
Combining Visualization and Statistical Analysis to Improve Operator

Confidence and Efficiency for Failure Detection and Localization

Peter Bodı́k‡, Greg Friedman†, Lukas Biewald†, Helen Levine§, George Candea†, Kayur Patel†

Gilman Tolle‡, Jon Hui‡, Armando Fox†, Michael I. Jordan‡, David Patterson‡

‡UC Berkeley, †Stanford University, §Ebates.com

Abstract

Web applications suffer from software and configuration

faults that lower their availability. Recovering from failure

is dominated by the time interval between when these faults

appear and when they are detected by site operators. We in-

troduce a set of tools that augment the ability of operators

to perceive the presence of failure: an automatic anomaly

detector scours HTTP access logs to find changes in user

behavior that are indicative of site failures, and a visualizer

helps operators rapidly detect and diagnose problems. Vi-

sualization addresses a key question of autonomic comput-

ing of how to win operators’ confidence so that new tools

will be embraced. Evaluation performed using HTTP logs

from Ebates.com demonstrates that these tools can enhance

the detection of failure as well as shorten detection time.

Our approach is application-generic and can be applied to

any Web application without the need for instrumentation.

1. Introduction

Web applications are becoming increasingly complex

and hard to manage. In particular, non-failstop application-

level faults that cause user-visible failures are hard to detect

without special case checks, yet they have a first-order im-

pact on the user’s experience that may result in temporary

or permanent site abandonment. As much as 75% of time

spent recovering from these failures is spent just detecting

them [4]. Although a new focus on statistical anomaly de-

tection and pattern recognition [10] promises to reduce the

manual configuration and tuning required by current mon-

itoring tools, statistical techniques invariably suffer from

false positives (and sometimes false negatives), reducing the

operator’s confidence in the monitoring system.

Rather than ignoring this fundamental trust issue and

removing the human from the loop, we believe a more

promising path is an operator-aware division of labor for

detecting such failures. To the computer we assign what the

computer does best: statistical analysis of log data. For the

human operator, we provide a tool to help bring her system

experience and expertise to bear on interpreting and reacting

to the alarms raised by the analysis engines; specifically, we

provide rich visualizations of traffic information that allow

her to quickly spot the sources of potential problems and to

cross-check the reports of the statistical analysis tools. By

taking advantage of the fact that human beings are excel-

lent performers at visual pattern recognition, visualization

helps the operator interpret failure alarms and identify their

possible causes as well as keeping the effective cost of false

alarms low by allowing her to rapidly identify them as such.

In determining what kind of analysis to perform on

site logs, we observe that the site’s end users are excel-

lent “detectors” of site failures, in that their behavior typ-

ically changes when they encounter a malfunction. For ex-

ample, if the link from the /shopping cart page to the

/checkout page is broken, users simply can’t reach the

/checkout page. Similarly, if a particular page does not

load or render properly, users might click “Reload” several

times to try to fix the problem. Since such behaviors are

captured in HTTP logs, we can build statistical models of

normal access patterns and then detect anomalies in user

behavior. Since HTTP logs are application-generic, our ap-

proach can be applied to other Web applications without

additional instrumentation.

Contributions

We present a visualization tool that allows operators to

quickly spot anomalies or possible problems on their site in

real time as well as confirm or investigate problem alarms

reported by automated detection systems. To illustrate the

latter ability, we apply some relatively well-known anomaly

detection techniques to spot non-failstop failures in server

logs from a real mid-sized Internet site Ebates.com; the ba-

sic insight is to look for anomalous patterns in end-users’

behavior as possible indicators of a failure. The information

from these anomaly detectors is fed to the visualization tool,

allowing the operator to visually inspect the anomaly in the

context of previous and current traffic patterns and correlate

the anomaly-score information to the traffic timeline. Un-

like traditional visualization systems whose structure often

reflects the architecture of the system, our tool visualizes

metrics derived from users’ site-visit behavior, which the

site operators can more readily understand. We find that the

use of the combined visualization and analysis tools would

have allowed Ebates operators to detect and localize many

actual site problems hours or days earlier than they actually

did.

We make the following specific contributions:

• We use information-rich visualization to address the

problem of operator trust in statistical learning algo-

rithms. The synergy of visualization and automatic de-

tection allows an operator to use human pattern match-

ing to easily verify the warnings produced by our mon-

itoring system.

• We monitor user behavior and automatically detect

anomalies when the site is available but individ-

ual applications or functionalities are beginning to

fail. This allowed us to quickly detect and help lo-

calize application-level failures from a real system:

Ebates.com.

• Visualization of information was not based on systems

architecture, which is the norm, but on metrics based

on “black-box” user behavior. These user-oriented

metrics offer greater insight into the status of the site

and match our statistical algorithms. This match builds

the trust relationship. Since our approach uses just

HTTP logs to monitor user behavior, it can be used

with any Web application.

Section 2 outlines our approach to combining visualiza-

tion with automatic statistical anomaly detection. Section 3

describes the details of the algorithms themselves, our ex-

perimental setup and methodology, and evaluation metrics.

Section 4 presents the results of applying our tools to real

datasets, concentrating on the relative strengths and weak-

nesses of the different algorithms and the use of visualiza-

tion to allow the operator to rapidly bring her experience

and judgment into play to resolve ambiguities in failure re-

porting across the different algorithms. Section 5 discusses

salient aspects of our results in light of our goal—helping

the operator work more efficiently with automated detection

techniques—and draws some tentative conclusions about

implications for continuing work in this area. We then re-

view some related work, outline possible future directions,

and conclude.

2. Approach: Combining Anomaly Detection

and Visualization

Our anomaly detection approach is relatively simple: we

chose to look for abrupt changes in hit frequencies to the

top 40 pages (which cover about 98% of traffic at Ebates).

