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Abstract
Minimizing the number of late jobs on a single machine is a classic scheduling problem, which can be used to model the
situation that from a set of potential customers, we have to select as many as possible whom we want to serve, while selling
no to the other ones. This problem can be solved by Moore–Hodgson’s algorithm, provided that all data are deterministic.
We consider a stochastic variant of this problem, where we assume that there is a small probability that the processing times
differ from their standard values as a result of some kind of disturbance. When such a disturbance occurs, then we must
apply some recovery action to make the solution feasible again. This leads us to the area of recoverable robustness, which
handles this uncertainty by modeling each possible disturbance as a scenario; in each scenario, the initial solution must then
be made feasible by applying a given, simple recovery algorithm to it. Since we cannot accept previously rejected customers,
our only option is to reject customers that would have been served in the undisturbed case. Our problem therefore becomes to
find a solution for the undisturbed case together with a feasible recovery to every possible disturbance. Our goal hereby is to
maximize the expected number of served customers; we assume here that we know the probability that a given scenario occurs.
In this respect, our problem falls outside the area of the ‘standard’ recoverable robustness, which contains the worst-case
recovery cost as a component of the objective. Therefore, we consider our approach as a combination of two-stage stochastic
programming and recoverable robustness. We show that this problem is NP-hard in the ordinary sense even if there is only
one scenario, and we present some sufficient conditions that allow us to find a part of the optimal solution in polynomial
time. We further evaluate several solution methods to find an optimal solution, among which are dynamic programming,
branch-and-bound, and branch-and-price.

Keywords Two-stage stochastic programming ·Recoverable robustness · Stochastic scheduling · Single machine scheduling ·
Late jobs

1 Introduction

Consider a one-man firm that is specialized in serving clients,
who issue requests for help. Each request introduces a job
into the system; we assume that we know how much time it
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takes to execute this job and the time by which it should be
finished. The goal is to serve as many clients as possible, that
is, we want to minimize the number of rejected requests. At
the end of the day, the schedule for the next day is made and
the clients that cannot be served are contacted.

The above problemboils down to thewell-known problem
of minimizing the number of tardy jobs on a single machine,
which was first described by Moore (1968). If all data are
deterministic and known beforehand, then the problem can
be solved inO(n log n) time.There is one complication, how-
ever: there is a small probability that theworker gets ill during
the night. Fortunately, in that case, he can contact a colleague,
who will serve as a replacement. This replacement worker
is not identical, however, which implies that he might need
more time to carry out some of the jobs; as a consequence, it
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may not be possible to feasibly serve all selected (accepted)
clients. Since we assume that it is not possible to accept pre-
viously rejected clients, the only way out is then to reject one
or more of the previously accepted clients.

The situation sketched above is a typical example of apply-
ing the concept of recoverable robustness introduced by
Liebchen et al. (2009). The idea is to find a solution that is
feasible for the undisturbed case together with away to repair
this solution if it becomes infeasible in case of a disturbance;
the possible disturbances are given as a list of scenarios. The
value of a solution is computed on basis of the cost of the
undisturbed solution and the cost of the solutions that are
obtained by the recovery algorithm for all possible distur-
bances.

In this paper, we consider the problem of minimizing the
number of tardy jobs on a singlemachine,which is denoted as
1|| ∑Uj in the three field notation scheme by Graham et al.
(1979). In the original setting, we are given n jobs, which we
denote by J1, . . . , Jn or simply by jobs 1, . . . , n if no confu-
sion is possible. For each job J j ( j = 1, . . . , n), we know its
processing time p j and its due date d j . There is onemachine,
which is continuously available from time zero onwards, that
must execute all jobs, where executing job J j requires an
uninterrupted interval of length p j on the machine. When
job j is completed at or before its due date, then job j is
considered to be on time; the goal is to maximize the num-
ber of jobs that are completed on time, which is the same as
minimizing the number of jobs that are completed late (and
possibly do not get executed at all). This problem is equiva-
lent to the one of accepting as many jobs as possible, where
accepting a job implies that it must be completed on time;
the remaining jobs are then rejected. We allow the possibil-
ity that some disturbance takes place, which may change the
processing times. The list of possible disturbances is given;
we assume that at most one disturbance will take place. From
now on we say that each possible disturbance corresponds to
the occurrence of a scenario. We use S to denote the set of
scenarios, and we use psj to denote the processing time of
job J j ( j = 1, . . . , n) in scenario s. When solving the prob-
lem, we have to find an initial solution first, after which it is
revealed which scenario occurs, if any; given the scenario,
we then have to adjust the initial solution to make it feasi-
ble again. As mentioned above, the only possible recovery
that we can apply is to reject one or more jobs that were
accepted in the initial solution. We assume that we know all
data from the scheduling instance and all data of the scenarios
together with the probability that a scenario occurs. We use
qs (s ∈ S) to denote the probability that scenario s occurs;
the probability that there is no disturbance is denoted by q0.
We measure the quality of a solution by the expected num-
ber of on time jobs, which we want to maximize. Since using
the expected value takes us outside the area of recoverable
robustness, in which the worst-case cost over all scenarios is

included in the objective function, our approach is a combi-
nation of two-stage stochastic programming and recoverable
robustness. Therefore, we call this the Two- stage Pro-

gramming Recoverable Robust Number of Tardy

jobs problem, which we abbreviate by TPRRNT.
This paper is organized as follows. In Sect. 2, we give a

short overview of the relevant literature. In Sect. 3, we show
that even the problemwith only one scenario andwith a com-
mon due date is NP-hard in the weak sense. In Sect. 4, we
present some dominance criteria that enable us to identify a
subset of jobs that must be present in an optimal initial solu-
tion. In Sect. 5, we present several enumerative algorithms
to solve this problem, which we test in Sect. 6.

