, efficient single-objective
algorithms, but the performance depends on the definition of the set of scalarized
problems. There are also a number of approaches in the literature that combine both
paradigms. However, this is usually done in a relatively ad-hoc way. In this chapter,
we review two conceptually simple methods representative of each paradigm: Pareto
local search and Two-phase local search. The hybridization of these two strategies
provides a general framework for engineering stochastic local search algorithms that
can be used to improve over the state-of-the-art for several, widely studied problems.

1 Introduction

Optimization problems appear in many different real-world situations of high social,
environmental or economic relevance. Often, such problems are evaluated accord-
ing to various conflicting objectives. Not surprisingly, multi-objective optimization
is attracting significant efforts from researchers, such that nowadays it has become a
mature field of research. Many early studies on the development of methods and
algorithms for multi-objective problems use an a priori approach where several
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objectives are aggregated into a single objective function. However, when no in-
formation is known about the decision maker’s preferences one must rely on an a
posteriori approach. In this case, the possible solutions to the problem are evaluated
in the Pareto sense, using what is called Pareto dominance (see Section 2). When
optimizing a multi-objective problem in the Pareto sense, the goal is to return a set
of mutually non-dominated solutions, among which the decision maker can then
choose the final solution to implement.

In this chapter, we focus on problems that are combinatorial. Solutions for such
problems are made of discrete components and analytical methods cannot be used
to solve them. For many relevant problems, no algorithm is known to find the op-
timum in polynomial time w.r.t. the size of the problem. Formally speaking, these
problems are NP-hard [29]. Multi-objective combinatorial optimization problems
(MCOPs) are always at least as hard as their single-objective counterparts. Often,
multi-objective versions of a problem are NP-hard even if the single-objective ver-
sion of the problem is not. An example is the shortest path problem, where the
single-objective variant can be solved in polynomial time but the multi-objective
version is NP-hard [28]. When dealing with such NP-hard problems, the typical
sizes of the instances prevent the use of exact algorithms, and one must rely on
heuristic algorithms. A heuristic algorithm is designed to return solutions in poly-
nomial time (better said, quickly enough to be practical), without ensuring that they
are optimal.

We discuss heuristic methods for tackling MCOPs with an a posteriori approach.
From a very abstract perspective, most algorithms follow one of two main search
paradigms: algorithms can be dominance-based or scalarization-based. Dominance-
based methods tackle multi-objective problems by using some form of Pareto dom-
inance relationship among solutions. Scalarization-based methods transform the
multi-objective problem into a set of single-objective problems. By solving these
single-objective problems, scalarization-based algorithms can provide solutions to
the original multi-objective problem. In addition, several algorithms also combine
some elements from these two search paradigms, that is, they are hybrid search
methods.

For each of the two search paradigms, we present a representative local search
framework. As a representative of dominance-based methods we discuss Pareto lo-
cal search (PLS) [51], and as a representative of scalarization-based methods we
present two-phase local search (TPLS) [53]. We describe these two methods to-
gether with their latest associated developments as well as similar methods from the
literature; we show that their hybridization provides a general framework for multi-
objective combinatorial optimization that leads to high performing algorithms.

This chapter is structured as follows. We introduce in Section 2 the basics of
multi-objective optimization in the Pareto sense. Next, we present the two different
search paradigms and the PLS and TPLS frameworks, in Sections 3 and 4, respec-
tively. In Section 5, we explain how TPLS and PLS can be hybridized into a general
framework and we review some hybrid algorithms in the literature. Section 6 re-
views results that have been obtained by this framework. We conclude and highlight
some directions for future research in Section 7.
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2 Preliminaries

When tackling a multi-objective problem in the Pareto sense, the notion of optimal
solution from single-objective optimization does not apply anymore. A solution s
in the multi-objective case is better than another solution r if s is better than r for
at least one objective and not worse for any of the remaining ones. If none of the
two solutions is better than the other, they represent two different trade-offs of the
objectives values that, without knowledge of the decision maker’s preferences, are
considered to be indifferent. The goal of an algorithm tackling a multi-objective
problem in the Pareto sense is then to return all solutions representing different
trade-offs among which the decision maker can choose the preferred one.

More formally, let us consider an MCOP with p objectives, all to be minimized.
We call f(s) the vector of the objective function values of solution s; fk(s) denotes
the specific value of objective k, that is, the k-th component of the objective function
vector f(s). We call N(s) the set of all neighbors of solution s.

Definition 1 (Dominance). A solution s1 is said to dominate a solution s2 (s1 ≺ s2)
if and only if fk(s1) ≤ fk(s2)∀k = 1, . . . , p and ∃ j ∈ {1, . . . , p} such that f j(s1) <
f j(s2).

Definition 2 (Weak dominance). A solution s1 is said to weakly dominate a solu-
tion s2 (s1 � s2) if and only if fk(s1)≤ fk(s2)∀k = 1, . . . , p.

Definition 3 (Incomparable solutions). Solutions s1 and s2 are said to be incom-
parable (s1 ‖ s2) if and only if neither s1 � s2 nor s2 � s1, and s1 6= s2.

The fact that solutions can be incomparable is a fundamental difference to single-
objective optimization, where a total ordering of the solutions exists.