Fundamentally, this problem involves learning a baseline of

hit frequencies, detecting deviations (anomalies) from that

baseline, and determining the extent to which a “long lived”

anomaly should influence the baseline (i.e., the sensitivity

with which the baseline itself shifts in response to recent

and/or anomalous data). Furthermore, when an anomalous

frequency shift is detected, we need to localize the problem,

i.e. determine which page(s) are most likely implicated as

causing the anomaly.

To perform this analysis we use two statistical meth-

ods: Naive Bayes classification and the χ2 (Chi-square)

test. (The details of these algorithms are described in sec-

tion 3). Other anomaly detection methods such as Support

Vector Machines may perform better, but they don’t allow

us to easily determine which pages are the most anomalous.

On the other hand, both Naive Bayes and χ2 allow us to

quantify the anomaly for each page.

While these techniques are useful for their ability to

identify patterns in large amounts of data, as Hamming has

said, “The purpose of computation is insight, not numbers.”

We augment the tools with information visualization, “the

use of computer-supported, interactive, visual representa-

tions of abstract nonphysically-based data to amplify cog-

nition”, which has been shown to reduce the mental effort

required to do search, recognition, and inference in connec-

tion with problem solving (see the first chapter of [2] for

numerous examples).

The tool we built provides a compact and information-

rich visual representation of: a) traffic to the 40 most re-

quested pages, and b) transitions from and to these top 40

pages in user sessions. Figure 1 shows a screenshot of the

main visualization interface of the tool. Instead of simply

reporting detected anomaly at 3:25pm, the operator

can immediately see the historic and current traffic patterns

to confirm the anomaly. The tool also provides a simple

interface for manual inspection of traffic patterns.

The emphasis on “live” interaction with the data distin-

guishes visualization from static graphical presentation. In

our case, the operator can drill down on one of the visually-

obvious traffic anomalies in Figure 1 to examine the page-

transition rates during the anomalous interval, as shown in

Figure 2.

The anomaly detection algorithms mentioned previously

also feed information to the visualization tool. As we

will describe, the algorithms report about once a minute

on whether anomalous behavior was detected during that

minute. To avoid bombarding the operator with alarms

Figure 1. An annotated screen shot of the visualization tool. (Note: if possible, figures 1, 2, and 3 should be viewed in color.)

The horizontal axis is time in 5-minute intervals. Each horizontal bar represents the hit count to one of the 40 most-requested pages;

the bottom bar counts hits to all other pages combined. A blue tile means the corresponding page received > 100 hits during that

5-minute interval; green > 10 hits, yellow > 1 hit, white (no tile) zero hits. The graph on the top shows the corresponding anomaly

scores. In this screenshot we clearly see two anomalies from data set 1: A (1:49pm to 1:58pm) and B (7:24pm to 9:05pm).

for anomalies that persist over several minutes, consecu-

tive anomalies after the first are grouped into a single warn-

ing. In addition, for each warning the tool reports the most

anomalous pages, as scored by the anomaly detection algo-

rithms, and the change in transition rates to and from the

most anomalous pages; this information may help the oper-

ator localize the cause of the problem. For example, if the

operator clicks on the “Warnings” tab in Figure 1 after se-

lecting the anomaly marked as B in the figure, the Warning

panel will display the following:

warning #2: detected on Sun Nov 16 19:27:00

start: Sun Nov 16 19:24:00 PST 2003

end: Sun Nov 16 21:05:00 PST 2003

anomaly score = 7.03

Most anomalous pages: anomaly score:

/landing.jsp 19.55

/landing_merchant.jsp 19.50

/mall_ctrl.jsp 3.69

change in transitions FROM /landing.jsp

page: before: after:

/landing_merchant.jsp 37.13% 93.17%

/mall_ctrl.jsp 21.85% 0.83%

Figure 2. Page transitions from /landing -

merchant.jsp page during the anomaly B in data set 1,

in 1-minute intervals. A sudden increase of transitions to

/landing.jsp (the topmost row) at 7:24pm is evident

from the figure. This represents an alternate view of part of

the time period from Figure 1.

3. Test Data and Methodology

In this section we describe the HTTP logs we analyzed,

give details of the analysis algorithms, and describe our

evaluation methodology before proceeding to experimental

results.

3.1. HTTP Access Logs

A typical three-tier Internet application consists of a tier

of Web servers, a tier of application logic servers, and a

tier of persistent storage servers. Popular Web servers in-

clude Apache and Microsoft IIS; application servers may be

framework-based, such as Java 2 Enterprise Edition (J2EE)

servers, or custom-written in-house; persistence may be

provided by a database such as Oracle or MySQL or by a

file server.

Ebates.com provided us with 5 sets of (anonymized) ac-

cess logs recorded by the Web server tier. Each set consisted

of HTTP traffic to 3 Web servers during a contiguous time

period ranging from 7 to 16 days. Each period contains at

least one web application failure as well as significant inter-

vals of “normal” application behavior. The access logs con-

tained the following information about every user request:

Apache server’s time stamp, local URL of page accessed,

URL parameters (parts of the URL passed as parameters to

scripts on active pages), session ID, application server that

served the request, and anonymized user ID.

3.2. Analysis Using χ2test

Intuitively, we might expect that under normal condi-

tions, vectors of page hit counts collected during differ-

ent time intervals should come from the same distribution,

or more generally, a vector of hit counts collected during

the current time interval should come from the same dis-

tribution as the “historical norm.” The χ2-test [12] can

be used to compute the probability that two data vectors

A = (a1, . . . , an) and B = (b1, . . . , bn) come from differ-

ent distributions; it has been used, e.g., to detect anomalies

in network traffic [14].

The test is performed in the following way:

1. Let Sa =
∑n

i=1
ai, Sb =

∑n

i=1
bi, and si = ai + bi.

2. Compute the expected value for each ai and bi: EA
i =

siSa/(Sa + Sb), EB
i = siSb/(Sa + Sb).

