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SUMMARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ac i l i t y  has been constructed for  acoustically test ing gas turbine 

cambustors. Noise measurements have been made on as ing le  combustor burning 
Jp-4, methanol and acetone with air and exhausting t o  the atmosphere. The 
flow variables were air flow and Puel/air ra t io .  Measurements were made of 
the noise direct ional i ty,  spectra and overal l  power output. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA w d l l a r y  measure- 
ments were made of the turbulence in tens i ty  and spectra i n  cold flow, and Pi to t  
pressure prof i les were used t o  determine the velocity distr ibut ion in te r io r  to 
the can, A theory of combustion noise was applied to  the configuration. 

'Ihe measured spectra were found t o  be v i r tua l ly  invariant with a change i n  
operating variables and wl type. 'Ihe noise i s  broadband with a single peak i n  
the v ic in i ty  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4OOHz. The invariance of the combustion noise spectra i s  believed 
linked t o  the observed invariance of the cold flow turbulence spectra, following 
observations on.other programs. !&e noise power output varied as flow velocity 
to an ercponent of 2.5 and was zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonly weakly dependent upon f'uel/air rat io.  The 
fue l  type appears t o  af fect  the noise power output through the heat of combust- 
ion rather than through i ts  reactivi ty. A theoret ical  basis for  these resul ts  
has been developed. 

A thermoacoustic ef ciency ( ra t io  of noise parer output to  the heat release 
been measured for  Jp-4 fuel .  This is the highest rate) as high as 3 x 

value ever reported for  hydrocarbon-air flames. A formula, based upon a flame 
burning i n  open surroundings, has been developed for the scaling law of acoustic 
power with combustor operating variables. 
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IN'IBOWCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Core noise has been recognized t o  be one of the important sources of 

noise from a i r c ra f t  turbopropulsion systems, especial ly i n  the low exit 
velocity regime such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas found i n  the case of high by-pass turbofaii engines, 
l i f t i n g  fan configurations and high shaft power gas turbines. E a r l i e r  studies 
on open turbulent flames ( ref .  1 )  have shown that combustion noise predomin- 
ates over je t  noise even at flow veloci t ies of the order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 m/sec. An 
extension of t h i s  study showed that noise augmentation results when the flame 
i s  enclosed by a duct (ref .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2). lhat is, wall ref lect ions of the generated 
preseure waves change the radiat ion impedance of a flame so that the sound 
power radiated i s  augmented over tha t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhich would be radiated i n  the absence 
of an enclosure. There is  c lear  evidence i n  the literature (refs. 3 and 4) t o  
ahow that the noise emitted t o  the surroundings by combustor-nozzle configura- 
t ions depends upon the roughness of combustion i n  the combustion chamber t o  an 
appreciable extent. Therefore, it i s  evident that a study of noise generated by 
an actual  engine combustor is required fo r  understandiw of  the core noise prob- 
lem. In  the present work noise generation by a combustor taken out of a gas tur- 
bine engine i s  studied. !Che combustor i s  operated at atmospheric pressure and no 
nozzle i s  used i n  order t o  avoid the velocity and temperature gradients a nozzle 
would introduce and t o  have a reasonably well-defined acoustic termination. Such 
an experiment enables a di rect  evaluation of the noise generation i n  the combust- 
or provided the acoustical behavior of the combustor wel ls  i s  accurately known. 

Much of the core noise information which has been generated is  subject t o  
wide interpretat ion because the accustics of the engine enclosure af fect  the 
amount of noise actually radiated t o  the surroundings. Furthermore, the tyye 
of noise actual ly i n  core noise i s  open t o  question. B a t  is,  i f  it is combust- 
ion noise, i s  it di rect  combustion noise o r  indirect  noise (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ) ?  TMS re- 
port  i s  concerned with d i rect  combustion noise which is  gcnerated i n  and radi- 
ated from a region undergoing turbulent combustion. The ''entropy noise" (ref.5) 
has been purposefully removed by the absence of a terminating nozzle on the can. 
Theoretical acoustics and the experimental results suggest that  the configuration 
of this experiment may be analyzed as though the flame were burning i n  the open. 
In  other words the can enclosure acoustics af fect  the acoustic power ra l ia ted i n  
only a minor way. In  order to  t rans late the resul ts  t o  an actual  engine s i tua t ion)  
duct acoustics would have t o  be applied and at least entropy noise would have t o  
be considered as an addit ional noise source. 

