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ABSTRACT

New results on the dynamics of annular combustors during ignition and
combustion instabilities will be reviewed. Ignition dynamics is consid-
ered first by examining experiments carried out in a system comprising
a plenum feeding premixed gaseous reactants through multiple swir-
ling injectors and an annular combustor formed by two concentric
transparent quartz walls allowing full optical access to the flame. The
analysis focuses on the “light-round” process during which the flame
spreads from one injector to the next eventually leading to established
flames on each injector. The transparent lateral walls allow a full view of
the flame propagation from a spark igniter located in the neighborhood
of one injector. High speed imaging is used to examine flame displace-
ment and deduce the ignition delay yielding a full light around of the
annular combustor. Changes associated to operation with spray flames
are then discussed. The second part of this article is concerned with
combustion instabilities of annular systems coupled by azimuthal
modes. This type of oscillation has received considerable attention in
recent years because the underlying coupling is often observed in the
advanced premixed combustion architectures used in modern gas tur-
bines. Recent studies have allowed a detailed examination of the
dynamics of annular devices comprising multiple swirling injectors.
Experiments on annular systems and single sector configurations pro-
vide new insight on the coupling process between acoustics and
unsteady combustion. Results for self-sustained combustion oscillations
coupled by azimuthal modes are presented for operation with gaseous
premixed reactants and with spray flames.

Introduction

A considerable amount of research in combustion deals with dynamical issues. These

investigations were initially motivated by problems encountered during early develop-

ments of high performance devices and in particular those of liquid rocket and jet engines

and more recently by difficulties in operating gas turbines featuring low NOx premixed

combustor architectures. Pioneering work in the field of combustion instability was

initiated in the early fifties by various groups and in particular by Luigi Crocco,

a professor at Princeton, and his students and colleagues with among others William

Sirignano, the central figure of the present colloquium that honors his sixty years of

contributions to the advancement of science.

Much of the early work of this period emphasized the existence of time lags in combustion

processes associated for example with the vaporization of propellant droplets and the
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sensitivity of the corresponding delays to state variables (Crocco 1951, 1952; Crocco and

Cheng 1953, 1956; Marble and Cox 1953; Tsien 1952). Many investigations were also con-

cerned with the effect of the nozzle and the associated boundary condition (Crocco and

Sirignano 1966; Zinn and Crocco 1968). Research by the Princeton group underlined the

nonlinear features associated with the large amplitude perturbations arising under combus-

tion instability, see for exampleMitchell, Crocco, and Sirignano (1969); Sirignano and Crocco

(1964). The effort on liquid rocket engine combustion instability was synthesized in a report

(NASA SP194) edited by Harrje and Reardon (1972).

Investigation of liquid rocket instabilities has been continued by Sirignano and cow-

orkers over the years, see for example Popov and Sirignano (2016); Popov, Sirignano, and

Sideris (2015); Sirignano and Krieg (2016); Sirignano and Popov (2013), and a review of

his early and more recent contributions dealing with this topic may be found in Sirignano

(2015). With respect to these classical and modern studies recent investigations have

emphasized detailed experimentations exploiting digital imaging, optical diagnostics and

digital data processing in combination with numerical simulations. The processes involved

in the combustion of cryogenic propellants have been investigated using single injector

configurations operating at high pressure above the critical pressure of oxygen, see Juniper

et al. (2000) and Candel et al. (2006) for a review. Experiments on the interaction between

transverse acoustic modes in a system compring multiple injectors have provided insights

on the flame dynamics under very high amplitude modulation, see for example Mery et al.

(2013); Richecoeur et al. (2006). On the theoretical/numerical side much progress has

been accomplished by making use of nonlinear tools to describe the flame dynamics or by

exploring the possibilities of high performance computing and large eddy simulation, see

for example Hakim et al. (2015a, 2015b); Schmitt et al. (2011). Large eddy simulations

have also been used to explore liquid rocket instabilities in a realistic configuration

comprising a large number of coaxial injectors by Urbano et al. (2016, 2017).

The current effort in the field of combustion instability is motivated by issues raised by gas

turbine combustors (Poinsot 2017). Table 1 summarizes characteristics of high performance

devices that influence their combustion dynamics. While rocket thrust chambers are cylind-

rical and terminated by a choked nozzle, combustors are annular in modern aero-engine and

in most stationary gas turbine. The downstream boundary condition is formed by the turbine

distributor. In most cases these devices feature an annular geometry and the combustion

dynamics of such systems raises fundamental issues and in particular those associated with the

coupling by azimuthal chamber modes. Operation under lean conditions and the relatively

high energy density associated with the compact flame region promotes the development of

such oscillations. The absence of perforated liners in partially premixed systems also reduces

damping characteristics. In the annular geometry, one finds in addition to longitudinal

instabilities, oscillations coupled by tangential modes that are less well damped. The problem

is compounded by the fact that flames are likely to respond over a wide frequency range, and

the modal density in the annular geometry can be quite high. If a resonant mode disappears

because the combustion regime has been modified, or because the thermal or impedance

conditions are changed, another acoustic mode may be initiated.

Many of these issues are considered in a book edited by Lieuwen and Yang (2005) while

Huang and Yang (2009) provide an extensive review of multidimensional simulation

efforts and low order dynamical modeling. In general predictions are based on measure-

ments of the flame transfer function (FTF) which are combined with acoustic network



representations of the system. This linear analysis gives access to stability maps, resonant

frequencies and growth rates (Dowling and Stow 2003; Durox et al. 2013; Sattelmayer and

Polifke 2003; Schuller, Durox, Candel 2003). This approach has become reasonably

mature that it can be successfully applied to industrial configurations, even at elevated

pressure as indicated for example by Schuermans et al. (2010). The linear approach can be

extended to deal with nonlinear features by making use of the describing function,

a concept used for example by Dowling (1997) to represent the dynamics of a ducted

flame. The flame describing function (FDF) representing the flame response in combina-

tion with an acoustic network or in combination with a Helmholtz solver yields growth

rates and frequencies depending on the amplitude of oscillation. As shown by Noiray et al.

(2008) and Boudy et al. (2011) this framework gives access to nonlinear phenomena like

frequency shifting, mode switching triggering and hysteresis. The FDF has been applied

more recently to instabilities of systems equipped with a swirling injector (Palies et al.

2011; Silva et al. 2013; Cosic, Moeck, and Paschereit 2014) and to annular systems

(Ghirardo, Juniper, Moeck 2016; Laera et al. 2017; Yang, Laera, Morgans 2019). Large

eddy simulations have been used to predict the dynamical processes in gas turbine

combustors, either as input to low order models based on the FTF and FDF frameworks,

or for direct simulation of unstable combustion systems. These subjects are reviewed by

Gicquel, Staffelbach, and Poinsot (2012) and Poinsot (2017).

In most gas turbine combustors flames are stabilized by swirling injectors. This has led

to detailed examination of the dynamics of swirling flames. In these systems the flame is

anchored by imparting an azimuthal component to the flow usually by passing the air

stream through a swirler or through a set of swirlers. The rotation induced by these

devices generates a central recirculation zone (CRZ) and in many cases an outer recircula-

tion zone (ORZ) which are filled with hot combustion products which continuously ignite

the fresh reactants injected in the combustor.