3. Compute the total χ2 value of the two vectors: χ2 =∑n

i=1
(ai − EA

i)2/EA
i + (bi − EB

i)2/EB
i .

4. Compute the significance s of the test using the χ2 dis-

tribution with n − 1 degrees of freedom.

5. Finally, an anomaly score is computed as −log(1− s).

From the access logs, we first identify the N most popu-

lar (by hit count) pages of the site (we used N = 40). We

compute the vector C = (c1, . . . , c40) of hit rates to each

of these pages during the current time interval and compare

it to the “historically normal” vector H = (h1, . . . , h40) of

hit rates for the same pages. Since different types of traffic

anomalies may take different amounts of time to become

evident, we consider time intervals varying in length from

1 to 20 minutes. Since by definition the χ2 test is not valid

if each page didn’t receive at least 5 hits, we exclude pages

with fewer than 5 hits. The actual algorithm, run once per

minute, is as follows (let t be the current time):

1. compute the historic traffic pattern H over all previous

data, excluding time intervals marked as anomalous.

(Initially, we assume all intervals are normal.)

2. for every t0 ∈ {1, 2, . . . , 20}:

(a) compute current traffic pattern C from time in-

terval 〈t − t0, t〉

(b) compare C and H using the χ2-test. If the sig-

nificance of the test is higher than 0.99, mark the

interval 〈t − t0, t〉 as anomalous.

When a period is declared anomalous, we assign an

anomaly score to each page based on that page’s contri-

bution to the total χ2 value: ((ci − EC
i)2/EC

i + (hi −
EH

i)2/EH
i).

We also detect significant changes in page transitions

that occurred when the anomaly started. We compare the

traffic before the anomaly (time interval 〈t0−t, t0〉, where t0
is the start of the anomaly) and during the anomaly (〈t0, t1〉,
where t1 is current time). Thus, every minute of an anoma-

lous traffic we compare the transitions to and from the top

40 pages before and during the anomaly using the χ2-test.

3.3. Analysis Using Naive Bayes Classifier

The second type of analysis involves training a Naive

Bayes classifier [6] to detect anomalies. Again, we use the

access logs to compute the hits per unit time to each of the

top N pages on the site, (c1, . . . , cN), during the current

time interval. The ci’s are normalized by dividing by the to-

tal hit count during the interval so that they are in the range

of 0 to 1. We also compute the combined hit frequency to

all remaining pages on the site and the difference in total hit

count between the previous time period and the current one.

By using the Naive Bayes model we make an (incorrect)

simplifying assumption that all the 42 (=N +2) features are

conditionally independent. However, Naive Bayes is very

often successfully used in practice even though this theoret-

ical requirement is rarely satisfied.

We divide time into 10-minute time intervals and use this

classifier to determine whether the current time interval is

normal (S = s+) or anomalous (S = s−). The conditional

probability of each feature fi given S = s+ is modeled by

a Gaussian distribution whose mean µi and variance σ2
i are

estimated for each feature using maximum-likelihood esti-

mation from the previous time intervals.

If we knew a priori which time intervals were anomalous

and which were normal (in the parlance of machine learn-

ing, if we had labeled data), it would be trivial to calculate

the mean and variance of p(fj |S = s+) and p(fj |S = s−)
using maximum likelihood estimation (MLE). However, as

is typical for real systems, our data is unlabeled (i.e. we

don’t know which periods are anomalous) so we have to

do unsupervised learning. In the absence of labeled exam-

ples of s−, we choose to model the conditional probability

p(fj |S = s−) using a uniform distribution over the range of

possible values (i.e., 0 to 1).

The standard approach of using Expectation Maximiza-

tion (EM) to simultaneously learn the value of s and p(f |s)
is too slow for real-time use on high-volume data, so we

approximate it with two separate methods:

• Unweighted learning (Eager NB): We estimate µi and

σ2
i with the assumption that every previous time inter-

val is normal, i.e. we “label” every previous interval

as S = s+. This is a reasonable first-order assump-

tion as long as the majority of states are in fact normal,

in other words, as long as failures are rare. However,

if an anomaly occurs and persists, this technique will

quickly “adjust” to the anomaly by treating it as nor-

mal. We therefore call this an “eager” learner.

• Probabilistically-weighted learning (Careful NB): In

estimating µi and σ2
i , we weight each past time in-

terval by the probability that it is normal. Thus, the

more anomalous a time interval appears, the less it

is incorporated into the model of normal behavior.

This method will continue to detect an anomaly even

when it persists for a long time, but if the long-lived

“anomaly” is in fact a new steady state, it will take

longer for this method to adjust to it. We therefore call

this a “careful” learner.

In our Naive Bayes approach, we don’t learn the prior prob-

abilities of normal and anomalous time intervals. Instead,

we use the priors as a parameter that trades off between a

low false positive rate (for low Prob(anomalous)) and a

high anomaly detection rate (for high Prob(anomalous)).
The classifier reports an anomaly score for each time pe-

riod; this score is calculated as −log(Prob(f |normal))/n,

where n is the number of features used. To local-

ize the most likely features that caused the anomaly,

we assign an anomaly score to each feature fi as

−log(Prob(fi|normal)).
Note that in many cases, the judgment of whether a long-

lived anomaly is in fact a new steady state may require oper-

ator intervention. Therefore, rather than trying to automati-

cally determine this, we allow the operator to visualize both

the raw data and the anomaly scores over time reported by

each algorithm.

3.4. Methodology

The logs we received were collected in the past, and the

failure incidents reflected in them had already been diag-

nosed and dealt with. Our methodology therefore consisted

of the following steps:

1. With little or no knowledge of what events occurred in

a data set, run our detection algorithms. For each data

set, the models were initialized as untrained at the be-

ginning of the data set and learned in an online fashion.