Finally, in Sect. 7 we draw some conclusions and indicate
some open problems.

Our contribution In this paper, we show that we can apply
a combination of two-stage stochastic programming and
recoverable robustness to deal with uncertainties in a num-
ber of single machine scheduling problems. This is the first
result in this area, albeit that the multiple knapsack problem
addressed by Tönissen et al. (2017) can be viewed upon as a
multiple machine scheduling problem.

2 Literature

The single machine problem of minimizing the number of
tardy jobs without disturbances, denoted as 1||∑Uj in the
scheduling literature, can be solved in O(n log n) by the algo-
rithm byMoore–Hodgson, which from now onwe shall refer
to as algorithm MH. This algorithm starts with putting the
jobs in order of non-decreasing due date, which yields the
Earliest Due Date (EDD) schedule. Then, it iteratively scans
the current schedule to find the first job that is late; it if
finds such a job, then it removes the longest job from the
set of jobs containing the late job and all its predecessors
in the schedule. Eventually, the set of on time jobs remains.
Lin and Wang (2007) and Hoogeveen and T’kindt (2012)
present an O(n2) algorithm, called the SPT- based algo-
rithm, in which the jobs are added one by one to the on time
set in shortest processing time order; if adding a job results in
an infeasible set, then the job added last is removed. van den
Akker and Hoogeveen (2004) present an overview of vari-
ants of the deterministic 1||∑Uj problem including release
dates, deadlines, etc. Only a very limited amount of work
has been published on the stochastic variant of the prob-
lem. van den Akker and Hoogeveen (2008) and Trietsch and
Baker (2008) consider the variant where the processing times
follow some given probability distribution. Van den Akker
and Hoogeveen show that when this probability distribution
possesses somenice characteristics, then the problemofmax-
imizing the number of jobs that are stochastically on time
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is solvable through Moore–Hodgson’s algorithm; a job is
stochastically on time if it satisfies the chance-constraint that
the probability that it is on time in a given schedule is greater
than or equal to a given minimum success probability. Baker
and Trietsch extend these results to instances in which the
jobs have stochastically-ordered processing times. As far as
we know, no results have been published on the variant of
1|| ∑Uj in which the processing times may change due to
some disturbance without following some specific probabil-
ity distribution.

We want to apply a combination of two-stage stochas-
tic programming and recoverable robustness to deal with
these disturbances. The latter technique was introduced by
Liebchen et al. (2009) for railway optimization, where it has
gained a lot of attention since (see for example Cacchiani
et al. 2008; Cicerone et al. 2009). The key property is that it
uses a pre-described, fast, and simple recovery algorithm to
make a solution feasible for a set of given scenarios. Recov-
erable robustness has evolved from stochastic programming
(Birge andLouveaux 1997) and robust optimization (Ben-Tal
et al. 2009). Robust optimization does not allow a solution
to be changed to make it feasible if some disturbance occurs;
hence, the solution must be capable of dealing with any kind
of common disturbance, which is likely to result in a conser-
vative solution. If for example in our problem we have that
there are n scenarios, where scenario i (i = 1, . . . , n) corre-
sponds to the case that the processing time of job i becomes
equal to its due date, then in case of robust optimization we
can select only one job. In case of stochastic programming
decisions are taken in two stages: in the first stage a part of
the solution is constructed, which is completed in the sec-
ond stage after the true data have been revealed. If we allow
the possibility to adjust the first stage solution completely,
then it is best to take no decision at all in the first stage and
just select the optimal solution as soon as we know which
scenario occurs. In practice, this is often not possible, and
therefore we restrict the possible adjustments to making jobs
late in the second stage that were early in the first stage; it
is not possible to complete jobs on time that were late in the
first stage. This reflects the idea that a job corresponds to
a customer: if a job cannot be completed on time, then the
customer will go away.

After the initial work in the area of railway optimization,
recoverable robustness is starting to get applied in the area of
combinatorial optimization. Themost studied problem in this
respect is theKnapsack problem. Bouman et al. (2011) and
van denAkker et al. (2016) consider the problem inwhich the
size of the knapsack is uncertain; infeasibilities can be recov-
ered by removing items. Tönissen et al. (2017) generalize this
to the multiple knapsack problem. Büsing et al. (2011a, b)
consider the single knapsack problem with uncertain item
weights; in both cases infeasibilities can be recovered by
removing up to k items, whereas in the former paper up to

l new items can be added as well. Álvarez-Miranda et al.
(2015a) study the Facility Location problem, where all
kinds of uncertainties can occur when some disaster strikes;
infeasibilities can be recovered by opening new facilities
and/or reassigning customers. Bouman et al. (2011) and
van den Akker et al. (2016) consider the Demand Robust

Shortest Path problem,whichwas introduced byDhamd-
here et al. (2005). The problem here is to buy edges in a
given graph to connect a given source and the, yet unknown,
sink, where the goal is to minimize the total cost of the edges
bought. In the first stage, one can buy edges at a cheaper price,
and when the sink gets revealed, one can buy the additionally
needed edges at a higher price. This problem is closely related
to the recoverable robust Two- level Network Design

problem studied by Álvarez-Miranda et al. (2015b). Given
a graph with a root node r one must decide which edges to
prepare, and whether this should be done by installing pri-
mary or secondary technology. Eventually, each customer
(located in a vertex) should be connected to the root node
through a prepared path, but a path from the root to a pri-
mary customer should only use primary technology edges.
In the first phase, when it is still unknown which customers
are primary, one must select the edges to prepare, where one
can choose between installing primary and secondary tech-
nology; in the second phase, when the primary customers are
revealed, it is possible to upgrade secondary technology to
primary technology.