The dynamics of swirling flames thus constitutes a basic topic that has received

considerable attention in recent years (see Candel et al. (2014) for a recent review).

Swirling flames were found to be subject to a variety of direct and indirect excitation

mechanisms. Under the effect of acoustic forcing, the annular jet formed in the swirling

flow fluctuates, and the vortex breakdown bubble is dynamically displaced. This results in

deformations of the flame front and oscillations of the flame anchor point (Borghesi,

Biagioli, Schuermans 2009; Gatti et al. 2019; Thumuluru and Lieuwen 2009). If the fuel is

injected close to or inside the swirler, a situation which is typically found in practical

systems, acoustic perturbations at the injector generate fluctuations in the mixture ratio.

These are convected to the flame and cause heat release rate fluctuations by modifying the

burning velocity (Lieuwen et al. 2001). Another indirect effect is related to the interaction

of incident acoustic waves with the swirler. This process generates fluctuations in the

azimuthal velocity that perturb the flame after a convective delay (Huang and Yang 2009;

Komarek and Polifke 2010; Palies et al. 2010). The interference between perturbations

propagating at acoustic and convective velocities leads to a specific frequency dependence

of the flame response. Swirl flames are also receptive to transverse acoustic forcing and

this may be relevant to azimuthal instabilities observed in annular combustors. Generally,

the swirling flame response to transverse acoustic forcing depends on the orientation of

the acoustic field (O’Connor, Acharya, Lieuwen 2015). If a pressure antinode is located at

the flame, axial acoustics will be excited and these axial fluctuations dominate the flame



response. For the case of a transverse velocity antinode, it is found that non-axisymmetric

shear layer modes are excited which interact with the flame.

In practical cases the swirling flow is confined by lateral walls in a geometry which

features in many cases an annular cross section and by transverse flows originating from

lateral orifices. The presence of these side walls, transverse jets and neighboring injectors

has a significant impact on the flow structure complicating the analysis (Fanaca et al. 2010;

Han and Morgans 2018; Worth and Dawson 2019). Studies of a single injector placed in

a sector or in an axisymmetric configuration provides useful information but only

approximately represent the practical situation. This clearly underlines the necessity to

work on fully annular configurations allowing azimuthal mode coupling.

A substantial amount of literature exists in the field of combustion instabilities but the

majority of experimental investigations consider oscillations coupled by longitudinal

modes in single injector configurations, see review articles Candel (2002); Culick (2001);

Huang and Yang (2009); Poinsot (2017); Putnam (1971). The problem of azimuthal mode

coupling in combustion instabilities is considered in recent theoretical investigations

(Bauerheim et al., 2014a, 2014b; Evesque, Polifke, Pankiewitz 2003; Ghirardo and

Juniper 2013; Ghirardo, Juniper, Moeck 2016; Noiray, Bothien, Schuermans 2011;

Noiray and Schuermans 2013; Pankiewitz and Sattelmayer 2003; Schuermans, Bellucci,

Paschereit 2003; Stow and Dowling 2001). A central issue is to account for the collective

processes where neighboring flames interact and feed energy in the azimuthal modes.

Experimental investigations on well instrumented annular chambers are not common.

Kopitz et al. (2005) used a network model to analyze the stability of an experimental

annular combustor exhibiting two different instabilities depending on the operating

conditions, a longitudinal mode and a first-order azimuthal mode. The flame response

measured at stable conditions was extrapolated in flow rate and equivalence ratio to the

unstable regime. Both modes could be identified in the model but only the instability of

Table 1. General characteristics of high performance devices of importance for their combustion
dynamics analysis.

System Liquid rocket Engines Aero-engines Gas turbines

Power density Very high High High,
’ 50 GW m�3 ’ 1 GW m�3 ’ 1 GW m�3

Chamber pressure Very high, High High
’ 10 MPa 3 to 5 MPa 1:7 to 3.5 MPa

Combustion mode Non premixed Partially premixed Essentially premixed

Chamber geometry Cylindrical Annular Often annular

Upstream Propellant High pressure High pressure
boundary domes Compressor Compressor

Dowstream Choked nozzle Turbine Turbine
boundary distributor distributor

Injection Shear coaxial Swirling injectors, Swirling injectors
low swirl Hollow cone or

multipoint atomizers

State of fuel and Liquid-liquid Liquid fuel and air Gaseous fuel and air,
oxidizer or liquid-gas Nitrogen Nitrogen

No diluent diluent diluent
in air stream in air stream



coupled by a longitudinal mode was accurately captured. Moeck, Paul, and Paschereit

(2010) explored azimuthal instabilities of an annular chamber equipped with 12 channels

comprising electrically heated Rijke tubes. Also, the Rijke tubes sucked air from the

surrounding atmosphere and there was no plenum or upstream manifold. Depending

on the electrical power injected, two azimuthal modes were observed in the form of

a standing wave or a slowly spinning oscillation. Staging in the heating tubes was tested to

see if this could help stabilize the system. It was found that some modes could be

attenuated, while others were strengthened. An acoustic model was used to predict the

dynamical behavior of the annular chamber and test the influence of staging. Krebs et al.

(2002) were the first authors reporting detailed experimental data for the acoustic pressure

distribution in an instrumented industrial gas turbine featuring self-sustained combustion

oscillations coupled to one of the azimuthal modes of the combustion chamber. Their

analysis places particular emphasis on the role of the acoustic boundary conditions and

flame response in the development of spinning and standing modes.

In this general context it appears logical to consider the dynamics of annular config-

urations comprising multiple injectors. This review is based on experimental data gathered

in two model scale annular combustor facilities developed in recent years. They both

feature a transparent combustion chamber to see the flames over all the injectors regularly

distributed along the azimuthal direction. In both cases the objective was to gather

knowledge on ignition and azimuthal instabilities in annular configurations. The first

described by Worth & Dawson (2013b) was initially designed in Cambridge. Interesting

aspects of the dynamics of this annular system are explored in a series of articles (Dawson

and Worth 2014, 2015; Worth & Dawson, 2013a; Worth et al. 2017). Ignition dynamics is

also investigated in the Cambridge annular combustor by (Machover and Mastorakos

2016, 2017).

This experimental device, shown in Figure 1, has a relatively small chamber diameter of

17 cm. The number of injectors connecting the plenum to the chamber backplane can be

changed. Experiments were carried out with 12, 15 or 18 units allowing a change in the

spacing to diameter ratio. Injectors are swirled but the swirl number is moderate and there

is a central bluff-body which occupies 50% of the injector exhaust section. The fresh gases

are then exhausted through a thin annular slit. Azimuthal instabilities are obtained by

operating with a mixture of ethylene and air, and by making use of an interior chamber

wall shorter than the outer wall (13 cm and 17 cm respectively). For an equivalence ratio

above 0.85, a strong azimuthal instability is observed taking the form of a spinning or

standing wave depending on the spacing between injectors. The instability is enhanced

when the flames are close giving rise to strong interactions between adjacent reactive

layers. For pressure oscillations with an amplitude of 200 Pa in the chamber, the fluctua-

tion in heat release rate quoted in Worth & Dawson (2013a) is around 10%.