2. For each anomalous period (and some normal regions

as well), examine the traffic patterns during that pe-

riod using our visualization tool in conjunction with

the graphs of anomaly scores reported by our anomaly

detectors.

3. Use the visualizations and graphs to discuss each re-

ported incident with the CTO and operations engineers

at Ebates to reconstruct “what really happened” during

that incident as completely as possible.

4. Based on these discussions, classify each reported

anomaly as either a true positive, a false positive

(clearly attributable to a non-fault event, such as a

failure-free update to the Web site), or a possible false

positive (one we could not attribute to an event, or

more often, that we could attribute but we could not

unambiguously determine whether or not the associ-

ated event was a failure).

5. Based on these discussions, determine how much

sooner a site failure could have been detected or pre-

vented had our tools been in place at the time of the

incident.

3.5. Evaluation Metrics

Traditionally, failure detection is evaluated in terms of

precision and time-to-detection. Precision is defined as true

positives divided by all positives, i.e., TP/(TP + FP),
where true positives are the number of actual failures de-

tected and false positives the number of identified events

that are not failures. However, in dealing with real data

from a complex service, these metrics are problematic.

First, part of the motivation behind our work is precisely

that existing detection techniques do not detect certain kinds

of fail-stop failures. Hence, in cross-checking our results

against the best knowledge available to the operations staff,

we do not have 100% certainty that the list of known failures

is exhaustive. Second, some false positives are attributed

to non-fault events that result in a change in user behavior,

or events that cause bona fide performance anomalies that

are nonfatal under moderate load (for example) but lead to

user-visible failure under heavier load. To be conservative,

we count such incidents as “false positives” in our evalu-

ation. Finally, the notion of “time to detect” presupposes

that there exists an instant in time before which there was

no failure and after which there was unambiguously a fail-

ure. For non-failstop failures, especially those that mani-

fest only under increased load, it is unclear how to choose

this moment. Furthermore, even if we could assume that

the time of fault occurrence was well-defined, we lack the

ground-truth knowledge to establish conclusively what that

time was.

The information we do have includes the time a par-

ticular failure was in fact detected by existing techniques

(whether automatically or manually by Ebates staff) and

the ostensible cause of the failure (localization information)

as determined by Ebates staff. When we measure true and

false positives, then, we assume the best case corresponds to

detecting all failures detected by Ebates staff and misclassi-

fying no other events. We also measure advance warning—

the amount of extra reaction time the staff would have had

because our tool identified a potential failure before the staff

did, and whether this advance warning might have helped

mitigate or avoid a failure. Finally, we ask the question:

had the staff been given the localization information pro-

vided by our algorithms, how useful would it have been in

identifying the cause of the failure? In our measurements

we report the qualitative answer, on a scale of 1 (not useful)

to 10 (vitally useful) given by Ebates staff. (We did not col-

lect localization score data on one of our algorithms, Eager

NB.)

4. Discussion of Results for Each Data Set

In this section we discuss the results of combining

anomaly detection and visualization on each of the datasets

we examined. We then summarize the overall performance

of our techniques, paying particular attention to the differ-

ences in each algorithm’s ability to detect particular fail-

ures, the role of visualization in helping the operator sort

out “what really happened”, and the implication for com-

bining both types of operator information.

4.1. Data Set 1: Account Page

The major problem that occurred during this week was

a site slowdown (and then crash) caused by the account

page. The bad account page had existed for a long time,

but this time period saw a larger-than-ever hit rate to the

page as customers logged in to check their accounts follow-

ing a quarterly mailing of rebate checks to customers. The

problem was first detected by Ebates on Monday (Day 3 of

the data set) at approximately 6:23am, diagnosed by Ebates

at approximately 12 noon, and the offending page removed

at about 12:30pm. The problem reappeared on Day 4 from

5:38am to 7:13am as Ebates staff tried putting the page back

up, but took it down again. On Day 6 starting about 8pm,

there was massive quality assurance of this page against 2

servers on the live site to confirm the fix. The fix was ver-

ified on Day 6 at 11:21pm. Given this chronology recon-

structed from Ebates’ information, we now compare it with

the behavior of our algorithms.

Day 2. We detected a mid-size anomaly (A) on Day 2

at 1:49pm and a significant anomaly (B) on the same day

from 7:24pm until 9:05pm, centered around two pages not

directly related to account activity. The number of hits

to these pages increased from less than 5 every minute to

about 50 hits a minute. Anomaly B can be seen on Fig-

ure 1. After zooming in on this anomaly and switching

to the transitions view (Figure 2), we can see a significant

change in the pattern of pages an HTTP session visits im-

mediately after visiting /landing merchant.jsp. This

can be potentially very important information for the opera-

tor. We later learned that these two anomalies corresponded

to database alarms raised by Ebates’ database monitoring

system as a result of a quarterly batch job that placed a

Figure 3. Visualization of the anomaly followed by a site

crash on Day 3 of data set 1. An (undiagnosed) problem

was first detected by Ebates at 6:23am; Ebates diagnosed

the problem and removed the buggy account pages at about

12:30pm. Our algorithms detected and localized the first

anomaly at 11:07am.

heavy load on the database. Figure 4 shows both our al-

gorithm’s anomaly scores over time, and the occurrence of

three database alarms at Ebates, for a 16-hour period in this

data set. In particular note that we detected an anomaly at

7:24pm (approximately time 700 in the graph), about 100

minutes before the third database alarm was raised. Al-

though the pages reported most anomalous are not directly

related to the account page, Ebates staff said that know-

ing about this anomaly would have put the site operators

on alert for possible problems, and may have led them to

detect the problem earlier than they did.