Definition 4 (Pareto global optimum solution). Let S denote the set of all feasible
solutions. A solution s1 ∈ S is a Pareto global optimum if and only if @ s2 ∈ S such
that s2 ≺ s1. Such solutions are also called efficient.

Definition 5 (Pareto local optimum set). A set S′ of solutions is a Pareto local
optimum if ∀s ∈ S′,∀ s1 ∈ N(s), ∃s2 ∈ S′ verifying s2 � s1.

Definition 6 (Pareto front). Let S denote the set of all feasible solutions. A set S′ is
a Pareto global optimum set if and only if it contains all the Pareto global optimum
solutions of S and only these solutions. The set of objective vectors of the Pareto
global optimum is called the Pareto front.

Several Pareto global optimum solutions can have the same objective vector in
the Pareto front. In practice, it is common to return only one solution for each objec-
tive vector. Such a set is also called strict Pareto global optimum set [52] or strictly
Pareto optimal set [21].

The dominance relations can be extended to sets of solutions. We present here
the weak dominance relation on sets, which we use in this chapter. In the following,
A and B denote two sets of solutions.
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Definition 7 (Weak dominance on sets). A set A is said to weakly dominate a set
B (A C B) if and only if ∀ si ∈ B, ∃ s j ∈ A,such that s j � si, and A 6= B.

Definition 8 (Incomparable sets). A and B are said to be incomparable (A ‖ B) if
and only if neither A C B nor B C A, and A 6= B.

In the next two sections we present the two search paradigms more in detail and
we review representative methods in the literature, focusing on PLS and TPLS.

3 Dominance-based Multi-Objective Optimization

We say that algorithms are dominance-based if they use some form of Pareto dom-
inance for acceptance decisions on solutions. When comparing solutions using
Pareto dominance, solutions may be mutually non-dominated; thus, there is only a
partial order defined over solutions, which is a fundamental difference to the single-
objective case. Also for this reason, dominance-based algorithms keep an archive of
solutions instead of only a single solution as the best one found so far.

There are many algorithms for MCOPs that are purely dominance-based. We
restrict our discussion to methods that are based on the iterative improvement of the
set of non-dominated solutions by performing local search (or mutation) of solutions
one at a time. We do not consider here population-based algorithms such as multi-
objective evolutionary algorithms [10, 8] or multi-objective ant colony optimization
algorithms [5, 27]. However, it should be noted that these algorithms also often make
direct or indirect use of Pareto dominance for directing the search, in particular, in
acceptance or selection decisions on solutions.

Pareto local search (PLS) [51] is a paradigmatic representative of dominance-
based multi-objective algorithms that improve solutions one at a time by use of
neighborhood search [52]. While the original motivation for proposing PLS was to
study the connectedness of solutions [51], PLS turned out to be also an effective
local search method for multi-objective problems. Independently, a very similar al-
gorithm was proposed by Angel et al. [4].

PLS extends iterative improvement procedures from the single-objective case to
the multi-objective case by changing the acceptance criterion. While in the single-
objective case an iterative improvement algorithm accepts a new solution if it is
better than the current one, in the multi-objective case PLS accepts a new solution
to enter the archive only if it is not dominated by any solution in the archive. PLS
takes care that the archive contains only non-dominated solutions by filtering out
dominated ones.

Algorithm 1 illustrates the general framework of PLS. It is initialized by an initial
set A of mutually non-dominated solutions, called archive. These solutions are ini-
tially marked as unexplored (line 2). PLS then iteratively applies the following steps.
First, a solution s is selected among all unexplored ones (selection step, line 5).
Then, some (or all) of the neighbors of s, are explored (neighborhood exploration)
and all the neighbors that are accepted (acceptance criterion) w.r.t. the archive A are
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Algorithm 1 Pareto Local Search
1: Input: An initial set of non-dominated solutions A
2: explored(s) := FALSE ∀s ∈ A
3: A0 := A
4: repeat
5: s := SelectSolution(A0)
6: repeat
7: s′ := NeighborhoodExploration(s)
8: if AcceptSolution(A,s′) then
9: explored(s′) := FALSE

10: A := Update(A,s′)
11: end if
12: until (termination criterion)
13: explored(s) := TRUE
14: A0 := {s ∈ A |explored(s) = FALSE}
15: until A0 = /0
16: Output: A

added to A (lines 8 to 11). Solutions in A that are dominated by the newly added
solutions are removed (procedure Update in line 10). Once the termination criterion
for the exploration of the neighborhood of s is met, s is marked as explored (line 13).
When all solutions have been explored, and no more new non-dominated solutions
can be discovered, the algorithm stops in a Pareto local optimum. Algorithm 1 is a
generic outline and different variants of PLS can be obtained by different instantia-
tions of the components SelectSolution, AcceptSolution and NeighborhoodExploration.
In the original PLS algorithm, as proposed in [51], the three main components are
implemented as follows.

Selection step. The next solution to be explored is selected uniformly at random
from the unexplored ones in the archive.

Neighborhood exploration. The neighborhood of a solution is always explored
entirely. This corresponds to the “best-improvement” neighborhood exploration
in single-objective local search, i.e., all neighborhood solutions are explored be-
fore exploring the neighborhood of a new solution.

Acceptance criterion. The original PLS accepts any non-dominated solution for
inclusion in the archive.