Another experimental setup MICCA developed independently in our laboratory

(Bourgouin et al. 2013a, 2013b) provides additional information on instabilities coupled

by azimuthal modes. The geometry has some features in common with that of Worth and

Dawson (2013a) but there are differences. The MICCA test facility was designed to

identify the physical mechanisms driving instabilities of annular combustors and provide

experimental data for model validation. Dimensions of MICCA differ from those used in

Worth and Dawson (2013a), a choice guided by considerations of flame receptivity to flow

perturbations. By selecting a large diameter, resonant frequencies corresponding to



azimuthal modes are reduced and can be brought inside the range where the flame

transfer function has a finite gain. In particular, the mean diameter of the MICCA

combustor of 35 cm is close to that of a helicopter gas turbine and is twice that of the

Cambridge experiment. The annular chamber is equipped with 16 swirl injectors. The

swirl number is sufficiently high to allow flame anchoring without requiring a central

bluff-body. The flame dynamics is then closer to that found in practical devices where

combustion is stabilized aerodynamically by swirl in the absence of a central obstacle. The

chamber operates at atmospheric pressure and it is fully transparent to allow observations

with a high speed camera. Waveguide microphones are used to record pressure signals at

the combustor injection plane and inside the annular plenum. Depending on operating

modes, the system exhibits longitudinal or azimuthal instabilities (Bourgouin et al. 2013a).

TheMICCA facility has evolved into a number of different versions as illustrated in Figure 2.

The initial configuration was equipped with injectors fed by premixed reactants featuring

a cylindrical exhaust section (Bourgouin et al. 2013b). These injectors were later fitted with

a conical cup and the corresponding configuration was designated as MICCA2 (Durox et al.

2016). Swirling units were then replaced bymatrix injectors comprising a periodic arrangement

of small channels producing a multiplicity of small laminar flames. This version (MICCA3) has

allowed investigations of combustion instabilities coupled by azimuthal modes in the absence of

complexities associated with turbulence and swirling flows (Bourgouin et al., 2015a, 2015b;

Prieur et al., 2017a). It was modified more recently to allow liquid fuel injection in the form of

a spray using hollow cone atomizers. This configuration designated as MICCA-Spray is used to

test a variety of swirling injection units and in particular to document effects of swirl number

and injector head loss (Prieur et al., 2017b; Prieur et al. 2018, 2019).

The present review essentially deals with fundamental items pertaining to ignition

dynamics and combustion instabilities of annular systems. There is no intention to provide

an exhaustive review but merely to give a synthesis of research carried out in relation with the

MICCA annular combustor facility. The first item designated as the “light-round” essentially

Figure 1. Left: view of the system under operation. The mean diameter of the ring is 170 mm. Injectors
comprise a central bluff body. Right: Schematic diagram of the setup. Reproduced from Worth and
Dawson (2013b).



concerns the circumferential propagation of the flame from an initial kernel formed by

a spark plug to the final stabilization of combustion in the system (Section 2). The second

item is specifically concerned with oscillations coupled by modes that span the circumference

of the annulus. An experimental methodology is first introduced that combines single sector

investigations targeted at injector characterization and selection with testing in the annular

configuration (Section 3). Instabilities of annular systems are then discussed (Section 4). The

premixed case is considered first because much of the recent work on swirling flames has

been carried out in relation with the design of advanced premixed combustion technologies

with the objective of reducing NOx emissions from gas turbines. These systems have

achieved low pollutant levels but their operation has been hindered by dynamical phenom-

ena. This is so because premixed flames are more compact and more sensitive to external

perturbations. Also damping in lean premixed systems is reduced because the perforated

liners found in more standard designs are for the most part eliminated in modern premixed

combustors. It is next interesting to examine situations where the fuel is injected as a liquid

spray of droplets as in aero-jet gas turbine engines (Section 5). This will be accomplished by

making use of the MICCA-Spray configuration fed by swirl spray atomizers.

Ignition dynamics in annular configurations

Ignition issues are extensively studied in the literature. Research has concerned a variety of

topics such as conditions at the spark gap like minimum spark energy (Ballal and Lefebvre

1974; Lewis and Elbe 1987) gas velocity, equivalence ratio, gas stream heterogeneity

(Ahmed and Mastorakos 2006; Ballal and Lefebvre 1977, 1978; Lefebvre 1983), conditions

of formation of a spherical flame kernel leading to a successful ignition (Champion,

Deshaies, Joulin 1988; Champion et al. 1986; Deshaies and Joulin 1984), ignition prob-

ability in turbulent flows (Ahmed and Mastorakos 2006; Cordier et al. 2013; Neophytou,

Figure 2. Injector geometry and induced flame shape in the annular setup. Left: MICCA, the injectors
feature a swirler and a cylindrical exhaust channel. This configuration is used in the light-round
investigation. Center: MICCA2, the injectors feature a swirler and a conical cup. This geometry is
used in the thermo-acoustics instability investigations. Right: MICCA3 with matrix injectors used to
examine thermo-acoustics instabilities in an environment which features low levels of random
perturbations.



Richardson, Mastorakos 2012), or effects of fuel spray characteristics (Ballal and Lefebvre

1981; Neophytou, Richardson, Mastorakos 2012). A recent review of forced ignition of

spray flames is provided by Mastorakos (2017). Many experiments are available on the

ignition of a single injector under a variety of conditions. Simulations have also been used

to reproduce ignition processes, mainly again for a single sector. There is however one

large scale simulation by Boileau et al. (2008) of the ignition sequence in an annular

combustor comprising eighteen injectors but with no experimental validation. While

many ignition correlations have been established from experiments on complete combus-

tors, see for example Lefebvre (1983) or Naegli and Dodge (1991), there is a lack of

detailed experimental data on the ignition and flame spreading in annular devices. The

circular ignition of annular configurations is clearly less well documented than single

injector configurations.

Ignition dynamics under premixed conditions

Data have become available from our recent work (Bourgouin et al., 2013b). Investigation

of the light round mechanism has also been carried out in Cambridge (Bach et al. 2013;

Machover and Mastorakos 2016, 2017). More recently another annular combustion facility

has been developed with a design close to that of MICCA in China, see for example Xia

et al. (2019).

The light round process taking place at the start of an annular system equipped with

multiple swirling injectors is investigated inMICCA with the arrangement shown in Figure 3.

The system comprises an upstream plenum closed at the top by a plate comprising sixteen

swirling injectors and a combustion chamber made of two cylindrical concentric quartz tubes

mounted on the annular plate which serves as a chamber backplane. The diameters of the

inner and outer quartz tubes are 30 cm and 40 cm respectively. The length of the inner and

outer tubes can be varied. It is set at 40 cm in the ignition experiments.