The experiments were conducted w i  h t o t a l  air flow ra te  through the com- 
bustor va.ying between 11.3 and 28.2 m 5 /.in (measured at standard temperature 
and pressure). The fuels used were JP-4, methanol and acetone. The f ie1 to  t o t a l  
a i r  ra t i o  was varied between 0.0017 and 0.022. The combustor operated at atmos- 
pheric temperature and pressure. 

EXPERIMENTAL APPARATUS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND RESULTS 

Apparatus 

Ime combustor used i n  t h i s  study i s  shown i n  f igure 1. It i s  a can-type 
combustor taken out of a Boeing 502-7D gas turbine engine unit with i ts  air i n -  
l e t  slightly modified t o  adapt t o  the present experimental set-up. This gas tur- 
bine unit has two such combustors which are supplied with air by a compressor 
a t  a pressure of three atmospheres. The design compressor f low rate is  1.6 Kg/s, 

2 



r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6l 
b 
6l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i 

a 
w a  

m - i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz :  
3 -  

W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 



The design fue l  consumption rate i s  1.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx m3/s at a nozzle operating 
pressure of 689 ma. Details may be found i n  reference 5. Liquid fue l  is 
sprayed inside the burner l i ner .  The l i n e r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas s lo ts  at both the head end 
and the walls for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAair t o  f low in to  the combustion region. The rc-st of the 
air f low is by-passed between the l i n e r  and the burner shel l .  Ignit ion of 
the coxibustor i s  achievedby a spark plug. Information on the combustion 
eff iciency or  gas temperature range of the burner are noz available. How- 
ever, gas temperature calculations are include9 later i n  this report. 

The flow system is schematically shown i n  f igure 2. This f a c i l i t y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas 
designed and b u i l t  during the contract pericd. Air is supplied from an 86l 
kPa air reservoir,  regulated by a valve and metered by an or i f i ce  meter. 
A muffler is included i n  the  air piping .just upstream of the combustor t o  
reduce flow noises. The l iqu id  fue l  is Ped by gas pressurieation. A turbine 
flow meter is used t o  measure the flow ra te  of f ue l  through the system. 

f igure 3 i s  a photograph of the experimental set-up. The combustor, 
fue l  tank and the air muffler are mounted on a test stand. The test stand 
is placed on a platform outside the laboratory i n  such a way that the burn- 
e r  axis is horizontal and at about 2.4 m tibove the ground leve l  i n  the for- 
ward half-circle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll the flow control valves, flow display units and in- 
strumentation are placed inside the laboratory. 

The instrumentation fo r  date acquisit ion i s  shown i n  f ig iae 4(a). Sound 
pressures are measured by f ive half-in& condenser microphones mounted on 
stands and i n  the same horizontal plane as the burner a x i s .  The microphones 
are provided with wind shields. Flgure 3 shows how the microphones are 
placed with respect t o  the combustor. The radius of the microphones i n  a l l  
the expegiments i 3  chosen as 3.05 m with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAangular locations varying be- 
tween 15 and 120 to  the flow direction. It has been ver i f ied that at  this 
distance the sound pressure measurements would correspond t o  the acoustic 
far- f ie ld.  The output from the microphones are read out on a sowid leve l  
meter. A l l  the f ive signals are recorded simultaneously on a magnetic tape 
recorder. Calibration signals are a lso included on the tape for  reference 
when reproducing data. %e data reduction scheme is shown i n  Figure 4(b). 
The f'requency spectra of noise are obtained using a d ig i ta l  four ier  analyzer, 
The low pass f i l t e r  i s  used t o  prevent the al iasing phenomenon which occurs 
with d ig i ta l  data. 

Flaw and Combus t ion Characteris t i c s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- 
!I!he air entering the combustor was s p l i t  in to  two flows. One portion 

flows through the annulus formed by the inside w a l l  of the outer pipe and 
the l i n e r  and i s  used t o  cool the pipe and l i ne r  d s  before exit ing 
through an annulus located at the end of the combustor. The second par t  of 
the flow is  used as combustion air and enters the combustion chauber through 
holes a t  the inlet and i n  the l i ne r  s ide walls. In order t o  determine what 
percentwe of the t o t a l  air flow is used i n  the combustion process i t  is  re- 
quired t o  experimentally obtain the flow ra te  of the air through the l iner .  