The method proposed by Angel et al. [4] is very similar to PLS. The difference
lies in the selection step: in the method of Angel et al., contrary to PLS, the neigh-
borhoods of all unexplored solutions are explored before updating the archive. It
has a stronger exploration capability than PLS because the archive is not updated
immediately after the neighborhood of a single solution has been explored. Due to
this, neighbors of solutions that otherwise would have become dominated can be
examined in addition to those of non-dominated solutions.

Liefooghe et al. [43, 42] study the performance of some variants of the PLS al-
gorithm. They test variants of the selection step that are obtained by restricting the
overall exploration with a limit on the number of solutions to be selected, and vari-
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ants of the neighborhood exploration itself, combining different ways of scanning
the neighborhood and different acceptance criteria. The several variants are com-
pared experimentally by the authors. In their experimental setup, they choose the
same, predefined computation time limit for all variants. Variants that would finish
before this computation time limit are then restarted from scratch and a variant is
judged by the final aggregate non-dominated set found across the multiple restarts.
As a result, they highlight variants that are the most effective if the computation
time is known a priori and the PLS algorithms is launched several times.

Another recent study of PLS is carried out by Dubois-Lacoste et al. [20]. The aim
is to examine variants for the algorithmic components of PLS with a main focus on
their impact on the anytime behavior [64] of PLS. Several variants are tested for
the three main components of PLS. It is shown that some of the resulting combina-
tions can significantly speed-up the convergence of PLS towards good Pareto front
approximations.

The fact that PLS stops upon finding a Pareto local optimum set can be a disad-
vantage if the algorithm finishes while there is still computation time available. A
possibility is to keep the non-dominated solutions found in an external archive and
to restart PLS “from scratch” (as done in [42]). There were other extensions that aim
at obtaining a more efficient search. Alsheddy and Tsang [1] proposed an extension
of PLS that continues the search when a Pareto local optimum set is found without
restarting from different solutions. The idea is based on the guided local search [63]
strategy in the single-objective case: a penalty is applied to worsen the components
of the objective vectors of solutions in the current archive, allowing the algorithm to
escape from a Pareto local optimum set. Other strategies to continue the search focus
on generating good solution(s) to restart the search. In particular, solutions mutated
from the ones in the Pareto local optimum set can be used, resulting, in some sense
in an extension of iterated local search [47] for single-objective problems. A study
of such strategies was done by Drugan and Thierens [12]. In that paper, the authors
showed that the best results on the bi-objective quadratic assignment problem are
attained when restarting PLS from new solutions on a “path” between two solutions
in the Pareto local optimum set (this path is constructed in a manner similar to path-
relinking [32]). Geiger [30] proposed to apply a different neighborhood operator
(w.r.t. the one used during the search) when PLS converges to a Pareto local opti-
mum, allowing PLS to find possibly new non-dominated solutions. This idea can be
seen as an extension of variable neighborhood search [36].

Some evolutionary algorithms are similar to PLS. PAES has been proposed by
Knowles and Corne [40] as an algorithm whose simplicity should make it a baseline
for comparison to more complex evolutionary algorithms. In PAES, a solution is
selected in the current archive of non-dominated solutions and a mutation operator is
applied to obtain a new candidate solution. This new candidate is potentially inserted
in the archive, which is then updated to keep only non-dominated solutions. The
archive size is kept limited by using an archive bounding strategy. Contrary to PLS,
this algorithm does not have a natural stopping criterion since solutions are never
marked as explored. Laumanns et al. proposed the SEMO algorithm [41], which
is similar to PAES but solutions are selected from an archive whose size is not
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limited. Differently from PAES, SEMO marks solutions as explored analogously to
PLS. The authors also test variants of SEMO that differ in the selection step. These
variants tend to balance the number of times solutions are selected for mutation, or
they try to focus on the most recently found solutions.

An advantage of dominance-based algorithms is that they deal with an archive
of solutions rather than a single solution. Therefore, they can return quickly numer-
ous non-dominated solutions to the problem. However, this can also be a drawback
since dealing with possibly many solutions can make the exploration of the search
space slower in terms of the closeness to the Pareto front. In the next section, we
present the scalarization-based search paradigm for multi-objective optimization,
whose aim is to provide quickly few high-quality solutions whose objective vectors
are close to the Pareto front.

4 Scalarization-based Multi-Objective Optimization

Scalarization-based algorithms rely on solving several single-objective problems in
order to find various non-dominated solutions for a multi-objective problem. To do
so, the multiple objective functions are aggregated into a single scalar function. In
this way, the solutions can be compared by scalar values, resulting in a total ordering
of solutions. In other words, an aggregation transforms the multi-objective problem
into a (scalarized) single-objective problem, often called simply scalarization.

There are many ways of scalarizing multi-objective problems. However, most
commonly few standard methods are used for their simplicity and desirable proper-
ties. We present here the most common methods in use in the context of heuristic
algorithms; for other possibilities, we refer the interested reader to [21, 8].

• Linear aggregation. The weighted sum method defines a linear aggregation of
the objectives that is commonly used to define the preferences of the decision
maker with an a priori approach. It is also used to define scalarizations for tack-
ling problems with an a posteriori approach and we also use it in this chapter
in the experimental part. A weight vector is used to give a relative importance
to each objective. Let us consider a solution s whose objective function vector
is f(s) = ( f1(s), f2(s), . . . , fp(s)), and a weight vector λ = (λ1,λ2, . . . ,λp). We
assume, without loss of generality, that the components of f(s) are non-negative.
The scalar value for this solution and this weight is then:

fλ (s) = ∑
1≤i≤p

λi · fi(s).