Air and propane are delivered to a premixing unit. The mixture is then conveyed to an

annular plenum through eight channels which are plugged on the internal sides of this

cavity. Gases in the plenum are injected into the combustion chamber through sixteen

swirling injectors mounted on the flange which separates the plenum from the chamber

Q
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Camera

Figure 3. Left: view of the annular combustion chamber. The mean diameter of the ring is 350 mm.
Two spark plugs are placed in diametrically opposite positions. Right: direct true color photograph of
the swirling flames in the annular chamber equipped with the 200 mm quartz tubes under steady
operation at a bulk velocity v0 ¼ 19:6 m:s�1 and an equivalence ratio ϕ = 0.76 in each injection tube.
The two diametrically opposed igniters can be seen in yellow/red due to their thermal radiation.
Adapted from Bourgouin et al. (2013b). Originally published by ASME.



and constitutes the chamber backplane. Each injector is made of a cylindrical tube D ¼
10 mm in diameter at the bottom of which is placed a swirler equipped with nine blades to

set the flow in rotation. The outlet section of the injector is flush mounted to the

backplane of the combustion chamber which is cooled by an internal circulation of

water. When viewed from above each swirling flow rotates in the clockwise direction.

The chamber walls are made of quartz allowing optical access to the flames and transmitting

its radiation in the near ultraviolet and visible ranges. This provides a full access to the

combustion region (Figure 3). Some reflections appear on the quartz tubes which form the

combustor side walls. Figure 4 shows flame images recorded by the intensified CMOS camera

during the propagation of the flame from the ignition kernel to the steady state operation. To

improve the visualization, these images are plotted on a scale of colors where yellow corresponds

to the highest intensity value while dark red represents the lowest value in flame emission. The

igniter is placed in front of the camera on the opposite sector of the annular chamber. During

the ignition process, the igniter generates a spark at a repetition rate of 100 Hz. The strong

radiation of the spark plasma saturates some pixels of the camera sensor and it is not easy to

distinguish the initial hot gas kernel, complicating the determination of the ignition instant. The

initial pocket is convected by the flow and distorted by the local turbulent eddies. The delay

associated with these various processes is around τ0 ’ 10 ms.When the pocket meets favorable

conditions, it expands and propagation becomes nearly isotropic and initially spherical. This

defines the initial instant t ¼ 0 in the following figures and it corresponds to a predefined

Figure 4. Images of light intensity emitted by the flame during an ignition of the annular chamber at
ϕ = 0.76. Left: v0 ¼ 12:2 m:s�1. Right: v0 ¼ 24:5 m:s�1. False colors are used to improve the visualiza-
tion. Yellow and dark red respectively correspond to the highest and lowest values of light intensity.
Adapted from Bourgouin et al. (2013b).



threshold intensity level. The flame then takes the shape of a symmetric arch at instant

t ¼ 20 ms. From t ¼ 40 ms to t ¼ 70 ms the two flame fronts are nearly vertical and the

injectors are sequentially ignited by the propagating combustion front. The flame spreads more

rapidly in the vicinity of the injectors and the two fronts begin tomerge at time t ¼ 80 ms and at

a point that is not quite opposite to the igniter. The left side is in advance due to the swirl

direction of rotation that induces a global gyration in the chamber. After merging of the left and

right moving flame branches, the front is convected upwards by hot gases originating from the

burners and the steady state is reached.

It is convenient to transform the images recorded by the camera to eliminate perspective

effects by unwraping the cylindrical geometry of the system. This is accomplished in Figure 5.

These images allow direct comparisons with simulations based on a level set description of

flame propagation relying on turbulent velocity estimates (Bourgouin et al., 2013b).

It is also instructive to examine the global emission signal detected by the camera. This

signal is representative of the heat release rate in the system. Figure 6 represents on the left the

integrated light intensity for a bulk velocity v0 ¼ 24:5 m:s�1 and equivalence ratio ϕ ¼ 0:76.
As explained previously a critical size cs of the hot gas kernel is defined by an intensity

threshold. This defines the instant t ¼ 0 already used in Figure 4 to examine flame propaga-

tion. One can also define the delay τm from the time origin when the kernel size has reached cs
to the time where the left and right flame fronts merge. A final delay τp corresponds to the

time duration betweenmerging and steady state operation. The total propagation delay is then

given by τt ¼ τm þ τp. For a fixed value of the equivalence ratio, the steady state level is

essentially proportional to the injection velocity v0. This is coherent with the assumption that

the camera signal can be qualitatively interpreted as proportional to the heat release rate. The

recorded light intensity signals have a similar shape for all injection velocities explored. The

frames where the fronts are merging can be manually selected and merging times τm can be

deduced in this way as shown on the right in Figure 6.

Light round simulation and comparison with experiments

The MICCA experiments constitute an interesting case for testing the ability of large eddy

simulation to retrieve data gathered during light round experiments. It is possible to compare

time resolved flame visualizations with LES results obtained for the same multiple-injector

annular combustor geometry and operating conditions. It is probably the first time that such

Figure 5. Numerically transformed images of light intensity emitted by the flame during an ignition of
the annular chamber at ϕ = 0.76. False colors are used to improve the visualization. Yellow and dark
red respectively correspond to the highest and lowest values of light intensity. Left ten images:

v0 ¼ 12:2 m:s�1. Right ten images: v0 ¼ 24:5 m:s�1. Adapted from Bourgouin et al. (2013b).



a direct comparison was carried out for the light-round process (Figure 7). The comparison is

illustrated by experimental data and calculations corresponding to an equivalence ratio

ϕ ¼ 0:76 and a bulk velocity Ub ¼ 24 m.s�1. The experimental data is recorded with a high-

speed intensified imaging CMOS camera at a frame rate of 6000 Hz and an exposition of 166

μs. This suitably resolves the flame during the light-round process which takes of the order of

50 ms. Calculations are carried-out with the AVBP flow solver, a code jointly developed by

Cerfacs and IFP Energies Nouvelles together with the TACLES model derived in our laboratory

to represent the chemical conversion in the LES framework. The computational domain

comprises the upstream air and fuel manifolds, plenum, injectors and the annular chamber

formed by the combustor backplane and quartz walls. The ambient atmosphere is represented

by a large volume added at the exit of the combustor. The mesh comprises 310 million

tetrahedra. The process is initiated by depositing a small sphere of burnt gases at the adiabatic

flame temperature that is located at the position of the experimental spark ignitor. Further

details and analysis may be found in Philip et al. (2014, 2015).

Figure 7 shows experimental data in the form of light emission images while numerical

results are plotted as an isosurface of temperature colored by values of axial velocity. The

structure of the flame brush at the largest scales is close to that observed experimentally,

the instantaneous geometries of the flame front resemble those recorded by the high speed

camera while the transit times from one injector to the next are quite similar, indicating

that the LES with the selected sub-models suitably retrieves essential features of the light

round process.

It is also interesting to examine the flame merging delays that are measured and simulated.

Figure 8 shows data sets obtained under cold wall conditions and under preheated conditions.

One notices that the thermal conditions at the walls have a notable influence on the propagation

of the flame during the light round and on the value of the merging delay. The merging delay is

longer when the chamber walls are initially cold. Preheated conditions are closest to the

adiabatic wall boundary conditions used in the simulations. There is a good agreement between

experimental data and the two calculated values of the merging delay.