Figure 5 s h m  the detai l8 of s l o t  arrangement i n  the l iner .  A Pi to t  
tube w9s traversed inside the l i ne r  on etat lons 1 and 2 i n  cold flow. 
b o ,  a single Pitot .pressure measurement was made t o  determine the velocity 
of the by-pass a i r  flow. The s t a t i c  pressure was assumed t o  be the same 88 the 
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atmospheric pressure. The tube diameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas half of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAannulus gap width. 

P i to t  pressures measured at various flow rates at s ta t ion  1 showed 
that up t o  approximately 25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmm from the l i n e r  walls recirculat ing flow was 
present which resulted i n  negative P i to t  pressures. Considering that the 
diameter at this section is  only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA99 mm the region of recirculat ing f low i s  
quite appreciable. Therefore, i t  was not possible t o  calculate reasonable 
values for  the volumetric f low ra te  through this section using the Pi to t  
pressure measurements. This problem wa6 compounded because of inaccurate 
knowledge of the flow direct ions i n  this complex flow f i d d .  In s ta t ion 2 
the rec i rcu la t iw  zone occured up t o  approximately 10 mm from the w a l l s .  The 
Pi to t  pressure traverse for s ta t ion 2 i s  shown i n  Figure 6. This also shows 
the magnitude of the asynmetry of the flow. The l i ne r  diameter at this stat ion 
being 108 mm, the volume flow ra te  was calculated neglecting the recirculat ion 
region a i d  using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonly the posit ive P i to t  pressure values. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis will give a s l igh t  
overestimate for  the air flow through the l iner .  It was found that over a t o t a l  
air flow ra te  range from 11.3 t o  19.8 r$/min (at standard temperature and pres- 
sure) the air flow in to the l i n e r  varied between 43-43 of t o t a l  flow rate. Meas- 
urements of the by-pass air velocity with and without combustion showed that the 
by-pass ra t i o  varied zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonly  about 5% from cold flow value. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThus it appears t o  be 
adequate t o  consider that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'b$ of the t o t a l  air flows through the l iner .  

The limits of stable operation for  the combustor were determined so that 
a test matrix for  noise measurements could be selected. The blow-out l imi ts  
were established by set t ing the fue l  flow rate and varying the air flow rate 
u n t i l  the flame vis ib ly blew-out. From these data the blow-off curve for  Jp-4 
fue l  shown i n  Figure 7 was plotted. It i s  seen that the blow-oLf air flow ra te  
i s  maximum at a mixture ra t i o  of 0.008 and drop6 off  on e i ther  side o f  this 
value. 'Ihe air flow rates and mixture ra t ios  for  noise measurement tes ts  were 
chosen so that stable combustion could be obtained. A detai led blow-off p lo t  
was not obtained f o r  acetone and methyl alcohol fuels. 

In order t o  gain a bet te r  f ee l  f o r  orders of magnitude involved with 
various flow parameters the exhaust temperature i s  required. It waa not meas- 
ured experimentally but calculated from theoret ical  aarothermochemistry. The 
charts of reference 7 were used with ethylene assumed as the fuel .  The carbon/ 
Wdrogen atom r a t i o  of e t b l e n e  (1:2) is  close to that  of Jp-4. Figure 8 shows 
the theoret ical  ex i t  plane temperature as a f'unction of the overal l  fuel /a i r  
r a t i o  and the fuel /a i r  r a t i o  inside the can assuming 60% bypass flow. Also 
shown i s  the ra t i o  of the ex i t  ;lane speed of sound to the sea level  standard 
speed of sound i n  a i r  (332 n/s). Looking at the m a x i m u m  flow ra te  point on 
F'igure 7 and using the known geometry of the chamber, the maximurn exhaust ve- 
l oc i t y  i s  roughly 50 m/s and the Mach number i s  roughly 0.08. The e a t  plane 
flow i s  therefore characterized as a low Mach number f low. One complication i n  
calculat ing the exit plane speed of the bypass flow is  the l i p  on the can which 
protrudes in to the bypass stream (see figure 1 ) .  Since the ef fect ive cross-section 
area is d i f f i cu l t  t o  coapute no representative numbers are given for  the bypass 
flow ex i t  velocity. 
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Figure 7. Blov-off p l o t  giving the  maximum t o t a l  air 