Since the different components of the weight vector have an effect that is relative
to the value of each other, there exist infinitely many different weight vectors
that define the same scalarization. Therefore, it is common to use normalized
weight vectors, whose components sum up to one. The advantage of consider-
ing a weighted sum is that an optimal solution for the scalarized problem is a
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supported non-dominated solution, that is, its objective vector is located on the
convex hull of the Pareto front.

• Tchebycheff aggregation The Tchebycheff method requires to define a refer-
ence point, r, that dominates any feasible solution. Some weights, additionally,
can be assigned to each objective with a weight vector λ = (λ1,λ2, . . . ,λp). The
scalar value for a solution s is then:

fλ (s) = max{λi · | fi(s)− fi(r)|}, i = 1 . . . p.

Hence, the goal becomes to find a solution as close as possible to the reference
point r, using the Tchebycheff distance as a measure of “closeness”.

• Lexicographic ordering. This method requires to define an order of the objec-
tives, in decreasing importance, and, thus, it defines a total order of the solutions:
If some solutions have the same value for objectives 1 to k, objective k + 1 is
used to break ties. The number of different orders of the objectives is limited, and
therefore is also the number of solutions that can be obtained with this method.
For instance, for bi-objective problems there are only two possible orderings of
the objectives and thus only two different scalarized problems can be defined,
preventing to return more than two solutions. Thus, when tackling a problem in
the Pareto sense, a lexicographic ordering can be used to provide some initial
solutions only, and must be used in combination with another technique.

Solving scalarized problems is often done when the multi-objective problem is
tackled a priori, that is, the decision maker is able to define the components of
the weight vector before the optimization. If the problem is considered using an a
posteriori approach, multi-objective algorithms can make use of scalarizations, but
the weight vector must be varied during the optimization process by the algorithm.
An advantage of scalarization-based algorithms is that they can make use of any
algorithm known to solve the scalarized problems effectively, and make use of its
effectiveness in the multi-objective context. The drawback is that solutions are found
one at a time, and the total number of non-dominated solutions returned is at most
the number of scalarizations considered, which may be small compared to what is
desirable.

Two-phase local search (TPLS) is a representative example of a scalarization-
based algorithm [53]. TPLS is a general algorithmic framework that, as the name
suggests, is composed of two phases. In the first phase, a single-objective algorithm
generates a high-quality solution for one or all objectives, and then one of these
high-quality solutions serves as the starting point of the second phase, where a se-
quence of scalarizations is tackled. Each scalarization uses the best solution found
by the previous scalarization as the solution to start from. TPLS will be successful
if the underlying single-objective algorithms are high-performing, and if solutions
that are close to each other in the solution space have also objective function vectors
that are close to each other in the objective space.

Algorithm 2 presents the general framework of TPLS for a bi-objective problem.
First, high-quality solutions are generated for each objective (lines 1 and 2) us-
ing dedicated single-objective algorithms SLS1 and SLS2, and added to the archive
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Algorithm 2 General Framework for Two-Phase Local Search
1: s1 := SLS1()
2: s2 := SLS2()
3: A := Update(A,s1)
4: A := Update(A,s2)
5: repeat
6: λ := ChooseWeight(A)
7: s′ := ChooseSeed(λ ,A)
8: s′ := SLSΣ (s′,λ )
9: A := Update(A,s′)

10: until termination criterion
11: Filter(A)
12: Output: A

(lines 3 and 4). Then, a sequence of scalarizations is solved (lines 5 to 10), based
on strategies to generate a weight vector (procedure ChooseWeight on line 6) and
to define how the previous solutions can be used as seed for further scalarizations
(procedure ChooseSeed on line 7). Solutions are generated using a single-objective
algorithm that tackles scalarized problems, SLSΣ . The archive is updated with the
solutions obtained for each scalarization (line 9). Note that the archive could include
more information than just the solutions themselves, e.g., it could also include the
fact that solutions have already been used as seeds, for which scalarization they have
been obtained, etc.

Algorithm 2 is a generic outline that covers both the original TPLS and recent de-
velopments, depending on how the procedures ChooseWeight and ChooseSeed are
implemented. TPLS in its original form considers a regular sequence of weights.
Two main weight-setting strategies have been originally proposed to define the or-
der in which these weights are selected. The simplest way to define a sequence of
scalarizations is to use a regular sequence of weight vectors from the first objective
to the second (for instance λ1 = (1,0.8,0.6,0.2,0) with λ2 = 1− λ1) or from the
second objective to the first one. However, this introduces a bias towards the region
of the objective space where the first scalarizations are performed, and against the
region where the last ones are performed [53]. To avoid this effect, a double weight
setting strategy has been proposed: first a sequence of scalarizations is performed
from one objective to the other and then a second sequence of scalarizations is per-
formed in the opposite direction.