Day 3. The next anomaly, the largest in the data set,

starts at 11:07am on Day 3. This anomaly is presented in

Figure 3. It can be seen (and it was correctly reported by

the NB algorithm) that two of the most anomalous pages

are the account pages. At this point, Ebates staff was aware

of a performance problem, but they would not discover its

cause until 50 minutes after our anomaly warning, which

reported the two account pages as the most highly anoma-

lous. Ebates indicated that this would have been a strong

diagnostic hint to the operators and would likely have re-

duced diagnosis time.

The last significant anomaly we detected, 7:51pm on

Day 6, was due to an intensive stress-test effort performed

on the live site to validate the fix.

All three algorithms were also affected by significant

night anomalies lasting from approximately midnight to

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

Anomaly Detection vis−a−vis DB alarms

Time (minutes)

A
n

o
m

a
ly

 S
c
o

re

Naive Bayes

Chi Squared

DB alarm #1

DB alarm #2

DB alarm #3

Figure 4. Anomaly scores and database alarms on Day 2

of data set 1. Note that we did not detect the first database

alarm as an anomaly.

2am on most nights. In fact, we saw these night anoma-

lies to varying degrees in all five of our data sets. For ex-

ample, you can notice the increased anomaly score around

this time period on Figure 1. We later learned that these

may have corresponded to a cache warm-up effect resulting

from a nightly cache flush (of which some staff were un-

aware). There are other possible explanations for the night

anomalies, including simply higher variance due to a lower

number of total hits. We intend to further investigate this

phenomenon in the future.

In summary, the anomaly and diagnostic information

available in this case would have been helpful in diagnosing

the cause of a poorly-understood performance problem and

would have called attention to the account page problem an

hour before it was identified.

4.2. Data Set 2: Landing Loop

This data set included a site crash due to a bug whereby

a “landing page” (an entry page to the site) was incorrectly

redirecting users back to the landing page itself, resulting

in an infinite loop that eventually brought down the site.

All 3 algorithms (Careful NB, Eager NB, and χ2) detected

significant anomalies 2 days prior to Ebates’ detection of a

major problem and 2 1

2
days before the crash, corresponding

to the introduction of two new “landing pages” to the site.

(Note that the bug may have been introduced at this time

or at a point in the future.) All 3 algorithms also detected

significant (and increasing) anomalies in the site beginning

several hours before the site crashed. Careful NB and Eager

NB provided localization information that the CTO rated as

an 8, on a scale of 1-10, for the usefulness this would have

had in detecting and diagnosing the problem so as to avoid

7/24 7/25 7/26 7/27 7/28 7/29 7/30 7/31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

A
n
o
m

a
ly

 S
c
o
re

 (
R

e
la

ti
v
e
)

Normal State

Unknown State

Error State

Careful NB

"landing" pages
introduced

"landing looping"
begins

site crashes

site back up,
problem fixed

Figure 5. Anomaly scores over time for Careful NB on

data set 2, “Landing Loop”. The time period from the in-

troduction of the landing pages until Ebates’ detection of

the landing loop problem is marked as an unknown sys-

tem state, since we haven’t been able to determine with

100% certainty whether this time period was problematic

for Ebates or not.

the crash. χ2 had one (possible) false positive: the early

detection 2 1

2
days before the crash. Eager NB and Careful

NB each had two (possible) false positives. According to the

CTO, even if the initial detection 2 1

2
days before the crash

did not represent the onset of the major bug, the warning and

localization information provided at that time would have

been very helpful in diagnosing the problem when the major

failure did start to occur.

Figure 5, which shows the anomaly scores over time for

Careful NB for this data set, illustrates the effect of care-

ful learning. At the introduction of the problematic pages,

Careful NB detects a significant change in the distribution

of the traffic to the site. Because this raises the anomaly

score significantly, Careful NB weights this time period ex-

tremely low in incorporating it into its model of “normal”.

Traffic characteristics to which Careful NB is sensitive re-

main anomalous for the next two days, so Careful NB is

very slow to decide that this is in fact “normal” behavior. In

contrast, as shown in Figure 6 (which represents data set 3),

the “eager learner” Eager NB quickly concludes that a new

and different traffic pattern is no longer anomalous, due its

assumption that the behavior of all previous time periods

should contribute equally to the profile of “normal” behav-

ior. The third algorithm, χ2 (shown in Figure 7 for data set

5), works by detecting changes in traffic patterns over rela-

tively short time periods, and therefore exhibits much more

bimodal behavior than Careful NB.

10/7 10/9 10/11 10/13 10/15 10/17
0

2

4

6

8

10

12

14

16

18
Data Set 3 Anomaly Scores: Eager NB vs. Careful NB

Date

A
n

o
m

a
ly

 S
c
o

re

Careful NB

Eager NB

Problem
begins

Problem
fixed

Figure 6. Whereas “careful learner” Careful NB contin-

ues to detect the broken signup page anomaly (data set 3)

for all 7 days, “eager learner” Eager NB quickly decides

that this new behavior is normal.

4.3. Data Set 3: Broken Signup

This data set does not contain a crash, but rather an in-

complete deployment of a “new user sign up” page which

had gone undetected by Ebates operators. Served to new

users for over a week, this page displayed a blank page with

an error on it instead of the expected site content, rendering

it impossible for new users to come to the site. The problem

did not affect existing users.

Careful NB and χ2 detected the introduction of the prob-

lem 7 days before Ebates’ diagnosis. (Eager NB detected

an anomaly at this time too, but it was close to its noise

threshold, so we do not count this as a detection for Eager

NB.) Careful NB provided localization information at prob-

lem introduction time, and during the entire 7 day anomaly,

that Ebates said would have been extremely helpful in lo-

calizing the problem. Because of the length of the anomaly,

Eager NB and χ2 began to view the anomalous period as

normal, but Careful NB (the “careful learner”) continued

to report an anomaly for the entire 7 days, as seen in Fig-

ure 6. This is another example of a case in which the op-

erator’s understanding of the system would help resolve the

ambiguous result of applying algorithms that are sensitive

to different timescales.