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25
0

20

40

60

80

100

120

τ
m

τ
p

Initial
reactive
kernel
formed

Fronts
merging

Steady state

Time(s)

In
te

g
ra

te
d
 l
ig

h
t 
in

te
n
s
it
y

0 5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
e

rg
in

g
 t

im
e

 (
s
)

Bulk velocity (m/s)

τ
m

=0.2v
0

−0.38
τ

m
=0.2 v

0

−0.38

Ign. E

Ign. C

Ign. I

Figure 6. Left: Integrated light intensity recorded by the camera during ignition for a bulk velocity

v0 ¼ 24:5 m:s�1. The square symbols indicate the moment where the two flame fronts merge. Right:
Propagation time τm for six flow rates and three igniter positions. Adapted from Bourgouin et al.
(2013b).



Ignition dynamics under liquid spray injection

It is finally interesting to examine the characteristics of light round when the injection takes

place in liquid form. This is accomplished by making use of a modified version of the annular

combustor designated as MICCA-Spray. The liquid fuel heptane or dodecane is injected as

a spray formed by hollow cone atomizers. Prieur et al. (2017a) compared the impact of the type

Figure 7. Light round ignition of the MICCA combustor. Experiment and simulation. Ub ¼ 24 m s�1,
ϕ = 0.76. These calculation are carried out in the configuration explored by Philip et al. (2015) but
correspond to a higher value of the injection velocity Ub.

Figure 8. Flame merging delay plotted as a function of the bulk injection velocities. The red circles,
blue diamonds and green triangles are obtained from experiments in which the chamber walls are
preheated. The blue squares correspond to experiments under cold wall conditions. The calculated
merging delays are shown as magenta star symbols. Adapted from Philip et al. (2015). Originally
published by ASME.



of combustion, premixed or spray, and the influence of fuel volatility. The process was

extensively characterized with high-speed measurements with an intensified camera, photo-

multipliers and microphone arrays placed in the plenum and in the chamber of the annular

combustor. A large set of data is acquired and compared when the bulk velocity, the equivalence

ratio or the power are varied. An example is given in Figure 9.

It is found that spray combustion does not affect the basicmechanisms of the light-round. The

major effect of the fuel type is to modify the delay time τm that is found to decrease when the

volatility of the fuel is augmented and that is further decreased when fuel and oxidizer are

premixed. A close-up view on the behavior of the flame propagation in an arch-like pattern is

shown in Figure 9. Detailed imaging of the passing flame front gives indications on the flame

wrinkling. By recording theMie scattering of the n-heptane droplets illuminated by a laser sheet,

it is possible using particle image velocimetry (PIV) to observe the influence of the traveling

flame front on the droplet distribution in the chamber. It is found that the propagating flame

displaces the droplet spray well before the flame reaches the injector (Prieur et al. 2019). Using

a similar technique, the traveling velocity of the flame front can be estimated. Large eddy

simulations of the light round under liquid spray injection has also been explored (Lancien

et al. 2018, 2019).

Further experiments have been concerned with the processes of injector initiation during the

light round. Once ignited, each injector features a transient flame shape. The injector responds

to the rapid change in heat release rate as it is initiated (Prieur et al. 2019). This produces

a sudden drop in the air flow rate followed by a series of oscillations that correspond to a ringing

of the injection unit when it is impulsively submitted to a sudden pressure increase in the

chamber. Figure 10 illustrates on a single injector experiment how the flame evolves in time as

a result of this initial drop in flow velocity and then under the influence of the dynamics of

recirculation regions formed by the injection unit and corresponding changes in thermal

conditions in the recirculation regions that are formed near the backplane. After a relatively

long delay of the order of 30 ms the flame finds its final position above the injector.

Figure 9. Light emission during the light round ignition sequence of propane (top), n-heptane (middle
row) and dodecane (bottom row) fuels. Yellow corresponds to high light intensity while dark red
represents low light emission. Injection conditions: Ub = 31.5 m s�1, ϕ = 0.90 and P= 80 kW. Adapted
from Prieur et al. (2017a).



The injector dynamics can be represented by a differential model equation describing the

response of this device and its recovery. The flame return to steady state is best retrieved by

detailed large eddy simulations that suitably represent the thermal time scales that control the

process which finally leads to an established flame (Töpperwien et al. 2019).

Experimental methodology for combustion instability analysis

Experiments on annular configurations are possible but both for the atmospheric rigs

MICCA at EM2C and the Cambridge combustor of Dawson and Worth, a major challenge

was to design injectors and confinement geometries giving rise to combustion instabilities

coupled by azimuthal modes. It was quickly found that some guiding ideas were needed

about injector geometry selection. This guidance may be obtained from simulations or

perhaps from single sector experiments providing information on the flame response

through measurements of the flame describing function. The objective was to determine

the gain and phase that could be used with a theoretical model to predict instability. The

combination of single sector and multiple injector annular combustor testing is repre-

sented in Figure 11.

Results of single sector experiments are illustrated in Figure 12. In this case the injector

is fitted with a conical “cup”. Experiments carried out for different cup angles indicate that

the flame geometry notably changes as the cup angle is augmented. This is also reflected in

the flame describing functions with some notable modifications of the gain and phase of

these functions. This information could then be used in combination with a simplified

theoretical framework to define the geometry giving access to instabilities in the annular

chamber. The single sector experiments can thus be used to tailor the injector response in

an iterative process. From an industrial point of view, the aim is of course just the opposite

as one wishes to avoid naturally excited instabilities. The idea is then to work on the single

sector configuration and, with the help of the theoretical framework, try to design an

injector that will be less receptive to oscillations when arranged in an annular combustor

system.

Combustion instabilities of premixed annular systems

Before reviewing experimental data concerning instabilities it is first useful to examine the

acoustic modes of annular devices. This will be done in the next subsection by considering

an idealized geometry. We will then successively review work on annular systems

Figure 10. True-color ignition sequences in SICCA-spray.: Ub = 31 m s�1, ϕ = 0.89 and P= 80 kW.
Adapted from Prieur et al. (2019). Originally published by ASME.



equipped with swirling injectors featuring an outlet cup and an annular configuration

comprising multiple matrix injection units.

Modal structures in annular chambers

The following discussion is concerned with the three configurations shown in Figure 13.

The first of these geometries (Figure 13a) is formed by a cylindrical chamber with lateral

walls of equal length l. The annular spacing and mean annular radius are d and R

respectively. To be consistent with the conditions of the MICCA setup one may assume

Figure 11. Experimental methodology combining single sector measurements in the SICCA setup and
annular combustor testing on MICCA.