Recently, an adaptive anytime strategy (AA-TPLS) has been proposed [16, 19]
to further improve the TPLS method. Inspired by the dichotomic scheme of Aneja
and Nair [3], AA-TPLS has been shown to lead to better results by adapting to the
shape of the Pareto front. Moreover, AA-TPLS shows a very good anytime behav-
ior, providing a high-quality approximation to the Pareto front at any time without
requiring a predefined computation time limit, as the original TPLS does. To do so,
the selection of the next scalarization to be performed is based on the optimistic
hypervolume improvement, which measures the potential improvement that can be
expected in terms of hypervolume [66].
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TPLS is a general framework that relies on a simple idea: run several times a
single-objective algorithm on weighted sum scalarizations and obtain several non-
dominated solutions, one for each weight. Another general-purpose method based
on scalarizations has been proposed by Borges [7]. This method uses the Tcheby-
cheff distance, but not in the standard way explained earlier in this section. Instead,
the goal for each single-objective problem is to find a new solution that maxi-
mizes the Tchebycheff distance between this new solution and the closest one in
the archive. The idea is, as in TPLS, to obtain a set of well-spread solutions in the
objective space.

Other methods have been proposed in the literature, more specific than the gen-
eral idea behind TPLS. They are, however, general-purpose and can be applied to
many different problems. These are extensions of single-objective metaheuristics
to the multi-objective case. An example is Multi-Objective Tabu Search (MOTS),
which is an extension of tabu search [31] to multi-objective problems proposed by
Hansen [35]. MOTS keeps a set of non-dominated solutions and tries to improve
each solution in a direction that moves its objective vector away from other non-
dominated solutions. To do so, it updates the weights for a given solution based on
all other non-dominated solutions (the closer solutions are, the higher is their mutual
influence). The purpose of this behavior is to obtain a set of solutions as spread as
possible in the objective space along the Pareto front. The optimization of solutions
toward different directions is performed using tabu search principles, each solution
dealing with its own tabu list.

There have been several adaptations of the Simulated Annealing (SA) principle to
the multi-objective case. They usually use several runs of single-objective SA algo-
rithms, and mainly differ by the acceptance rules of new solutions. The first SA for
multi-objective algorithm, proposed by Serafini [58], uses the following acceptance
criterion. If the new solution dominates the current one, this new solution is accepted
to replace the current one. Otherwise, the acceptance probability is computed on a
weighted sum of the objectives. Several runs are performed using different weight
vectors, and some small random variations are applied to them each time a solution
is considered. A similar method is MOSA, proposed by Ulungu et al. [61]. MOSA
uses the same type of rule for the acceptance criterion and a similar set of predefined
weight vectors to define the single-objective problems. However, MOSA is not only
returning one solution per weight vector: every time a solution is accepted as the
new current one, it is potentially inserted in a set of non-dominated solutions. Each
run of the single-objective SA maintains its own set of non-dominated solutions,
and the sets are merged and filtered in a last step. Suppapitnarm et al. [59] proposed
another adaptation of the SA principle to the multi-objective case. The acceptance
criterion is different from other SA adaptations. Their proposal uses a multiplicative
function of the objectives, instead of a weighted sum, and a different temperature for
each objective. The setting of the temperature does not follow a pre-scheduled de-
crease, but is automatically updated based on the variance of each objective among
already accepted solutions. The algorithm is then restarted several times to provide
several solutions.
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Finally, various population-based methods such as evolutionary algorithms, have
used scalarizations to direct the search towards the Pareto front. An early example
is VEGA [57]; other examples include the algorithms proposed by Ishibuchi and
Murata [37] and MOGLS of Jaszkiewicz [38]. Also ACO algorithms frequently use
some form of scalarized aggregation, for example, for combining pheromone (or
heuristic) information specific to each objective [5, 27, 46]. However, an overview
of such population-based methods is beyond the scope of this chapter.

5 Hybridization of Search Paradigms

We have presented in Sections 3 and 4 two search paradigms for multi-objective op-
timization. Each of them has its particular advantages and drawbacks. Dominance-
based algorithms can return quickly a large number of non-dominated solutions;
however, they progress rather slowly towards the Pareto front and they may re-
quire a long computation time before reaching high-quality approximations to the
Pareto front. Scalarization-based algorithms can exploit effective single-objective
algorithms and they find quickly high-quality approximations to the Pareto front.
However, they return only relatively few solutions and they may not be able to ap-
proximate well certain types of solutions. For example, heuristic algorithms based
on weighted-sum scalarizations are not designed to identify non-supported solutions
and, thus, they may leave “gaps” in the Pareto front approximation. Thus, combining
both search paradigms can be profitable, in order to exploit their respective advan-
tages and to avoid as much as possible their respective disadvantages.

Hybrid algorithms combining TPLS and PLS elements have been considered in
the literature and have shown high performance. (Examples on the performance
of such hybrids are given in Section 6.) The natural way of combining TPLS and
PLS is to first use TPLS to generate a set S′ of (few) non-dominated solutions that
are a high-quality approximations to the Pareto front and then use the solutions in
S′ to seed PLS. In fact, such a hybrid TP+PLS algorithm is straightforwardly ob-
tained from existing TPLS and PLS algorithms. A rudimentary form of a TP+PLS
algorithm has been studied by Paquete and Stützle [53]; they use a restricted form
of PLS, the component-wise step. Later, Lust and Teghem apply a TP+PLS algo-
rithm that runs the PLS phase to completion [49]. More recently, Dubois-Lacoste et
al. [15, 18] have presented applications of TP+PLS algorithms to bi-objective flow-
shop problems and also considered the automatic configuration of TP+PLS [17]. In
their applications, PLS is terminated based on a bound on the available computation
time.