4.4. Data Set 4: Badly Optimized Page Bug

In data set 4, a new page that invoked an inefficient

database query caused a site crash when its hit rate in-

creased as a result of a large email campaign. The resulting

database overload subsequently led to site failure. Careful

NB and Eager NB detected the anomaly 4.5 hours before

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Day

R
e
la

ti
v
e
 A

n
o
m

a
ly

 S
c
o
re

χ
2
 anomaly scores over data set 5

Normal State

Unknown State

Error State

χ
2

Figure 7. Anomaly scores over time for χ
2 on data set

5, “Bad URL and Runaway Query”. The major failures oc-

cured on days 4 and 10.

the crash (3 hours before Ebates staff detected the prob-

lem). The anomaly level was initially low, increasing as the

problem escalated. χ2 detected the problem 3 minutes after

Ebates staff detected the problem. Ebates staff believe they

could have avoided the crash if they had had the anomaly

localization information provided by Careful NB.

4.5. Data Set 5: Bad URL and Runaway Query

Data set 5 contained 2 significant failures. The first fail-

ure due to a configuration error in which the ’shopping url’

for one of Ebates’ merchants was inadvertently mapped to

a popular search engine site. All Ebates users who followed

that link were instead sent back to Ebates where shopping

sessions were generated continuously and in rapid succes-

sion until the site crashed.

χ2 detected this failure 5.5 hours before Ebates could di-

agnose the problem. Both NB algorithms detected the prob-

lem at the same time, but the anomaly scores were within

the noise level, so we don’t count this in our results as a de-

tection for the NB algorithms. However, once again Ebates

staff said the localization information provided by the NB

algorithms would have been a tremendous diagnostic aid.

The second significant failure was a runaway query caus-

ing significant database performance problems. All three

algorithms detected this failure concurrently with Ebates’

detection. Figure 7 illustrates the χ2 algorithm’s behavior

over this data set.

4.6. Summary of Results

Table 1 summarizes the overall results of our analysis.

For five of the six major faults in our log data, at least one

Table 1. Summary of our results over all 5 data sets. For

major faults, χ
2 had a higher detection rate and fewer false

positives than Careful NB or Eager NB, but Careful NB pro-

vided more useful diagnostic information.

Major fault Careful NB Eager NB χ2

Faults Detected 5/6 4/6 6/6

Known FP’s 1 1 1

Possible FP’s 3 3 2

Detection rate 83% 67% 100%

Precision 56-83% 50-80% 67-86%

Local. score 8.6/10 n/a 4/10

Minor faults Careful NB Eager NB χ2

Faults detected 4/7 4/7 4/7

Known FP’s 3 3 0

Possible FP’s 5 4 2

Detection rate 57% 57% 57%

Precision 33-57% 36-57% 67-100%

of the algorithms detected the problem as well as provided

useful localization information prior to Ebates being able to

diagnose the problem; the sixth was detected concurrently

with its occurrence. Our algorithms performed less well on

the seven minor faults (four database alarms, one brief out-

age associated with a code push, one brief re-introduction

of a buggy page, and one massive QA effort on the live site

to verify a fix). Of the three missed faults (false negatives),

two were database alarms that may not have had any dis-

cernible impact on users and the third was a brief introduc-

tion and then removal of a buggy page. The three known

false positives were all failure-free code updates to the ap-

plication. Note that we did not consider the predictable

nightly anomalies as false positives, since they were eas-

ily filtered out by time. We did not perform localization or

advance-warning analysis on the minor faults.

Table 2 summarizes our results broken down by data set.

For each data set we show number of major and minor faults

detected (out of the total number of total major and minor

faults respectively); number of known false positives and

possible false positives; the advance warning time (AWT)

for major faults, i.e. how long from the time our algorithms

detected an anomaly until Ebates’ initial localization of the

related fault; and the localization score, the usefulness of di-

agnostic information as estimated by Ebates staff on a scale

of 1 to 10, lowest to highest, for the major faults. In data

set 2 we are not certain whether if that detection represents

the actual onset of the problem (see section 4.2); if not, the

detection in this data set was approximately concurrent with

Ebates’ detection.

Table 2. Performance by data set, using χ
2 for detection

and Careful NB for localization.

Measure DS1 DS2 DS3 DS4 DS5 Total

Major faults 1/1 1/1 1/1 1/1 2/2 6/6

Minor faults 3/5 0/0 1/1 0/0 0/1 4/7

Known FP’s 0 0 1 0 0 1

Possible FP’s 0 1 1 1 1 4

AWT 1h 50h? 7d 0m 5.5h,0m avg: 37h

Local. score 8 8 9 10 8 avg: 8.6

5. Discussion: Role of the Operator

5.1. Classifying False Positives

In our experience, support from operations staff is essen-

tial for asserting the ground truth of a warning system. In

our case, we needed their help to interpret the failure data

and verify the conclusions of our anomaly detectors; but

in general, dealing with false positives may require opera-

tor intervention, since the operator(s) may be best qualified

to determine whether an anomaly, transient or long-lived,

is a true problem or a false alarm. Figure 8 illustrates the

tradeoff between early detection and false positives: the in-

troduction of a new and bug-free “Father’s Day” page to

the site caused both Careful NB and Eager NB to declare

an anomaly; Careful NB took 9 hours to decide that this

new page was not problematic, while Eager NB reached this

conclusion in only 90 minutes. Similarly, an anomaly we

detected several hours before the anomalous pages caused

a site crash might be dismissed by the operator since at the

time Ebates had just sent emails to all its customers, stimu-

lating increased site activity; but if anomalous behavior per-

sisted, the operator might realize that the localization infor-

mation could help drill down on the problem and determine

if there was really cause for concern.