On the one hand, our research falls in the area of recov-
erable robustness, since we use a pre-described recovery
algorithm to make a first stage solution feasible. On the other
hand, we assume that we know the probability with which
each scenario occurs, and we want to minimize the expected
number of late jobs, which is a typical feature of stochastic
programming; in its purest form, recoverable robustness uses
the worst-case cost as a component of the objective function.
Therefore, we are working at the intersection of both areas.

3 NP-hardness

In this section we show that the TPRRNT problem is NP-
hard in the ordinary sense, even if all jobs have the same
due date and there is only one scenario. Since we present a
dynamic programming algorithm in Sect. 5 for the general
case with a fixed number of scenarios that runs in pseudo-
polynomial time, this settles the computational complexity
of this problem.

Theorem 1 The problem of deciding whether for a given
instance of TPRRNT there exists a solution with cost no
more than a given threshold value y is NP-complete in the
weak sense.
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Proof We use a reduction from the Partition with equal

cardinality problem, which from now on we will refer to
as problem PEC; this problem is known to beNP-complete
in the ordinary sense. The PEC problem is defined as follows:

Given 2n non-negative integral values a1, . . . , a2n , does
there exist a subset S of the index-set {1, . . . , 2n} with car-
dinality n such that

∑

j∈S
a j =

2n∑

j=1

a j/2?

Given any instance ofPECwe construct the following special
instance of TPRRNT with one scenario, which occurs with
probability q1. For each element a j we introduce a job j ,
and we have a special job 0; each job has due date 4nA+ A,
where A = ∑2n

j=1 a j/2. The processing time of job j ( j =
1, . . . , 2n) is equal to p j = 4A−a j in the undisturbed case,
and it is equal to p1j = 4A + a j in the scenario. Job 0 has

processing time p0 = 2A and p10 = 4nA in the undisturbed
and disturbed case, respectively. The threshold is equal to
y = n(1 − q1) + (n + 1)q1 = n + q1, and the question is
whether there exists a feasible solution with value no more
than y.

We will show that a ‘yes’ answer to the instance of
TPRRNT implies that the answer to the instance of PEC
is affirmative as well. First, suppose that there exists a subset
S that leads to ‘yes’ on PEC. A straightforward computation
shows that if we accept all jobs in S together with job 0 in
the initial solution and additionally reject job 0 in case of a
disturbance, then we find a solution with value y.

Suppose next that there exists a feasible solution to the
instance of TPRRNT with value no more than y. Because
of the sizes of the processing times and the value of the due
date, we know that at most n of the jobs 1, . . . , 2n can be on
time. Hence, to meet the threshold, the initial solution must
contain exactly n of these jobs together with job 0, whereas
job 0 gets discarded in case of a disturbance. Let S denote
the set containing the indices of the jobs in {1, . . . , 2n} that
are accepted in the initial solution. In the undisturbed case,
the total processing time of the jobs in S and job 0 is equal
to

p0 +
∑

j∈S
p j =2A +

∑

j∈S
(4A − a j ) = (4n + 2)A −

∑

j∈S
a j .

Since this is no more than the common due date 4nA+ A, we
find that

∑
j∈S a j ≥ A. Similarly, because of the feasibility

of S for the disturbed case, we must have that

∑

j∈S
p1j =

∑

j∈S
(4A + a j ) = 4nA +

∑

j∈S
a j ≤ 4nA + A.

Hence, we must have that
∑

j∈S a j ≤ A as well, from which
we immediately derive that the indices in S imply a ‘yes’
solution to PEC. ��

4 Dominance rules

In this section we show that it may be possible to reduce the
size of an instance of the TPRRNT problem in polynomial
timeby identifying a part of the solution to the initial instance.
Before specifying the correspondingdominance rule,we start
with two negative results by analyzing two candidate rules
that do not work.

The negative results correspond to possible reduction rules
that are based on solving the initial and scenario instance
independently by algorithm MH. Suppose that in both solu-
tions job j belongs to the on time set. As we will show by
example, this does not have to imply that job j is part of the
selected jobs in any optimal solution of the TPRRNT prob-
lem. In our example, we have 5 jobs, the data of which are
found below.

J1 J2 J3 J4 J5
d j 52 54 74 78 98
p j 27 20 28 25 25
p1j 27 30 28 37 37

In the undisturbed case algorithm MH selects jobs
J1, J2, J4, J5, and for the disturbed case algorithm MH

selects jobs J1, J3, J5. The only optimal solution of the
TPRRNT problem, however, is to accept initially jobs
J2, J3, J4, J5 and to reject J4 in case of a disturbance.

The second obvious rule to reduce the size of the instance
is to remove a job that is included neither in the schedule
for the optimal solution, nor in the schedule for the scenario
instance, when we apply algorithm MH to both instances
independently. The example below shows that this rule is not
correct in general.