ficw rate at flame out as a f h c t i o n  of the  
fuel t o  t o t a l  ai r  flow rate r a t i o ;  60 per- 
cent t o t a l  ai r  flaw r a t e  is  by pass air; 
JP4 f'uel. 
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!i!urbulence Measurements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
!Be combustion process, and therefore the noise generated, depends on 

the turbulent in tens i ty  i n  the combustor can. The scaling laws for  sound 
power zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand frequency also are influenced by the scaling of turbulence in- 
tensity i n  the flow. In  an attempt t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgain some knowledge of the turbulence 
field that exis ts  i n  the conhustor, hot-wire measurements were made inside 
the burner l i ne r  i n  cold f law conditions. 

A constant temperature single wire : stem was used. The wire was held 
perpendicular to the flow and was located on the axis of the burner, at 12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cm from the operi end. 'lkbulence intensity was determined at various f low 
rates of air i n to  the conibustor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2he data reduction procedure i s  described 
i n  reference 8. Ihe results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare presented i n  Table 1 which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs h m  that in- 
tens i ty  of turbulence at the measured location remains almost constant (15- 
16$) w i t h  flow velocity. l h i s  result was expected; that is,  the re la t ive 
intensi ty of turbulence i n  low subsonic flows is usually independent of 
velocity. 

mle 1. lhbulence Intensity i n  Combustor (Cold Flaw). 

mtal Air flow ra te  m 3 /.in 11.3 14.1 16.9 19.8 22.6 25.4 28.2 

Intensity of TuTbulence, $, 16 15 15 15 15 16 16 

However, i t  is also t rue that for  f ixed configurations the spectra should shift 
t o  higher frequencies as the f low velocity increases i n  accordance w i t h  a Strou- 
b a l  number scaling law. Tb check this, on l i n e  Fourier analysis was conducted 
of the hot wire signal. %e results are shown i n  figure 9. The surprising re- 
sult is +At the spectral  falloff occurs i n  the same frequency vic in i ty,  regard- 
less of the flow rate. 3he spectral  shape i s  independent of the flow velocity. 
'Ihis will aid i n  l a t e r  data analysis of the noise resul ts since a connection 
has previously been noted between the frequency content of combustion noise and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the cold f low turbulence sgectnrm (ref .  9). 

Noise Measurements 

This radius was selected based on measurement of sound pressure along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = 90' 
l i n e  which showei! that a t  this radius far f i e ld  conditions would be sat is f ied.  

- 
Microphones for  sound pressure measurement were placed a t  a radius of 3.05 m. 

The radiated sound powers were calculated from measured sound pressure 
levels by integration over a spherical surface assuming axial symmetry. For 
sues of sound pressures beyond the last microphone location a value equal 
t o  that at the last microphone location wa8 assumed. 'Ihe va l id i ty  of such a 
procedure i s  established i n  reference 1. 

Ihe repeatabi l i ty of the experiments has been found t o  be excellent. The 
same run on di f ferent days reproduces the sound pressure leve l  readings x i th in  
f 1 db and the spectra are indistinguishable. 



c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\ 

.- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"E 
In 

(u 
In 

It 

w + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U 
a 
3 
0 
J 
(L 

a 
a 

a 
J 

c 
0 
t 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

I 
! 

"I * - 

I 

N 
I 

i 
0 
z 
W 
3 
0 
w 

lL 

14 



Ground ref lect ions are  present i n  the eaer imenta l  noise data presented 
since the tes ts  axe somewhat close t o  a gr8und ref lgct ing plane (See f igure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) .  
The microphones at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAangular locations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
t o  the ground surface and hence would have the greatest  influence of  ground re- 
f lect ions.  To determine the extent of dependence of the resul ts  on ground reflec-o 
t ion, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ f :  experiment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas conducted i n  which sound pressure were measured a t  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90 
and 120 microphones with and without covering the ground between the source and 
the microphones with f iberglam mats. The mat thickness was at  least 50 cm every- 
where and this matting is the same as used i n  the anechoic chamber of reference 
1 where it w a ~  shown t o  be quite effect ive i n  the frequency range between 125 and 