5.2. Detecting Different Types of Anomalies

Naive Bayes and χ2 respond to different kinds of

changes in traffic patterns and are useful for complemen-

tary tasks. Naive Bayes is sensitive to increases in fre-

quency to infrequent pages. Consider a page that normally

accounts for only 0.1% of hits to the site with variance

0.01%: since Naive Bayes models each page’s hit frequency

as a Gaussian distribution, an increase in that page to, say,

5% of page hits is modeled as extremely improbable. In

our datasets many failures were related to bugs in relatively

infrequently-accessed pages, which made NB an effective

diagnostic tool.

In contrast, the χ2 test is robust to changes in hit counts

to unpopular pages, in part because the validity of the test

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6
False positive behavior: Careful vs. Eager NB

Elapsed Time (Hours)

A
n

o
m

a
ly

 S
c
o

re

Careful NB

Eager NB

Father’s Day
page put up

Eager NB
 "recovers"

Careful NB
"recovers"

Figure 8. Differing behavior of Careful vs. Eager learn-

ing in handling false positives. Careful NB takes 9 hours to

”recover” from the false positive, while Eager NB reocovers

in about 90 minutes.

requires excluding any page not receiving at least five hits

in a given time interval. This results in χ2 being more sen-

sitive to increases and decreases in frequent pages, but less

useful for precise localization: its bias toward frequently-

accessed pages often caused it to report those pages as the

most anomalous, but that is not useful since frequently-

accessed pages are generally going to be affected at some

point by most failures anyway. For this reason, the sum-

mary of per-dataset results reported in Table 2 rely on χ2 for

detection and Naive Bayes with probabilistically-weighted

learning (Careful NB) for localization.

The difference in behavior between the techniques can

be seen in Figure 9, which represents data set 4. NB is able

to detect this anomaly 3 hours before χ2, because it detects

an increase in hits to very infrequent pages. These pages

continue to increase in frequency, and 3 hours later they end

up having a major deleterious effect on the site. This causes

changes in hits to highly frequent pages, which χ2 then de-

tects. Thus, the determination of which algorithm detected

the anomaly tells the operator something about the nature of

the anomaly, and with experience, an operator could learn

to recognize “patterns” such as this one, in which detection

by one algorithm is later followed by detection by another.

Again, our contribution is the pervasive use of visualization

to take advantage of the operator’s experience with and un-

derstanding of the system as well as her ability to rapidly

absorb visually-presented information.

5.3. Reconstructing the Ground Truth

To precisely compute the accuracy, time to detect, and

false positive/false negative rates of our techniques, we need

to know the “ground truth” of exactly what problems oc-

0 200 400 600 800 1000
0%

10%

20%

30%

40%

50%

NB vs. χ
2
 Detection Sensitivity

Time (Minutes)

%
 o

f
T

o
ta

l
H

it
s

Frequent Page A (χ
2
 #1 most anomalous page)

Frequent Page B (χ
2
 #2 most anomalous page)

Infrequent Page B (NB #2 most anomalous page)

Infrequent Page A (NB #1 most anomalous page)

NB detection

χ
2
 detection

Figure 9. Illustration of differences in detection sensi-

tivity of NB PWL and χ
2. NB PWL is more sensitive to

increases in hits to infrequent pages, which makes it able to

detect changes earlier and seems to make it a better local-

izer. χ
2 is more sensitive to changes to hits to more frequent

pages, making it less prone to false positives.

curred, when they were introduced, and when they were de-

tected. Reconstructing this information required the cooper-

ation of the operations staff, who even after going through

system monitor logs, email archives, and chat logs could

only partially reconstruct some of the incidents. We still

don’t know the precise time some failures were introduced

(only when they were detected by Ebates staff), and we still

cannot determine whether three of the anomalies we de-

tected really corresponded to a transient (but undetected)

site problem or were false positives. This in turn can make

it difficult to determine whether an anomaly detected prior

to an actual failure was an early warning signal or an unre-

lated false alarm. We believe that this is an inherent prob-

lem of working with real-world failure data. Thus, instead

of reporting “time to detect” and “false positive rate”, we

present alternative evaluation metrics based on the amount

of advance warning provided by our tools relative to exist-

ing detection techniques used at Ebates.

5.4. Generalizing our Approach

In this work we detect problems with Web applications

by detecting anomalies in the HTTP traffic to the site. These

anomalies can be caused by users when accessing a failing

service or by the service itself when requests from users are

forwarded incorrectly. We obtained the results described in

Section 4.6 by analyzing all HTTP traffic data from 3 web

servers in Ebates.

In order to build models of normal behavior and detect

deviations from that model, one needs a representative sam-

ple of the HTTP traffic to a site. Additionally, there needs

to be enough such traffic so that statistical techniques can

be effectively applied. To investigate the behavior of our

algorithms with smaller sample sizes, we performed exper-

iments where we randomly subsampled the HTTP log and

analyzed the first three days of data set 1 (containing three

anomalies as described on page 6). By using just 5% of all

available data (approximately 12 thousand requests a day),

we still obtained the same results as when using all traffic

from the 3 web servers.

In our Ebates experiments, we model the frequencies of

the 40 most frequently accessed pages on the web site. Even

though the Ebates users hit several thousand distinct pages

each week, hits to just the top 40 pages covered about 98%
of all traffic. We decided to model just these 40 pages under

the assumption that any significant problem would affect

these pages relatively quickly. For web sites with a broader

distribution of hits, there should be no difficultly in model-

ing more pages as necessary.

In summary, we make very few assumptions about the

behavior of users and believe that this approach can be ap-

plied to an arbitrary Web application.

6. Related Work

Web Usage Mining (as described in [13], for example) is

a large and active field. These techniques have been applied

to a variety of areas, but we believe we are the first to ex-

plore their use in application failure detection and diagnosis.