TP+PLS is an example of a sequential hybridization of algorithms from the
dominance-based and the scalarization-based search paradigms. A second class of
hybridizations considers iterative hybridizations where elements of the two search
paradigms are alternately applied. In the following, we give a concise overview of
some representative examples of sequential and iterative hybrids. For a more com-
plete review, we refer the interested reader to [23].
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5.1 Sequential Hybridization

Combining a scalarization-based and a dominance-based component by switching
from one to the other is the most straightforward way of hybridizing the two search
paradigms. This switching forms the basis of a sequential hybridization. A com-
mon usage of sequential hybrids is to first use an exact algorithm to solve scalarized
problems to optimality and, thus, to provide some (or all) of the supported solu-
tions. Then, in a second phase, a dominance-based component aims at finding some
non-supported solutions. In the heuristic case, a scalarization-based components can
provide a small set of high-quality solutions (not necessarily supported ones), and in
a second step, a dominance-based component improves this set of solutions further.
We describe next some representative examples of such sequential hybrids.

Hamacher and Ruhe [34] combined the two search paradigms to tackle the bi-
objective minimum spanning tree problem. A sequence of scalarizations is solved to
optimality in the first phase; this is well feasible given that the minimum spanning
tree problem is polynomially solvable. In a second phase, the neighborhood of all
solutions obtained from the scalarizations is explored to search for additional non-
dominated solutions. Andersen et al. [2] proposed a similar approach. They tested
restrictions that consider only solutions that are neighbors of two different solutions
in the set, and show that it may be useful for large scale problems since the number
of solutions to consider is small.

Ulungu and Tehgem [60] proposed the two-phases method. This is a scheme for
exactly solving MCOPs that works as follows. In a first phase, the whole set of
supported solutions is determined using weighted sum scalarizations defined by the
dichotomic scheme of Aneja and Nair [3]. In a second phase, this set of supported
solutions is used to provide bounds to algorithms such as branch & bound, to find all
non-dominated solutions. Despite being developed for exact solving, this approach
has also inspired developments for heuristic solvers [49, 19].

Gandibleux et al. [26] proposed an algorithm for the bi-objective assignment
problem that combined the two search paradigms as follows. First, an exact algo-
rithm finds several supported solutions (a polynomial-time algorithm is known for
the scalarized problems), and then the set of solutions obtained is improved further
by seeding with this set a dominance-based evolutionary algorithm, which is run for
few iterations.

Parragh et al. [55] designed an hybrid algorithm to solve the multi-objective
dial-a-ride problem. A variable-neighborhood search algorithm is used to tackle
weighted sum scalarizations defined by a regular sequence of weight vectors. In
a second, dominance-based phase, a path-relinking step is used to further improve
the set of solutions.

Delorme et al. [11] combined a greedy randomized adaptive search procedure
(GRASP) [24] with the strength Pareto evolutionary algorithm (SPEA) [67] to
tackle the bi-objective set packing problem. GRASP is used to tackle a sequence
of weighted sum scalarized problems, and then SPEA is used to improve further the
set of solutions returned by the GRASP.
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5.2 Iterative Hybridization

The second possibility is to use both search paradigms in an iterative way. In that
case, typically a scalarization-based component is used for a specific step within
a dominance-based algorithm. Such iterative algorithms are often implicit hybrids
of the two search paradigms: researchers seek the best possible performance and
include a scalarization-based component within a dominance-based algorithm (or
vice-versa), without making explicit the general concept behind this combination.

Gandibleux et al. [25] proposed an algorithm called MOTS (not to be confused
with the MOTS algorithm mentioned in the previous section) that uses the tabu
search principle to push solutions towards local ideal points. Once a solution be-
comes the new current one in the tabu search process, its neighborhood is explored
using Pareto dominance to add possible non-dominated solutions to the archive.

Czyzzak and Jaszkiewicz [9] proposed the Pareto Simulated Annealing (PSA).
Several runs of a single-objective SA are performed in parallel. Each run of the
single-objective SA is tackling a problem defined by a weight vector and when a
new solution is accepted to be the current one, its neighborhood is explored to search
for non-dominated solutions. The weight vectors that define the scalarized problems
are updated to “escape” from the current solutions of the other runs (taking only the
closest ones into account).

López-Ibáñez et al. [44] tested the combination of a tabu search algorithm with
a multi-objective ACO, and another combination with an evolutionary algorithm
(SPEA2 [65]). The ACO and the SPEA2 algorithms use the tabu search algorithm
at each iteration to improve individual solutions by tackling scalarized problems
defined from a regular sequence of weight vectors.