Figure 12. (a) Schematic of the burner to determine the flame response. (b) Injector configurations.
Case A: No cup is installed. Case B: a 70� cup is installed. Case C: a 90� cup is installed. Case D: a 105�

cup is installed. G stands for gas and L for liquid. (c) Flame shapes with different injector configurations.
Case A: injector without cup generates an M flame. Case B: injector with 70� cup generates an amphora
flame. Case C: injector with 90� cup generates a V flame. Case D: injector with 105� cup generates
a corner flame.



that the bottom plane and side walls are rigid while the exhaust section is open to the

atmosphere and corresponds to a pressure node. In fact the node is not exactly in the open

section but at a distance from the outlet. One may assume for simplicity that this

additional distance can be neglected. In practice this end correction is easily determined

experimentally and can be added to the combustor length to improve the resonance

frequencies estimations. To obtain simple analytical expressions it is also assumed that

the sound velocity c is constant inside the system. It is also convenient to consider that the

annular distance between the side walls is small compared to the mean diameter

(d< <D ¼ 2R). One may then assume that the pressure waves in this configuration do

not depend on the radial coordinate. Harmonic waves then satisfy a simplified Helmholtz

equation:

1

R2

@2p

@θ2
þ
@2p

@z2
þ
ω
2

c2
p ¼ 0 (1)

This equation features purely azimuthal modes:

ψnðθÞ ¼ an expðinθÞ þ bn expð�inθÞ (2)

where an; bn are constant amplitudes and the corresponding angular frequencies are ωn ¼
nc=R where n is an integer. The eigenfrequencies are then given by fn ¼ nc=P where P ¼

2πR is the mean perimeter of this annular configuration and the pressures waves take the

form:

pnðθ; tÞ ¼ an expðinθ� iωntÞ þ bn expð�inθ� iωntÞ (3)

The pressure appears as a combination of a wave propagating in the positive azimuthal

direction and a wave propagating in the negative azimuthal direction. These two waves

respectively travel counter-clockwise and clockwise. There are also purely axial modes

which for the rigid bottom plane – open outlet take the form:

ψmðzÞ ¼ am cosðkmzÞ (4)

Figure 13. Annular geometries. (a) Annular chamber with a rigid backplane, equal length side walls and
an open boundary, (b) Annular chamber with a rigid backplane and a rigid wall boundary condition at
the outlet, (c) Annular chamber with unequal side walls.



where km ¼ ðm� 1=2Þπ=l where m is an integer. The angular frequencies are then of the

form ωm ¼ ðm� 1=2Þπðc=lÞ and the corresponding eigenfrequencies ar such that

fm ¼ ð2m� 1Þðc=4lÞ. The annular geometry with a rigid backplane and an open outlet

only sustains mixed modes which satisfy all boundary conditions. The corresponding

eigenfunctions are a combination of those given previously:

ψmn ¼ an expðinθÞ þ bn expð�inθÞ½ � cosðkmzÞ (5)

and the corresponding eigenfrequencies are:

fmn ¼ ð2m� 1Þ2
c

4l

� �2

þ n2
c

P

� �2
" #1=2

(6)

The lowest eigenfrequency corresponds to m ¼ 1 and n ¼ 0: f10 ¼ c=ð4lÞ. This eigenfre-
quency is that of the first (quarter wave) axial mode (1L). The next eigenfrequency

pertains to the first azimuthal -first axial mode 1A1L: f11 ¼ ½ðc=4lÞ2 þ ðc=PÞ2�1=2. When

the length l is large, the first term in this expression becomes small and this eigenfre-

quency tends to c=P which characterizes the first azimuthal mode. In the experiments

carried out in MICCA2, i.e. premixed conditions with swirling injectors fitted with a cup

as shown in Figure 2-center and in MICCA-Spray, combustion oscillations are essentially

coupled by the 1L and by the 1A1L modes of the chamber. The 1A1L mode features the

1A azimuthal structure that is of central interest. In experiments carried out with

MICCA3 in premixed conditions with matrix injectors as shown in Figure 2-right, the

coupling involves the plenum through a 1A1L mode and the corresponding eigenfre-

quency takes a lower value because the sound velocity in the plenum is also lower than in

the chamber.

It was noted by a reviewer that the open end used in experimental facilities like MICCA

does not quite represent the situation encountered in practical combustors where the

chamber exhaust is formed by the turbine distributor which is generally choked. This

imposes a choked nozzle boundary condition which may be approximated by an acous-

tically rigid wall condition sketched in Figure 13b. In this situation the system features

purely azimuthal modes (1A, 2A …) with eigenfrequencies fn ¼ nc=P. This is less easy to

reproduce in the laboratory because it requires operation under pressurized conditions.

However, it is possible to approach this situation by augmenting the length of the

combustor to reduce the axial contribution to the resonant frequency of the mixed

mode. For example the frequency of the 1A1L mode is only 11% greater than the

frequency of the 1A mode if the perimeter to length ratio is equal to 2. This explains

why in many experiments carried out in MICCA the combustor has at least 0.5 m in

length.

In the third configuration shown in Figure 13c the sidewalls have unequal heights. This

was used by (Worth and Dawson 2013a, 2013b) to obtain unstable regimes of operation as

their experiments using walls with equal heights did not give rise to unstable oscillations.

Similarly many experiments at EM2C were carried out with unequal wall heights. The

question about the effect of this arrangement and its influence on stability is not yet fully

settled but it is considered that this allows some mixing between the cool central stream of



air and the burnt products which tends to reduce the speed of sound in the upper part of

the annulus. This is subsequently translated into a reduction in the eigenfrequencies

corresponding to the acoustic modes in the system. This may then shift the resonant

frequency in the range where the flame is sensitive to incoming perturbations. The

corresponding augmentation in the flame response gain may be sufficient to move the

operating conditions into an unstable region.

Experiments with premixed swirl injection

The annular system is now employed to investigate instability issues and specifically those

involving azimuthal chamber modes. The inner and outer tubes lengths are 200 and

400 mm respectively. The swirling injectors are equipped with 90� cups that are flush

mounted in the chamber backplane. This system features a strong longitudinal combus-

tion instability for v0 ¼ 20 m:s�1 and ϕ ¼ 0:79. This is characterized by an intense

emission of sound. Figure 14a shows that the five microphones exhibit a strong sinusoidal

signal at a frequency f ¼ 252 Hz and an amplitude pl ¼ 330 Pa. A harmonic is present at

a frequency f ¼ 504 Hz but with a significantly lower level (−25 dB). The pressure

amplitude of the instability slowly varies in time in most cases between 280 Pa and

380 Pa. To extract the heat release rate oscillation pattern from the high-speed images,

a dynamic mode decomposition (DMD) is used. This method introduced by Schmid

(2010) relies on a large number of instantaneous images to extract a meaningful repre-

sentation of the unsteady flow dynamics. It differs from the well-known proper orthogonal

decomposition in that it is frequency selective. The camera records 12500 images

per second corresponding to 49 images during one period of the instability. By processing

300 images at this sampling rate, one only has access to 6 periods. A value of about

20 periods would yield a better signal-to-noise ratio. This condition can be fulfilled by

using only one image out of three in the calculation of the DMD modes. By processing 300

images, 18 periods are then considered with around 16 images per period. The DMD

yields a frequency f ¼ 252 Hz which is close to that detected by the microphones. The

DMD modes are presented in Figure 14c,e,g,i which respectively pertain to the phases

ψ ¼ 0, ψ ¼ π=2, ψ ¼ π, and ψ ¼ 3π=2. The phase ψ ¼ 0 corresponds to the instant in the

cycle where the maximum of heat release rate is reached. The flames are globally moving

in phase and their motion is essentially that of a bulk oscillation. Some flames are

desynchronized and two of them are even pulsating in phase opposition. The swirlers

have been checked and no differences in the geometry have been observed. However, the

flow dynamics downstream the swirlers is sensitive to the swirler geometries and even

small differences in geometries can cause significant differences (Bourgouin et al., 2013c).