J1 J2 J3 J4 J5
d j 6 6 7 7 19
p j 2 4 1 5 13
p1j 6 6 2 5 17

Algorithm MH will select jobs J1, J2, J3 for the initial
case and jobs J3, J4 for the scenario problem. The only opti-
mum solution for TPRRNT, however, is to select the jobs
J3, J4, J5 initially and to reject job J5 in the case of a distur-
bance.

Despite the first negative result, our dominance rule is
based on identifying jobs that are selected by algorithmMH

when applied to the initial case and scenario instance inde-
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pendently, but the selected jobs need to satisfy an additional
criterion.

Definition 1 The set H ′ contains the indices of the jobs that
are included in the on time sets of the solutions obtained
by algorithm MH for the initial case and for all scenario
instances independently.

From this set H ′ we select the subset H on basis of the
Shortest Processing Time rule.

Definition 2 The set H is the subset of H ′ of maximum
cardinality such that for any job J j ∈ H , we have that its
processing time in the undisturbed situation and in each sce-
nario is no more than the minimum processing times of all
jobs not included in H in the corresponding situation. That
is:

• p j ≤ pi ∀ j ∈ H and i /∈ H
• psj ≤ psi ∀ j ∈ H , i /∈ H and ∀s ∈ S.

To construct the set H from H ′ we can use the following
algorithm. We first put H equal to H ′ and then check the
constraints of the definition. If some job i fails the test, we
remove it from H and run the test again, untilwe have reached
a feasible set H . Remark that the order in which we remove
the jobs from H does not matter, since we never add jobs to
H ; hence any job that fails the test will always fail, until it
gets removed.

Theorem 2 For any instance ofTPRRNT there exists an opti-
mal solution in which the jobs in H are selected in the initial
solution and in each one of the scenarios.

Proof Consider any optimal solution to TPRRNT and sup-
pose that not all jobs in H have been selected in the initial
solution; let Q denote the jobs that have been selected in the
optimal solution for the initial case. Now consider any job
j ∈ H such that j /∈ Q. Since it is feasible to select all jobs
in H ′ by definition, Q must contain at least one job that does
not belong to H ′; from these jobs we choose the one with the
smallest due date, which job we denote by Ji . We update our
solution by replacing job Ji with job J j in the set of selected
jobs in the initial solution and in all scenarios.

We first show feasibility of the new initial solution. Sup-
pose that di ≤ d j . Let σ denote the EDD schedule for the
jobs in Q. If we simply replace Ji with J j in σ (leaving the
order of the jobs intact), then we see that none of the com-
pletion times increase, because pi ≥ p j . Moreover, we see
that the completion time of J j will be no more than the com-
pletion time of Ji , which is no more than di ≤ d j , and hence
all jobs are on time. Now we consider the case di > d j ; we
replace Ji with J j and put the jobs in EDD order. Then, the
completion times of the jobs before the original position of
job Ji may increase, but because of the choice of Ji these are

all jobs from H , and hence the resulting schedule must be
feasible as well.

Now consider any scenario s. The current selection of on
time jobs remains feasible, unless it contains Ji . In that case,
we can show that replacing Ji with J j yields a feasible solu-
tion by a proof following the same lines as the proof for the
initial case. Hence, we find a solution with equal value that
contains onemore job from H .We repeat this procedure until
all jobs inH havebeen included in the optimal solution for the
initial case. The only thing left to show is that in each scenario
solution all jobs in H are included. To that end, we apply the
SPT-based algorithm to solve the 1||∑Uj problem for each
scenario s, wherewe restrict our instance to the jobs in the ini-
tial solution. Since the jobs in H have the smallest processing
times, these are considered first by the SPT-based algorithm,
and these will all be selected by definition of the set H ′. ��
Even very minor changes in the processing times, which
do not affect the SPT order of the jobs, can destroy all
resemblance between the optimal solution, and the solutions
obtained by algorithmMH for the initial and for all scenario
instances independently, as shownby the example belowwith
two scenarios. We conjecture that in the special case with
only one scenario in which the order of the jobs does not
change when the jobs are put in SPT order, then there exists
an optimal solution in which all jobs in H ′ belong to the
initial solution.

J1 J2 J3 J4
d j 10 12 26 28
p j 10 12 14 16
p1j 10 12 15 16
p2j 11 12 14 16

AlgorithmMH finds the set {J1, J3} for the initial case and
the first scenario, and it finds the set {J2, J3} for the second
scenario, which implies that H ′ = {J3}. The optimal solution
to problem TPRRNT is to select jobs J2 and J4 initially and
execute these in both scenarios.

5 Solutionmethods

In this section we will describe our solution methods for
problem TPRRNT. We have applied dynamic programming,
branch-and-bound, and branch-and-price. We compare these
methods in the next section.