and 120 were found t o  be the closest 

5000 HZ. 

The overal l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsound pressure levels w i t h  and without f iberglass covering agreed 
wi th in1.1 db, thus showing that the effect  of ground ref lect ion upon overal l  SPL 
was within reasonable limits. Figure 10 presents the spectra with and without f i -  
berglass covering. Since the spectra were i n  so close agreement they have been 
sh i f ted fo r  c lar i ty .  I n  this case the spectra presented are actual X-Y plots  as 
obtained from the Fourier analyzer. It can be seen tha t  the major character ist ics 
of the spectra are unaffected by ground ref lect ions. There is, of course, some 
ef fect  on the various pealp and lows i n  the X-Y plot .  Most noticeable is  the trough 
at about 210 Hz i n  the 90 locat ion due t o  ground ref lect ion which shi f ts  when the  
fiberglass covering is  used. It was therefore concluded from this experiment that  
the ground ref lect ion ef fects  were s m a l l  enough t o  not l i n e  the ground wit'n f iber-  
glass when conducting noise measurements. 

THEORY 

!Theoretical considerations 9pplied to  the combus t ion process of the config- 
uration are complicated by the enclosure(can) surrounding the flame; i f  the flame 
were open the treatment of reference 9 would be applicable with only slight mod- 
i f icat ion.  Furthermore, the gas turbine combustor i s  technically a diffusion flame, 
wherein the f i e 1  and oxidizer i n i t i a l l y  enter the combustor unmixed, and most theo- 
r e t i c a l  success t o  date has been with premixed flames (ref .  10).  As i s  detai led i n  
Appendix A this configuration represents a t rans i t ion case whereby neither the t reat -  
ment of a plane wave duct theory or an open flame theory is  s t r i c t l y  val id, but  there 
are the only treatments which are mathematically t ractable,  within the scope of this 
program. A previous treatment of this configuration by plane wave duct acoustics has 
appeared i n  the l i t e ra tu re  ( re f .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAll) , but the resul ts  were unsatisfactory; the prob- 
lem stems primarily from the fac t  that duct acoustics demands strong resonances t o  
be transmitted i n  the radiated sound which simply do not appear experimentally. 
One way t o  have made plane wave duct acoustics val id would have been t o  place a 
cyl indr ical  extension on the can i n  order to suf f ic ient ly  remove the combustion 
process from the end plane. However, severe questions would have ar isen i n  the 
data reduction concerning heat t ransfer to  the extension tube and mixing of the 
bypass air and combustion gases. Furthermore, combustion i ns tab i l i t y   ma^ have be- 
come a problem. Consequently, the noise data has been analysed as though the flame 
were an open, non-ducted flame i n  Appendix A. The jus t i f i ca t ion  for this analysis 
i s  a lso  located i n  Appendix A. 

Using the empirical resul ts  
invariant with flow velocity, as 
l a te r )  the theory of Appendix A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p a  scan 

that  the cold flow turbulence spectra shapes are 
are the combustion noise spectra (as w i l l  be seen 
predicts the sound power t o  s c d e  as 
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I n  Eq. (1) there is some theoret ics l  uncertainty concerning the exponent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoc F 
because of an uncertainty as t o  whether the actual  F should be used or the 
s to ich imet r ic  value, which is  a fixed number. The exponent'a'should zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl i e  be- 
tween 0 and 2 but the actual  value should be ewerimental ly determined. The 
f'requency of maximum radiated power should scale l i ke  

U 
h R e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW Q L  

These formulas w i l l  later be compared with the experimental results. 