6 Experimental results of TP+PLS

In this section, we present some exemplary computational results with a TP+PLS
algorithm for bi-objective flowshop scheduling problems and we give an overview
of other recent experimental results. The flow-shop scheduling problem [39] is of
high relevance since it models a common type of machine scheduling environment
in industry. In the flow-shop scheduling problem, a set of n jobs is processed on m
machines. The most common objective is to minimize the makespan (denoted by
Cmax), that is, the completion time of the last job on the last machine. Other com-
mon objectives are the minimization of the total completion time (denoted by SFT)
and the minimization of the total tardiness, denoted by TT , or the total weighted
tardiness, denoted by WT . The bPFSP is NP-hard and it is one of the most widely
studied scheduling problems. (To be more exact, minimizing makespan is NP-hard
for three or more machines, minimizing the total completion time is NP-hard for
two or more machines, and minimizing the total tardiness is NP-hard already for a
single machine [29, 13].) For more details on this problem we refer to [50, 18].
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In our research, we have developed a TP+PLS algorithm for five bi-objective
permutation flowshop scheduling problems (bPFSP) [14, 15, 18] that correspond to
all combinations of the above mentioned objectives with the exception of for the
combination of TT and WT . We have carefully engineered the various algorithmic
components of TPLS and PLS. The TPLS part of the algorithm exploits an under-
lying iterated greedy algorithm that is state-of-the-art for the PFSP with makespan
minimization [56] and that has been adapted to tackle efficiently the other objectives
and the weighted sum problems resulting from the scalarizations. The TPLS version
that we used is the most recent one: AA-TPLS [16, 19]. We showed that its adaptive
behavior yields better results than the classical TPLS even when used inside the hy-
brid algorithm since it can adapt the search to the shape of the Pareto front, which is
rather irregular for bPFSPs. The PLS version that we used is the original one [51].
It uses two different types of neighborhood operators, which was found to be useful
for the bPFSPs [14]. For more details on the TP+PLS framework for bPFSP, the
interested reader can refer to [18].

The TP+PLS framework has been extensively compared to MOSA, a multi-
objective SA proposed by Varadharajan and Rajendran [62]. MOSA was shown to
outperform other algorithms on bPFSPs for several combinations of objectives [50].
The experimental comparison between MOSA and TP+PLS has been done based on
a re-implementation of MOSA under equal computation times. Exemplary results
are given in Table 1, which shows the percentage of runs where the output set of the
TP+PLS algorithm weakly dominates in the Pareto sense (see Def. 7; hereafter we
say that a set that weakly dominates another is “better”) the output set obtained by a
run of MOSA, and, conversely, the average percentage of runs that the output set of
MOSA is better than TP+PLS. These percentages are computed for each instance
over 625 pairwise comparisons obtained from 25 runs for each algorithm, and av-
eraged over the 10 instances of each size. The results given are clearly in favor of
TP+PLS. While TP+PLS is better than MOSA for a large percentage of the compar-
isons, the opposite is very rarely the case. Note that a value of 0 means that MOSA
is not able to produce in any run a non-dominated set better than the worst non-
dominated set produced by TP+PLS in any of the 25 runs of the 10 instances of a
given size. The percentages given in Table 1 show that for small instances of 20 jobs,
MOSA and the TP+PLS algorithm are difficult to compare. The low percentages are
explained by the fact that both algorithms often find the same non-dominated set,
which is probably the optimal Pareto front. For these small instances, differences are
not consistent across instances and combinations of objectives, and it cannot be said
that any algorithm is clearly better than the other. Nevertheless, for all the remaining
instances, Table 1 shows that TP+PLS clearly outperforms MOSA.

Despite the fact that the TP+PLS algorithm often dominates MOSA, it is inter-
esting to study how different the Pareto front approximations provided by the two
algorithms are. To do so we use a graphical tool, the empirical attainment func-
tion (EAF). The EAF gives the, empirically estimated, probability that an algorithm
dominates an arbitrary area of the objective space [33]. By plotting the differences
of the EAFs of two algorithms, one can graphically show where in the objective
space, and how frequently, an algorithm performs better relative to the other. A
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Table 1 For each bi-objective problem (denoted by the two objectives in parenthesis), the left
column shows the percentage of runs (computed over 25 runs per instance and averaged over 10
instances of the same size) in which an output set obtained by TP+PLS is better in the Pareto sense
than an output set obtained by MOSA. The right column shows the percentage of runs for which
an output set of MOSA is better than an output set of TP+PLS .

PFSP-(Cmax, SFT) PFSP-(Cmax, TT) PFSP-(Cmax, WT) PFSP-(SFT, TT) PFSP-(SFT, WT)
nxm TP+PLS MOSA TP+PLS MOSA TP+PLS MOSA TP+PLS MOSA TP+PLS MOSA

20x5 4.66 5.83 6.1 1.34 14.95 0.18 10.19 26.31 0.02 20.15
20x10 1.87 9.2 0.07 0.26 0.02 0.06 0.19 0.63 0.03 0.07
20x20 0.13 1.23 1.27 1.57 1.99 2.32 3.63 5.55 4.2 10.09

50x5 89.49 0 84.33 0 79.22 0 98.13 0.08 33.67 0
50x10 72.92 0 63.17 0 63.24 0 94.07 0 20.53 0
50x20 75.94 0 61.11 0 63.01 0 5.79 0 14.72 0

100x5 84.97 0 70.5 0 67.12 0 93.66 2.54 9.72 0
100x10 76.94 0.05 69.86 0 37.49 0 95.38 0.58 16.84 0
100x20 73.17 0 63.29 0 23.81 0 97.35 0 15.31 0

200x10 18.04 0.16 24.5 0 4.15 0 91.77 3.72 0.02 0
200x20 15.16 0 37.83 0 0.25 0 78.23 6.28 1.04 0.02

more detailed explanation of this graphical tool can be found in [45]. Fig. 1 shows
the differences between the EAFs obtained by the hybrid TP+PLS algorithm and
the MOSA algorithm, for one instance with makespan and total completion time
minimization. A large gap is observed in favor of the TP+PLS algorithm over the
one obtained by MOSA, indicating a clearly superior performance. Other instances
and combinations of objectives show similar trends.