5.1 Dynamic programming

We first consider problem TPRRNT with a single scenario.
Our dynamic programming algorithm is based on the algo-
rithm by Lawler and Moore (1969) for the problem of
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minimizing theweighted number of late jobs.We add the jobs
in Earliest Due Date order. We use state variables f j (r , t),
which indicate the value of the optimal solution considering
only jobs J1, . . . , J j , where the total processing time of the
selected jobs in the initial situation is r and the total process-
ing time of the accepted jobs of the scenario schedule is t .
We initialize the dynamic programming algorithm by putting
f j (r , t) = 0 if j = r = t = 0 and +∞ otherwise. Each
time we add a new job to the dynamic program, we have
the choice between rejecting it in the initial solution, accept-
ing it in the initial solution while rejecting it in the scenario
solution, and accepting it in both. This leads to the following
recurrence relation, in which q1 is the probability that the
scenario occurs.

f j+1(r , t) =
{
min{ f j (r , t) + 1, f j (r − p j+1, t) + q1, f j (r − p j+1, t − p1j+1)} if r , t ≤ d j+1

∞ otherwise

This dynamic programming algorithm has a running time of
O(n(

∑
p j )

2). Virtually, the same algorithm can be used to
solve the weighted case through a simple adjustment of the
recurrence relation, which then becomes

f j+1(r , t) =
{
min{ f j (r , t) + w j , f j (r − p j+1, t) + q1w j , f j (r − p j+1, t − p1j+1)} if r , t ≤ d j+1

∞ otherwise

where w j denotes the weight of job j ( j = 1, . . . , n). Fur-
thermore, this dynamic program can easily be modified to
deal with the problem with more scenarios. We then have to
extend the state variable to f j (r , t1, . . . , t|S|), where ti indi-
cates the total processing time of the selected jobs for the
i th (i = 1, . . . , |S|) scenario. In the recurrence relation, we
then have to take the minimum over 2|S| + 1 terms, since
when we select job j + 1 in the initial solution we have the
possibility of accepting or rejecting job j +1 for each one of
the |S| scenarios. This implies that the running time becomes
exponential when |S| is not fixed. Even if |S| is fixed, then
the dynamic programming algorithm will become very time
consuming, because of its running time O(nP |S|+1).

5.2 Branch-and-bound

Given an initial solution we can, for each scenario separately,
determine the optimal recovery by applying algorithm MH

to the jobs selected in the solution for the individual case.
Hence, we only need to determine the initial solution, and
therefore, we use as our branching strategy to either select
or reject job j ( j = 1, . . . , n). To find a lower bound in a
given node, we apply algorithmMH to the initial case and to
all scenarios independently, while taking the constraints that

describe the node into account. An initial upper bound can
be found by solving the initial case by algorithm MH, after
which we find the optimal recoveries for this initial solution
by applying algorithmMH to the jobs contained in the initial
solution for each scenario.

5.3 ILP: separate recovery decomposition

It is possible to formulate problem TPRRNT as an integer
linear program using binary variables that indicate whether
job j is selected or rejected in the initial solution and in
the scenarios. To model and enforce the feasibility of the
solution, we need so many constraints that it is only possible

to solve small instances in this way. Therefore, we need a
more intricate way to formulate and solve the problem as an
ILP.

We will use the separate recovery decomposition model
by Bouman et al. (2011). The approach is based on selecting
one feasible set of accepted jobs for the initial case and one
feasible set for each one of the scenarios; the feasibility of
the combination of these sets will be enforced by constraints.
Suppose that we know all feasible subsets for the initial case;
we use R to denote this set of feasible subsets. We character-
ize subset r ∈ R by binary parameters u jr that have value 1
if job j is not contained in it and zero otherwise. Similarly,
we assume that we know the set Rs containing all feasible
subsets for scenario (s ∈ S); we characterize feasible subset
r ∈ Rs for scenario s by binary parameters usjr similarly to
u jr . Furthermore, we introduce binary variables xr that indi-
cate whether subset r is chosen for the initial case; similarly,
we define binary variables ysr that indicate whether subset
r is chosen for scenario s. This leads to the following ILP
formulation:

min q0
∑

r∈R

n∑

j=1

u jr xr +
∑

s∈S
qs

∑

r∈Rs

n∑

j=1

usjr y
s
r

subject to

∑

r∈R

xr = 1 (1)
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∑

r∈Rs

ysr = 1 ∀s ∈ S (2)

∑

r∈R

u jr xr −
∑

r∈Rs

usjr y
s
r ≤ 0 ∀ j = 1, . . . , n; ∀s ∈ S (3)

xr ∈ {0, 1} ∀r ∈ R

ysr ∈ {0, 1} ∀r ∈ Rs; ∀s ∈ S

The constraints (3) enforce the connection between the initial
subset and the subset selected in the scenarios: if J j is not
part of the subset chosen for the initial case (u jr = 1), then
this forces usjr = 1 for each scenario, implying that J j is not
selected there as well. Since we do not want to enumerate
the O(2n) possible subsets for the initial solution and for all
scenarios, we solve this problem by applying the concept of
column generation and branch-and-price. Thereto, we take
theLP-relaxation,whichweobtain by relaxing the integrality
constraints to xr , ysr ≥ 0 [the upper bound of 1 on each
variable is already enforced by the constraints (1) and (2)].
We solve this LP-relaxation for a small set of subsets that
allow a feasible solution (for example the subset obtained by
algorithm MH for the initial case together with the subsets
for the scenarios obtained by applying algorithmMH to this
selection), and from this we find the shadow prices that we
need to compute the reduced cost of a new subset. Let λ,
μs , and π js denote the shadow prices corresponding to the
constraints (1), (2), and (3), respectively. Then, we find that
the reduced cost of subset r for the initial case is equal to

q0
n∑

j=1

u jr −
n∑

j=1

∑

s∈S
u jrπ js − λ

=
n∑

j=1

u jr (q
0 −

∑

s∈S
π js) − λ.

Similarly, we can compute the reduced cost of subset r for a
given scenario s; this is equal to

qs
n∑

j=1

usjr +
n∑

j=1

usjrπ js − μs =
n∑

j=1

usjr (q
s + π js) − μs .