Equation (1) i s  based upon sound radiat ion t o  surroundings with propert ies 
denoted by the  subscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. In  an actual  engine ins ta l la t ion  the combustor is 
usuaUy followed by a set of nozzles leading t o  the first turbine stage and 
these nozzles usually operate near a choked condition. Consequently, the sound 
radiat ion picture i s  t o t a l l y  di f ferent,  as compared with radiat ion to  open sur- 
roundings. The physical p icture which 3?ads t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (1) i s  a velocity f luctuat ion 
downstream of the combustion zone induced by di f ferent f l u i d  elements being heated 
di f ferent amounts as they pass through the flame. Cbnsequently, not only i s  there 
a velocity f luctuat ion but there i s  a temperature f luctuation. Both of these fluc- 
tuation.types w i l l  cause sound waves t o  be generated when the f l o w  traverses the 
turbine inlet nozzles. In fact ,  entropy noise is  precisely the noise generated by 
the hot spots (which are also associated with the velocity f luctuat icns whizh cause 
d i rect  combustion noise). Because the waves generated i n  the nozzle will propagate 
both upstream and downstream one must solve the en t i re  can acoustics problem to  
determine the t o t a l  amount of sound which gets through the nozzle. The acoustical 
properties of the can will therefore heavily determine the sound parer output and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
also the emitted spectra. This complete problem has not been solved here. 

It seems reasonable, however, as a f irst approximation tha t  the amount of 
d i rect  combustion noise which gets out should be proportional t o  the f ree  flame 
source strength, and this i s  the quantity which appears i n  Eq. (1). The quanti ty 
p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ c  which appears i n  Eq. (1) is related t o  the propert ies of the medium t o  
&ic& the sound is radiating. In  the case of an instal led configuration the sound 
is  radiat ing t o  a f l u i d  which has the properties i n  the engine. As a f i rst approx- 
imation, therefore, fo r  the installed configuration, set po/co t o  be p / . Then 
the scal ing law derived from Eq. (1) for  ins ta l led  configurations put zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1% i n  e m  of 
engine variables l i ke  pressure, corribustor inlet temperature 
temperature i s  

The procedure leading t o  Eq.(3) is i n tu i t i ve ly  appealing but 
the spectral  response of the can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmay alter the scal ing law, 

and combustor out le t  

i t  m u s t  be cautioned that 
since i f  the frequency 

content of the noise shifts with the variables i n  Eq. (3) the can response may al- 
t e r  the ultimate noise output. 

DISCUSSION OF RESULTS 

Figure U. shows d i rect ional i ty  patterns obtained at various f l ow  veloci t ies 
through the combustor for  P - L  fuel.  The smooth l ines  i n  the f igure are polynomials 
i n  cos 0 f i t t e d  by a l e a s t  square technique to  the experimental data points (ref.1). 
me digectional i ty appears t o  be qui te weak. Over the en t i re  sector of measurement 
(0-120 ) the maximum change i n  sound pressure leve l  i s  no greater than 4-5db. f ig-  
ure 12 shows the d i rect ional i ty  pattern at various d x t u r e  rat ios.  The direct ion- 
a l i t y  being weak was required f o r  the data reduction procedue used for sound parer. 
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In  an actual  e w n e  conffguration this direct ional i ty zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmay be al tered. 

f igure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13 s h m  the var iat ion of radiated sound power with varying t o t a l  
air flow rates for  Jp-4 fuel.  Sound power i s  seen to  scale with the t o t a l  a i r  
flow ra te  t o  an eyponent between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.3 and 2.7. The ef fect  of changing fuel  flow 
a t  a constant value of t o t a l  air flow rate is  i l l us t ra ted  i n  f igure 14. Figure 
14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa lso  shows the behavior of thermoacoustic eff iciency ( the r a t i o  of radiated 
sound power t o  the t o t a l  thermal input) with varying fue l  flow ra te  and this 
f igure contains resul ts  for  methanol and acetone. Sound power is  seen t o  be 
insensi t ive t o  f'ud f low rate Over a wide range of fue l  f l ow  rates, except for  
methanol, which w i l l  be discussedbelow. However, when the mixture r a t i o  in- 
creased above approximately 0.008 for  Jp-4 the sound pressure starts increasing 
rapidly with fue l  flow rate.  It i s  observed that t h i s  t rans i t ion mixture r a t i o  
also corresponds t o  the mixture r a t i o  at which the max imum occurs i n  he blow- 
off curve i n  f igure 7. A thermoacoustic eff iciency as high as 3 x 1 0  i s  seen 
for  the noise generated i n  f igure 14. l h i s  is  the highest known value of thermo- 
acoustic eff iciency ever reported for  hydrocarbon-air flames. 