Table 1, Fig. 1 and additional results available in [18] show that the hybrid
TP+PLS algorithm clearly outperforms the previously best-known algorithm, by
a large gap, and for all combinations of makespan minimization, total completion
time minimization, total and weighted tardiness minimization.

TP+PLS algorithms were also applied to the bi-objective traveling salesman
problem (bTSP). The TSP and the bi-objective version of it are well-known NP-
hard combinatorial problems widely used to assess the performance of optimization
algorithms and metaheuristics [22, 54]. The goal in the bTSP is to find a Hamilto-
nian tour that minimizes the sum of the edge costs in the tour. In the bi-objective
variant of the TSP, two cost values are assigned to each edge of a graph, and each
of the two objective functions is computed with respect to the corresponding cost
value.

Paquete and Stützle [53] proposed the Pareto double two-phase local search (PD-
TPLS method) and applied it to the bTSP. In this sequential hybrid algorithm, the
first phase uses the TPLS method (in its original form, that is, with a regular se-
quence of weights) to return a set of non-dominated solutions, and in the second
phase the neighborhood of all these solutions is explored to find additional non-
dominated solutions. In a sense, this so-called component-wise step implements a
restricted version of PLS. The single-objective algorithm used to tackle the scalar-
ized problems is an iterated local search algorithm, and the neighborhood operator
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Fig. 1 Differences of the empirical attainment functions obtained over 25 runs in favor of the
hybrid TP+PLS algorithm (left) and in favor of the MOSA algorithm (right), for the bPFSP with
minimization of the makespan and of the total completion time, on an instance with 50 jobs and 20
machines.

is based on 2-opt moves. This hybrid algorithm has been compared favorably to the
best algorithm known at that time, the MOGLS algorithm from Jaszkiewicz [38]. A
more in-depth experimental study of PD-TPLS and other TPLS variants has been
presented by Paquete and Stützle [54].

More recently, another TP+PLS algorithm has been applied to the bTSP by Lust
and Teghem [49]. This algorithm is reported to outperform the PD-TPLS of Paquete
and Stützle. The main differences are that (i) the single-objective algorithm used to
tackle the scalarized problems is an effective implementation of the chained Lin-
Kernighan heuristic [6], which is presumably more effective than the iterated local
search algorithm used by the PD-TPLS, and (ii) a full version of PLS is used (more
precisely, the version of Angel et al. [4]) instead of the restricted one in the PD-
TPLS method. This algorithm is nowadays, to the best of our knowledge, the state
of the art for the bTSP.

Finally, Lust and Teghem [48] tackled multi-objective multi-dimensional knap-
sack problems. In these problems, two or more types of profits are associated to
each item, each type of profit representing a different objective, and the goal is to
determine a subset of items to place in a knapsack that maximizes, in the Pareto
sense, the sum of profits for each objective. In the multi-dimensional version, the
knapsack has more than one capacity constraint, and a feasible solution needs to
satisfy all capacity constraints. The TPLS phase of the algorithm finds solutions
for each weighted sum scalarization using a greedy constructive heuristic. In the
second phase, PLS uses a very-large neighborhood search that starts from the set
of solutions obtained by TPLS. They consider the bi-objective variant using regu-
larly distributed weights for the scalarizations, and a three-objective variant using
random weights for the scalarizations. For the bi-objective multi-dimensional knap-
sack problem the proposed TP+PLS algorithm is a new state-of-the-art approach,
clearly outperforming its competitors on widely tested benchmark instances.
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7 Conclusion

In this chapter, we have reviewed heuristic methods for solving multi-objective
combinatorial optimization problems in the Pareto sense. In particular, we re-
viewed methods rooted in the scalarization-based and the dominance-based search
paradigms. For each of the two search paradigms, we presented a representative
method, namely Pareto local search (PLS) as a dominance-based method and two-
phase local search (TPLS) as a scalarization-based method. We have detailed the
main algorithmic components that are required to define PLS and TPLS algorithms,
and discussed how PLS and TPLS can be combined into hybrid TP+PLS algo-
rithms. Some exemplary computational results have illustrated the high potential
of TP+PLS algorithms. In fact, for several well-known multi-objective problems,
including various bi-objective flowshop problems, the traveling salesman problem
with two and three objectives and the bi-objective knapsack problem, TP+PLS al-
gorithms are currently state of the art.

An important direction for future research is certainly to extend the current gen-
eration of TPLS, PLS and TP+PLS algorithms to three and more objectives. We
also believe that an iterative hybridization instead of a sequential one could be ben-
eficial in terms of flexibility and performance. The TP+PLS framework is also a
clear candidate for the automatic configuration of high-performing multi-objective
algorithms. The feasibility of such an endeavor has already been proven [17]. Re-
garding applications, we believe the hybrid TP+PLS framework could be applied
to other well-known and widely studied problems, providing high-quality results
without requiring a large implementation effort.
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