As is well-known from LP-theory, we need to solve the pric-
ing problem, which determines the subset with minimum
reduced cost, for the initial case and for all scenarios. We
only discuss the pricing problem for the initial case; the pric-
ing problems for the scenarios are solved similarly. Since λ

is a constant, we must find a feasible set of binary values u jr

that minimize

n∑

j=1

u jr (q
0 −

∑

s∈S
π js).

Since the subscript r is irrelevant,we drop this, andwe further
define w j = q0 − ∑

s∈S π js , for j = 1, . . . , n. Hence, we
must find a feasible set of binary values u j ( j = 1, . . . , n)

that minimize

n∑

j=1

w j u j .

Since putting u j = 0 implies that job j must be completed at
or before its duedated j ,wefind that the pricingproblemboils
down to the problem of minimizing the weighted number of
tardy jobs on a single machine, which is solvable by the
algorithm of Lawler and Moore (1969) in O(n

∑
p j ) time.

If the outcome value of one or more of the pricing problems
is negative, then we add the corresponding subset to the LP-
relaxation and solve the LP again. When none of the pricing
problems leads to a negative outcome value, we have solved
the LP-relaxation to optimality. If the corresponding solution
is integral, then we have found an optimal solution for the
ILP as well. If there are fractional values, then we apply
branch-and-price: this is a special type of branch-and-bound
in which the lower bound in each node is determined by
solving the LP-relaxation through column generation (see
Barnhart et al. 1998). Just like in the case of the branch-and-
bound of the previous subsection, we branch on the decision
of accepting/rejecting job j ( j = 1, . . . , n) in the initial
case. This branching strategy can easily be combinedwith the
algorithmofLawler andMoore to solve the pricing problems:
if the job is rejected, then we remove it from the instance,
and if it is accepted, then we have the freedom of deciding
to include it in the subset for scenario s (s ∈ S).

6 Computational results

We have performed extensive computational experiments to
find out which algorithm works best and which settings give
the best results. In Sect. 6.1, we describe how we create the
problem instances. We first test the branch-and-bound and
branch-and-price algorithms; see Sect. 6.2. These experi-
ments are performed in two rounds. In the first round, we
test both algorithms on instances with 40 jobs and 2 scenar-
ios to find the best settings. In the second round, we increase
the number of jobs and the number of scenarios to see how
the performances of the best settings are affected. Next, we
test the performance of dynamic programming algorithm; see
Sect. 6.3. The problem and the algorithms are implemented
using C#; we have solved the linear programs using ILOG
CPLEX 12.6.0. All the experiments were run on an Intel core
i7-3610QM 2.30 GHz processor with 8 GB of RAM. In the
remainder, we only report on a part of the computational
experiments; for a full report we refer to Stoef (2015).
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6.1 Generating problem instances

We first generate the data for the initial, undisturbed case
instances for the TPRRNT problem, after which we generate
the data for the scenarios. The processing times are inte-
gers drawn from the uniform distribution U [1, 30]; given
these, we compute P = ∑

p j . We then generate the
due dates according to the scheme used by Potts and van
Wassenhove (1985) for the similar problem of minimiz-
ing the total weighted tardiness on a single machine. They
first choose values for two parameters, R and T , and then
draw the due dates as integers from the uniform distribution
U [P(1−T −R/2), P(1−T +R/2)]. For R and T , we try all
values from {0.2, 0.4, 0.6, 0.8, 1} forwhich 1−T−R/2 > 0;
this leaves us with 14 different combinations.

Next we generate the scenario processing times. We con-
struct four different instance types according to the following
procedures. In all cases, we round the processing times to the
nearest integer, if necessary.

• Random increase and decrease (RID) For each scenario
s ∈ S separately we draw psj using the following strategy:
psj is equal to p j , 0.75p j , or 1.5p j , all with probability
one-third.

• Opposite increase and decrease (OID) This is comparable
to (RID), but for each job J j , we first determine randomly
three subsets of scenarios with equal cardinality (if possi-
ble). Then, we put psj equal to p j , 0.75p j , and 1.5p j for all
scenarios in the first, second, and third subset, respectively.

• Random increase (RI) Here, for each scenario s ∈ S sep-
arately, we draw psj using the following strategy: psj is
equal to p j in one-half of the cases and equal to 1.5p j in
the remaining cases.

• Opposite increase (OI) This is comparable to RI, but the
scenarios are first divided in two random groupswith equal
cardinality, similar to the procedure in OID.

If |S| is not a triple, then for OID we use RID in case of one
remaining scenario, and in case of two remaining scenarios
we let psj decrease in one and increase in the other. If |S| is
odd, then for OI we use the RI strategy.

The probabilities for all scenarios are computed by ran-
domly drawing a number from U [1, 3] after which we scale
the probabilities.

6.2 Comparison of branching strategies

We first performed some initial experiments to find the opti-
mal settings. For our branch-and-bound algorithm, we tested
three types of node selection and five types of branching
heuristics; 15 combinations in total. For node selection we
tested Best First, Depth First, and Breadth First with Depth
First as a clear winner. For our branching heuristic, we tested

Table 1 Results for the different instance types for branch-and-bound

Time (ms) Visited nodes

Instance type Avg. Max Avg. Max Failed

OID 4868 164,469 26, 571 587,364 14

RID 5180 160,177 33,002 914,477 23

OI 1953 170,758 7070 417,751 1

RI 1127 155,711 5346 721,370 0

two selections based on due date (smallest and largest due
date), two selections based on initial processing time (small-
est and largest), and one in which we branch on a job that is
rejected by the recovery algorithm. It turned out that branch-
ing on the largest job performed best with branching on
the rejected job following closely. Therefore, we use in the
remainder Depth First in combination with branching on the
largest initial processing time.