Kallepalli and Tian [9] employ a form of hidden Markov

Models to learn user behavior from web logs, but their fo-

cus is on building an effective test suite rather than real-time

problem detection and localization. Commercial products

for monitoring applications and their software and hardware

platforms, such as IBM Tivoli [8], HP OpenView [7], and

Altaworks Panorama [1], focus on system and internal ap-

plication metrics rather than changes in user behavior to dis-

cover failures.

Pinpoint [3, 11] employs anomaly detection methods for

problem detection and root-cause analysis in distributed ap-

plications. While their approach involves instrumenting the

application and/or middleware to discover patterns in ap-

plication component dependencies, our approach uses only

generic HTTP logs and treats the structure of the application

as a black box.

Cohen et al. [5] have applied an augmented type of

Bayesian network to the problem of metric attribution: de-

termining which low-level system properties (CPU load,

swap activity, etc.) are most correlated with high-level be-

haviors such as performance problems. Like us, they se-

lected a Bayesian network because its property of inter-

pretability allows the network to be used for localization.

7. Future Work

Ebates has expressed interest in deploying our visualiza-

tion tools on live data and in working with us to develop a

better “ground truth” for evaluation. However, our experi-

ence suggests that a 100% accurate ground truth might be

unrealistic, so we are in the process of obtaining similar data

sets from two other companies to repeat our experiments.

We want to incorporate real-time feedback from the op-

erator into our models and produce more informed warn-

ings. For example, if the current long-term anomaly rep-

resents a normal behavior, the operator should be able to

specify that this is actually the new normal behavior. On

the other hand, if the recent anomaly represented a normal

behavior (e.g., page update), we shouldn’t report a warn-

ing the next time a similar anomaly appears. Also, we are

currently extending our models of web traffic to capture the

correlations between the frequencies of pages.

8. Conclusion

Notwithstanding the promise of statistical analysis tech-

niques for detecting and localizing Internet service fail-

ures, the judgment of experienced operators can help dis-

ambiguate conflicting warnings, resolve apparently spuri-

ous warnings, and interpret problems flagged by such al-

gorithms. We showed that visualization combined with

anomaly detection and localization can help human opera-

tors bring their expertise and experience more efficiently to

bear on such problems, reducing detection time, diagnostic

effort, and the cost of classifying false positives.

In particular we detected anomalies in user traffic to a

real mid-sized Internet site using Naive Bayes and the χ2-

test. Our techniques detected four out of six failures more

quickly than the site’s staff, and the visualization helped to

understand the types and sources of anomalies reported by

the algorithms.

There is a critical synergy between visualization and au-

tomatic detection from the perspective of the autonomic

computing. Many traditional visualization tools are based

on the organization of the system. In contrast, our tools

present information in a format that is useful to operators,

helping them monitor their system and allowing them to

rapidly decide whether the visualization tool works and is

helpful. From that foundation of trust, we then automati-

cally point to behaviors at certain times that we think are

suspicious using that same visualization format. The opera-

tors can then quickly decide whether or not these warnings

are useful.

Without a visualization tool, we believe it would have

taken scores of warnings for each operator to decide

whether or not he or she trusted the tool. Since the detector

and visualizer use the same metric, it makes it much easier

and faster for the operator to decide whether the warning is

a false positive. False positives thus become much cheaper;

they are either significant behavior changes that operators

may want to know about anyway, or they can be easily fil-

tered out manually and visually. Since visual checking is

quick, we may be able to afford a higher false positive rate

in practice.

Acknowledgments

We would like to thank Mike Chen, Mark Verber, and

Emre Kıcıman for their valuable insights and help with this

paper. We also thank Alessandro Isolani, CEO of Ebates,

for allowing us to use sanitized web log data.

References

[1] Altaworks, Altaworks Panorama. http://www.altaworks.-

com/solutionsPanorama.htm.
[2] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings

in Information Visualization: Using Vision To Think. Mor-

gan Kaumann, San Francisco, CA, 1999.
[3] M. Chen, E. Kıcıman, E. Fratkin, A. Fox, and E. Brewer.

Pinpoint: Problem determination in large, dynamic internet

services. DSN 2002.
[4] M. Y. Chen, A. Accardi, E. Kıcıman, D. Patterson, A. Fox,

and E. A. Brewer. Path-based failure and evolution manage-

ment. In NSDI, pages 309–322, 2004.
[5] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and

J. Symons. Correlating instrumentation data to system

states: A building block for automated diagnosis and con-

trol. In 6th USENIX Symposium on Operating Systems De-

sign and Implementation, San Francisco, CA, Dec 2004.
[6] E. Eskin. Anomaly detection over noisy data using learned

probability distributions. In Proceedings of the International

Conference on Machine Learning, pages 255–262, 2000.
[7] Hewlett Packard Corporation, HP OpenView Software.

http://www.openview.hp.com.
[8] IBM Corporation, IBM Tivoli Software. http://www.ibm.-

com/software/tivoli.
[9] C. Kallepalli and J. Tian. Measuring and modeling usage

and reliability for statistical web testing. IEEE Transactions

on Software Engineering, 27:1023–1036, 2001.
[10] J. O. Kephart and D. M. Chess. The vision of autonomic

computing. IEEE Computer, 36(1):41–50, 2003.
[11] E. Kıcıman and A. Fox. Detecting application-level fail-

ures in component-based internet services. Technical report,

Stanford, 2004.
[12] G. W. Snedecor and W. G. Cochran. Statistical methods.

Eighth Edition, Iowa State University Press, 1989.
[13] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web

usage mining: Discovery and applications of usage patterns

from web data. SIGKDD Explorations, 1:12–23, 2000.
[14] N. Ye, Q. Chen, S. M. Emran, and K. Noh. Chi-square sta-

tistical profiling for anomaly detection. In IEEE Systems,

Man, and Cybernetics Information Assurance and Security

Workshop June 6-7, 2000 at West Point, New York, pages

187–193, June 2000.