Hydrodynamic instabilities in the plenum could also break the symmetry of the flow

injection but their identification is not easy to perform. This dynamic mode decomposi-

tion also indicates that even if some flames are desynchronized, strong thermoacoustic

instabilities can still occur in the chamber. The detuning imposed by these flames is not

sufficiently effective to suppress the instability.

The study of azimuthal modes is more complicated because these modes are degenerate.

An azimuthal mode can be interpreted as a superposition of clockwise and counterclockwise

rotating components as indicated in Section 4.1. In the present study, the pressure amplitudes



recorded by themicrophones are not constant in time in Figure 14b and themodal structure is

also varying. The clockwise and counterclockwise wave components are varying in time as

well, a feature that is also found by Worth and Dawson (2013a).

Figure 14. Pressure signals recorded by microphones (a, longitudinal oscillation) and (b, azimuthal
spinning oscillation). In (b) the continuous lines correspond to the reconstructed signals. (c), (e), (g), (i):
Dynamic mode decomposition (DMD) of 300 images recorded by the ICMOS camera for different
phases for the longitudinal mode coupling at 252 Hz. (d),(f), (h), (j): Dynamic mode decomposition
(DMD) of 300 images recorded by the ICMOS camera for different phases for an azimuthal mode
coupling at 792 Hz. The mode is essentially rotating (0:6< s< 1:0, see Eq. 8). The black curves indicate
regions where the heat release rate is maximum. Adapted from Bourgouin et al. (2013b). Originally
published by ASME.



The clockwise and counterclockwise amplitudes may be deduced from the microphone

signals. This is briefly explained in what follows. Near the backplane of the combustion

chamber the acoustic pressure distribution only depends on the azimuthal angle θ and

may be written as the sum of two waves:

pðθ; tÞ ¼ a expðiθ� iωtÞ þ b expð�iθ� iωtÞ (7)

Here a and b are respectively the complex amplitudes of the counterclockwise and clock-

wise rotating waves. When b ¼ 0 the mode is counterclockwise, when a ¼ 0, the mode is

clockwise. When jaj ¼ jbj the mode is standing. Otherwise, the mode is neither purely

rotating nor standing. The nature of the mode may be characterized in terms of a spin

ratio:

s ¼
jaj � jbj

jaj þ jbj
(8)

The spin ratio s is such that s ¼ �1, s ¼ 0 and s ¼ 1 respectively correspond to clockwise

rotating, standing and counterclockwise rotating modes.

The pressure amplitudes of the five microphones are similar and there is a phase shift

of about π=8 between each microphone in Figure 14b. The signals recorded by the

microphones suggest that the mode is rotating clockwise. This is confirmed by the

determination of the spin ratio which varies between � 1< s< � 0:6 with a mean spin

ratio �s ¼ �0:8. As a result, the mode is essentially rotating in the clockwise direction. The

DMD represented in Figure 14d,f,h,j also indicates a clockwise rotating motion which is

consistent with the microphones signals. It is interesting to note that the DMD applied to

a relatively short sequence reliably reconstructs standing and rotating modes. The azi-

muthal coupling described previously takes place at a relatively high frequency of 792 Hz

corresponding to the 1A1 L mode of the chamber. One may then ask whether the swirling

flames established in the system are sufficiently receptive to perturbations in this fre-

quency range. Swirling flames are generally sensitive to low frequency perturbations.

However the frequency extent of this range scales like the exhaust velocity and like the

inverse of a typical flame dimension. The gain of the FDF may still take large values at

Strouhal numbers of the order of one. For an exhaust velocity of 40 m/s and a typical

flame size of about 4 cm, the sensitive range of frequencies will reach 1 kHz and which

includes the resonance frequency of the 1A1 L mode. This is confirmed by measurements

of the FDF in the single sector set up which indicate that the gain takes sizable values in

a range extending to 850 Hz. In addition to this, the occurence of instability will also

require conditions on the phase of heat release with respect to the pressure perturbation.

The analysis of the modes identified in these experiments is carried out in further detail in

Bourgouin et al. (2013b, 2015b).

The data gathered by Worth and Dawson (2013b) using the set up shown in Figure 1 also

features some interesting rotating mode patterns. These are obtained by high speed imaging

with a miror set at 45� from the combustor axis allowing a direct view of the annular flame

arrangement. The camera operates at 14400 fps and detects OH* emission from the flames

allowing a suitable sampling of oscillations taking place at a frequency f ’ 1700 Hz which

corresponds to a 1A1L mode. The resonant coupling takes place at a frequency that is about



double that found inMICCA because the diameter of the system is about half that of MICCA.

The circumferential spinning mode displayed in Figure 15 rotates in the counter-clockwise

direction.

Studies carried out in various configurations as well as theoretical investigations

indicate that azimuthal coupling modes in turbulent annular systems vary with time,

leading to intermittent switching between predominantly spinning or standing states with

changes in orientation of the modes Ghirardo and Juniper (2013); Noiray, Bothien, and

Schuermans (2011); Worth and Dawson (2013b). Using loudspeakers, it was shown by

Worth et al. (2017) and by Nygard et al. (2019) that the modes could be controlled easing

the analysis of the combustion dynamics during clock wise spinning (CW, s ¼ �1), anti-

clockwise (ACW, s ¼ 1) or standing azimuthal modes (s ¼ 0). These studies were used to

infer the importance of local swirl direction and the role of the separation distance

between the injectors on the local flame structure and its response to the flow perturba-

tions when coupled to azimuthal modes. Figure 16 reproduced from Nygard et al. (2019)

is an example where CW, ACW and standing modes could be triggered for the same

operating conditions by forcing the system at f0 ¼ 1690 Hz.

Premixed matrix injectors

The swirling injectors induce a complex flow pattern in the annular combustor. It is then

natural to try to reduce the complexity of the flow and for that replace the swirling units by

matrix injectors establishing multiple conical flames and operating in a laminar regime. This

configuration (Figure 17) allows investigations of azimuthal coupling in the absence of swirl

and turbulent fluctuations. In this new configuration it has been possible to examine stable

limit cycles corresponding to a standing mode or to a rotating mode. It was also found that in

a certain region of the domain of operation, designated as the “dual mode” region, the two

types of modes could occur for the same operating conditions (Prieur et al. (2017b)).

Figure 15. Circumferential mode spinning in the counter-clockwise direction. OH* emission is detected
by a camera operating at 14,400 fps. The fluctuating light intensisty reflecting the heat release rate
fluctutations is phase averaged. The patterns correspond to nine phases in a cycle. The system is fed
with a mixture of air and ethylene at an equivalence ratio ϕ ¼ 0:85. Spacing between successive
injectors S=D ¼ 1:56. Reproduced from Worth and Dawson (2013b).



In that special region the nature of the oscillation depends on the path taken to reach

the operating point (Ub, ϕ). If the equivalence ratio ϕ is increased, with the same air mass

flow rate, from lean conditions to the target value, a rotating mode is obtained. If ϕ is

decreased from rich conditions, a standing mode is manifested at the target conditions.