Nowwediscuss the best settings for our implementation of
branch-and-price. In each branch, we solve the LP-relaxation
using column generation.We start the LPwith only including
the variables corresponding to the solution that algorithm
MH finds for the initial case, and for the scenarios while
taking the initial solution into account. In each iteration, we
only add the column that corresponds to the optimal solution
of a pricing problem, if it has negative reduced cost. After
we have solved the LP-relaxation, we start the branching
part, if necessary. We have tested the same settings as for the
branch-and-bound algorithm, except for branching on the
rejected job. The optimal setting is to branch on the longest
job again, but in combination with Best First. We use Best
First and branching on the longest job from now on in our
computational experiments for branch-and-price.

Next we consider the difficulty of the instances. For each
of the instance types (RID, OID, RI, OI), we generate 10
instanceswithn = 40 and s = 2 for each one of the 14 (R, T )

combinations. We allow each instance to run for at most 3
minutes; we report ‘failed’ if it has not been solved by then,
and we do not include these instances in the computation of
the running times and number of nodes visited. The results
are displayed in Tables 1 and 2. The column with header
‘integral’ in Table 2 indicates the number of instances for
which the outcome of the LP-relaxation was integral (and
hence no branching was necessary).
For the branch-and-bound, it is obvious that the instance
types RID and OID are most difficult. For the branch-and-
price RID is most difficult, and then the picture becomes less
clear: OID has fewer integral solutions than OI, but the aver-
age solution time of OI is higher, and 3 OI instances could
not be solved in 3 minutes. Next we look at the influence
of R and T , where we consider all four instance types. The
results are displayed in Tables 3 and 4.
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Table 2 Results for the different instance types for branch-and-price

Time (ms) Visited nodes Added columns Iterations

Instance type Avg. Max Avg. Max Avg. Max Avg. Max Integral Failed

OID 859 18,151 19 326 737 15, 001 200 3915 92 0

RID 3024 46,603 49 936 2066 38, 547 580 9531 82 0

OI 2679 93,818 103 4552 1327 54, 203 488 19,453 119 3

RI 272 17,720 8 591 161 7771 52 3012 131 1

Table 3 Results for the different values of R and T for branch-and-
bound

Time (ms) Visited nodes

R T Avg. Max Avg. Max Failed

0.2 0.2 6224 109,920 23,710 257,742 2

0.4 11,819 160,177 83,191 914,477 7

0.6 9165 170,758 36,439 721,370 10

0.8 6403 164,469 27,932 544,861 1

0.4 0.2 2 50 30 534 0

0.4 6077 106,203 36,319 587,364 3

0.6 1667 22,496 12,947 122,166 7

0.6 0.2 0 0 1 1 0

0.4 2704 85,437 19,687 580,186 1

0.6 1701 49,388 9450 186,943 7

0.8 0.2 0 0 1 1 0

0.4 105 3585 1343 46,217 0

1.0 0.2 0 0 1 1 0

0.4 83 3289 914 35,912 0

For both solution procedures, the problem instances with
R = 0.2 and T = 0.6 are the hardest to solve. To explain

why the RID instances with R = 0.2 and T = 0.6 are most
difficult, we have looked at the cardinality of the set H and
at the difference between the lower bound and the optimal
solution and the difference between the upper bound and the
optimal solution. It is obvious that the larger |H |, the easier
the problem becomes; similarly, the smaller the differences
between the bounds, the easier the problem. Looking at our
instances and the results of our experiments, we can draw the
following conclusions.

• For all our instance types we find that when T increases,
then |H | decreases, and the differences between the opti-
mum value and the lower and upper bound increase for
both branch-and-bound and branch-and-price, with the
exception of R = 0.2 and T = 0.8.

• For all our instance types, we find that when R increases,
then |H | increases; with respect to the differences
between the optimum value and the lower and upper
bound there is no clear picture.

• When comparing the instance types, we see, especially
for the branch-and-bound algorithm, that the differences
between the optimum value and the lower and upper

Table 4 Results for the different
values of R and T for
branch-and-price

Time (ms) Visited nodes Added columns Iterations

R T Avg. Max Avg. Max Avg. Max Avg. Max Integral Failed

0.2 0.2 578 10,706 17 396 200 2719 89 1766 30 0

0.4 2343 34,673 39 476 1595 23,361 443 6365 21 0

0.6 4353 77,951 178 4552 3300 54,203 1041 19,453 15 1

0.8 1129 6464 21 201 1248 6801 325 1677 23 0

0.4 0.2 38 877 1 31 12 201 6 142 39 0

0.4 2889 31,946 62 591 1869 23,671 550 6402 25 1

0.6 4613 46,603 74 726 3148 38,547 840 9531 17 1

0.6 0.2 16 168 1 1 5 7 2 3 40 0

0.4 5058 93,818 191 3866 1966 29,361 828 14,696 32 0

0.6 2491 40,007 33 381 1569 21,785 446 6654 25 1

0.8 0.2 17 276 1 1 5 7 2 3 40 0

0.4 363 12,860 12 456 96 3160 47 1608 37 0

1.0 0.2 12 74 1 1 4 6 2 3 40 0

0.4 22 446 1 1 7 50 2 14 40 0
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bound are much larger for the RID and OID instances
than for the RI and OI instances.

Our next step was to investigate the effect of an increase
in the size of the instances. We generate the instances
as described in Sect. 6.1. To study the effect of increas-
ing the number of jobs, we have generated instances with
n = 20, 40, 60, 80, 100, 120 jobs and 2 scenarios; to study
the effect of increasing the number of scenarios, we have
generated instances with n = 40 jobs and with |S| =
1, 2, 3, 5, 8, 10 scenarios. For each one of the four instance
types, we generate 25 instances with random R and T value
for each combination of n and |S|. We run these instances
for at most 3 minutes; we use the optimal settings derived
earlier.

We first look at the size of the set H . When we vary the
number of jobs, then we observe a linear relation between n
and |H |: approximately half of the jobs belongs to H . When
we vary |S|, then we see that |H | drops sharply when |S|
increases from 1 to 3, after which it more or less remains the
same: on average |H | is approximately equal to 30 (out of
40) for |S| = 1, this average drops to approximately 21 for
|S| = 2, and then remains approximately 17 for |S| ≥ 3.

Next, we investigated the effect of n and |S| on the per-
formance of branch-and-price. An increase of n leads to an
exponential increase in the running time, number of columns,
and number of iterations. The percentage of the instances
for which the solution of the LP-relaxation is integral drops
from almost 100% for n = 20 to almost 50% for n = 120.
The running time, number of columns, and number of itera-
tions all seem to scale linearly with the number of scenarios.
The percentage of instances that are solvable without branch-
ing drops from almost 100% for |S| = 1 to under 40% for
|S| = 10.

For the branch-and-bound algorithm, we see a similar
behavior. The number of fails becomes equal for the larger
instances, but branch-and-price solves more instances of the
smaller problems. On the other hand, branch-and-price either
solves the instances with 120 jobs in the root node, or it
does not solve these at all. We see the same pattern when we
increase the number of instances.

6.3 Dynamic programming

We test the dynamic programming algorithm on the same
type of instances thatwe used to test the branching algorithms
in the previous subsection. Because of the running time of
O(nP |S|+1), we only consider instances with |S| ≤ 3, and
we reduce n when |S| increases. We consider instances with
n = 5, 10, 15, 20, 30, 40 jobs and one scenario, instances
with n = 5, 10, 15, 20 jobs and two scenarios, and instances
with n = 5 jobs and three instances. We again generate 25

instances for each of the four instance types, and for each of
the 14 R and T combinations. The results are not very encour-
aging to say the least: the 40 jobs instances with |S| = 1
require 3.5 s on average,which ismuchmore than the branch-
ing algorithms require on average for n = 40 and |S| = 2
(albeit that for the dynamic program only the size of P mat-
ters and small due dates only make the problem simpler). For
|S| = 2, 10 jobs was the maximum.

7 Conclusion

We have presented the first results in the area of stochas-
tic scheduling with perturbations that result in deviations of
the processing times that do not follow a given probability
distribution function. To handle these disturbances, we were
allowed to reject previously accepted customers as a recov-
ery; therefore, we could apply the concept of recoverable
robustness, which seems to be very well suited for handling
disturbances in practical situations. Sincewe assume to know
the probabilities with which each scenario occurs, we look
at the expected value instead of the worst-case value, which
leads to the combination of recoverable robustness and two-
stage stochastic programming.

We have presented three types of algorithms to solve
the problem: dynamic programming, branch-and-bound, and
branch-and-price. Dynamic programming clearly performed
worst; it is unclear which one of the branching algorithms
is the winner. Since we believe that it is possible to improve
our branch-and-bound through a tailored approach, and since
the success of branch-and-price seems to depend on whether
the problem is solved in the root node, we suggest to use
branch-and-bound (which is also easier to implement).

Our dominance rule first of all seems to be very useful
in reducing the size of the problem, but we can apply it to
handle small changes in the due dates as well, provided that
the EDD order remains the same for the undisturbed case
and for all scenarios. If d j becomes one smaller in the sce-
nario, then we can model this by including two dummy jobs
that are immediately before and after J j . The one before has
processing time zero in the initial case and processing time
one in the scenario, for the other dummy job this is just the
opposite. Because of the small processing times, the dummy
jobs will belong to set H , and hence these will be in the opti-
mal solution, and their inclusion will effectively reduce d j

by one.
There are twoopenquestions left for our research. Thefirst

one is: what is the computational complexity of the problem
with an arbitrary number of scenarios? The second one is
whether we can guarantee that there exists an optimal initial
solution that contains all jobs from H ′ for the special case
with only one scenario in which the order of the jobs is the
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same for the initial case and the scenario when the jobs are
put in SPT order?

There are also several directions for future research. In our
paper weminimize the expected value of a solution; the score
on each scenario counts. An alternative evaluation of a solu-
tion is to use the score on the undisturbed situation together
with theworst score on the scenarios.Much of our results,
like the NP-hardness, will go through unchanged, but we
cannot use the separate recovery decomposition model any-
more. A second research direction is to consider the variant
of our problem in which the due dates may change, such that
the EDD order for the undisturbed case and one or more of
the scenarios becomes different. As algorithm MH strongly
relies on the EDDorder, this seems to bemuchmore difficult.
Finally, it might be worthwhile to look at the two-stage prob-
lem inwhich it is possible to accept costumers initially and to
accept costumers when the scenario is revealed; obviously,
the reward is bigger in the first case.
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