Figure 16. Joint PDF of the azimuthal wave amplitudes Aþ and A respectively corresponding to a and b

in.Eq. (7) for three different cases, all using a forcing frequency f0 ¼ 1690 Hz. Dashed lines indicate
s ¼ �1=3 and the solid line corresponds to s ¼ 0. Case 1: s ¼ 0:9. Case 2: s ¼ 0:0. Case 3: s ¼ �0:6.
Reproduced from Nygard et al. (2019).

Figure 17. (a) Photograph of the MICCA3 chamber equipped with matrix injectors. The injectors
comprise 89 holes of 2 mm diameter spaced by 3 mm. The thickness of the injector plate is fixed to
6 mm. The chamber formed by two cylindrical quartz tubes provides optical access to the flame region.
(b) Lateral view of MICCA3. The length of the inner and outer quartz tubes are equal to l = 0.2 m,
dq ¼ 0:05 m is the gap between the two quartz tubes and dm ¼ 0:35 m is the mean chamber

diameter.



The rotating and standing modes do not switch from one to the other but instead when

a mode arises, it is locked on. This experiment indicates that the nature of the mode

(standing or spinning) is not only defined by the geometry or by some characteristics of

the unstable regime but is also influenced by the history or more precisely by the path

taken to reach the nominal operating point.

Combustion instabilities of annular systems equipped with swirl spray

injectors

Liquid fuel injection adds further complexity to experimentation and modeling but is

nevertheless interesting because it comes closer to practical situations like those found in

aeroengines where kerosene is introduced in the combustor as a spray of droplets. The

annular combustor was fitted with a set of swirl spray injectors shown in Figure 18 in

a configuration designated as MICCA-Spray. This has allowed an examination of combus-

tion instabilities coupled by azimuthal modes. The system is sufficiently flexible to allow

investigations under fully premixed gaseous, liquid heptane and liquid dodecane injection.

The single sector test bed (SICCA) was also modified to accommodate liquid injection.

Systematic investigations have been carried out with a series of swirlers designed to have

the same swirl number but different head loss levels (Vignat et al. 2019). It was found that

changes in the head loss had a notable influence on the unstable oscillations.

Among the many experiments carried out in MICCA-Spray, those yielding very large

combustion instability levels coupled to the 1A1 L mode of the annular cavity have some

unusual consequences. In many cases the oscillations take the form of long bursts with

a repetition rate of approximately a few hertz. During these bursts, the acoustic pressure

fluctuation can reach up to 6% of the ambient pressure in the chamber corresponding to

a peak level of approximately 6000 Pa. The type of instability, that arises under these

circumstances is investigated in detail in Prieur et al. (2018) and more recently in Vignat

Figure 18. From left to right. From left to right: (1) Photograph of the MICCA-Spray test rig. (2)
Schematic view of the chamber backplane showing the locations of the camera, thermocouple,
chamber microphones MCx, plenum microphones MPx, photomultipliers PMx and of spark plug SP1.
Dashed lines show the field of view of the photomultipliers. (3) Exploded view of the injector and its
components. In purple, the main body, in orange the liquid fuel atomizer, in translucide teal the
tangential air swirler and in gold the injector outlet, which is flush with the chamber backplane. (4)
Schematic view of the swirler seen from above indicating the main dimensions of this component.
From Vignat et al. (2020). Originally published by ASME.



et al. (2020). By determining the spin ratio one observes that this process occurs pre-

dominantly when the acoustic coupling mode is of the standing type.

Specific attention is given to the flame behavior at the nodal positions during the

standing mode. Flames located in the neighborhood of this line are submitted to an

intense transverse motion. When the pressure oscillation takes large values, the transverse

velocity reaches a critical value which displaces the flow and disrupts the recirculation

regions that stabilize the flame (Prieur et al., 2017a). The resulting flame dynamics is

illustrated in Figures 19 and 20. Using a higher order reconstruction method for the

pressure field it is possible to calculate the pressure distribution and determine the

acoustic velocity field just before blow-off occurs Vignat et al. 2020. It is found that the

pressure field is modified as the amplitude of the oscillation increases, leading to

a distortion of the pressure distribution in the system that must be accounted for pressure

Figure 19. True-color photographs of the annular chamber when six flames are blown-off for about
20 ms. ϕ = 0.85, W¼111 kW. From Prieur et al. (2018) originally published by ASME.

Figure 20. Sequence of 9 images illustrating the partial flame blow off in MICCA-Spray in the presence
of an azimuthal standing mode of high amplitude (4000 Pa peak). ϕ ¼ 0:85;W¼111 kW.



field reconstruction and acoustic eigenfunction calculations. The critical value of the

transverse velocity oscillation inducing blow-off is about 30% of the axial velocity at the

injector exhaust. Flame blow-off can lead to the distortion of the pressure field, and also

contributes to a decrease in the resonant frequency, a feature that is observed in the

experiments.

Conclusions

This review is focused on dynamical issues raised by annular combustion systems found in

most areo engines and modern gas turbines. Ignition dynamics and combustion instabil-

ities coupled by azimuthal modes are specifically considered. It is argued that the corre-

sponding processes cannot be investigated in single injector devices and need to be

examined in annular configurations but it is also noted that experiments carried out in

single sector geometries provide valuable information and are best exploited in combina-

tion with annular testing. The single sector experiments may be used to select injectors,

determine their response to incident perturbations, obtain their describing functions and

select geometries that will give rise to instabilities when they are tested in the annular

geometry. Recent experiments in annular systems are exemplified. The light round process

is investigated and characterized with high speed images of the flame providing informa-

tion on the mechanisms controlling the flame dynamics. It is shown that data gathered in

these experiments can serve to validate large eddy simulations of the light round process.

Instability issues are then examined using the same annular setup in combination with

single sector experiments. It is found that the system sustains axial and azimuthal-axial

modes of oscillation. In the first case the flames respond essentially in phase with the

pressure. In the latter case, the azimuthal mode is formed by two waves which yield

various combinations of standing and rotating disturbances. Pressure data recorded by

multiple microphones can be used to determine the complex amplitudes of waves travel-

ing in the clockwise and counterclockwise directions, deduce a spin ratio and sort out the

various modes appearing in the system. It is found that the spin ratio changes continu-

ously during experiments and that the oscillations feature all possible combinations of the

azimuthal components that rotate in the counterclockwise and clockwise directions.

Experiments on an annular geometry featuring matrix injectors serve to show that it is

possible to observe a standing or spinning mode for the same operating conditions and

that the type of mode that arises depends on the path taken to reach the point of

operation. Other experiments carried out with swirl spray injectors indicate that strong

levels of oscillation are possible reaching a few kPa peak levels, corresponding to a -

few percent of the chamber pressure, and that when this happens flames located near the

pressure nodal line are extinguished. This process is accompanied by a sharp change in

frequency and a notable distortion of the pressure distribution inside the chamber.

The many new results obtained indicate that it is worth pursuing investigations of

annular geometries comprising multiple injectors in combination with single sector

studies. The data gathered may be used to improve the state of understanding of the

basic mechanisms controlling the light round and help design injectors that are less

sensitive to dynamical perturbations. These data may also serve to guide the development

of tools for simulation and prediction of dynamical phenomena like ignition or combus-

tion instability coupled by azimuthal modes.
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