-5 

It was d i f f i cu l t  t o  keep a stable flame with methyl alcohol as the fuel ,  so 
there are only two data poi ts reported a t  which a well-stabil ized flame existed 

power depends upon F. But notice a curious fact  that Fstoic for  Jp-4 and F 
for  methyl alcohol have the ra t io  F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ly, the methyl alcohol resul ts  are %?&bed at an o v e r a C F  which is roughly the 
same fract ion of the stoichiometric F at which the Jp-4 resul ts  were becoming 
sensi t ive t o  F. Blowout curves (f igure 7) typical ly maximize at a fuel /a i r  ra t io  
corresponding t o  a stoichiometric r a t i o  i n  the primary portion of can ty-ge com- 
bustors (ref .  12). While a d is t inc t  primary zone is  d i f f i cu l t  t o  ident i ty for  the 
combustor of th is  program, because air i s  taken i n  the head end as well as through 
the sides, the Jp-4 and methanol resul ts  seem t o  indicate that when the i l l -de- 
fined primary becomes stoichimetric o r  fue l  r i ch  the noise becomes more heavily 
dependent on F. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor! the other hand, viewing the acetone resul ts  there is  a uniform 
var iat ion of the noise output with F, but the var iat ion is  weak. 

for  the flow ra te  of 14.2 m 3 /min. Both points for  methanol show that acoustic 

(methanol) /Fs (Jp-4) = 2.3. Co@&%ent- 

The theory of the suggest that  the noise power may be ex- 
with K,a,b,c and d as constants. The 

e theory, but may be added here to  see i f ,  
i s  a meas- 

squares fit to  the data. In  order t o  only use data 

parameter 'LBlgX was not included i n  
pressed i n  the form P = K 

there indeed,is observed an ef fect  of f i e 1  react iv i ty,  of which SL 
ure. Taking the logarithm of both sides of the empirical expressiogythe constant 
may be determined by a l eas t  
where a unique constant b Will f i t  the data, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJp-4 data for an F above 0.008 
have been rejected. However, all the methanol data have been included i n  order 
t o  obtain the fue l  type ef fect ,  even though the methanol data may be i n  a regime 
equivalent t o  the Jp-4 data above an F of 0.008. The resul t  of the l eas t  squares 
analysis i s  

6 0.2 F o . ~  d.23 P =I?* s, 
lrncur 

where the SL,* 
13. The data' Nr the empirical f i t  include seven acetone runs, four methyl a lco-  
hol runs and sixteen JF-4 experiments. !The mean error of the f i t  i s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1% and the 
standard deviation i s  16$? well within the accuracy of the measurements. Equation 
(4) i s  t o  be comgared with Eq. (1) Theory and experiment agree i n  the sense that  
t i e  resul ts  are v i r tua l ly  independent of s h ,  and the fue l  type enters mainly 
through the ef fect  of H. Beory predicts a stronger ef fect  of U than i s  observed, 
but both theory and experiment confirm that U i s  the variable most stronglJ in- 
fluencing the noise. 

values , as well as the H values , have been - &en from reference 
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Figwe 13. Radiated sound power as a function of 

total  air zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflaw rate; 60 percent of t o t a l  
ai r  flaw rate i s  by-pass flow; JP-4 Fuel. 
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Figure15 presents the frequency spectra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd noiae a t  both the cold flow 
(flame off) and flame on conditions. The curves sham are smooth l ines  drawn 
through mid-points of the X-Y plot ,  obtained from the Fourier analyzer. It can 
be seen that c d u s t i o n  noise dominates over the noise due t o  air flow alone 
over the en t i re  f'requency range. Note, furthermore, the absence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany excited 
resonances i n  the air flow spectrum. !Be combustion spectrum shows that the 
c o d u t o r  output i s  a broad-band noise with a max imum around 400 H&. Also, 
weak secondary peak3 are seen at frequencies of 1200, 2400, 3600, 4800 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz etc.  
Further, aLnost ident ica l  frequency spectra were obtained 3ver m e  ent i re  se- 
quence of experimental conditions i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhich the t o t a l  air flow ra tes varied from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11.3 
t o  28.3 m3/min (at standard temperature and pressure) and mixture r a t i o  ( fuel /  
t o t a l  a i r )  varied from 0.0014 t o  0.02. The spectra taken a t  various azimuthal 
locations showed no signi f icant difference i n  frequency content. This resul t  
was extremely surprising, but i s  a confirmation of the resul ts  of reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
for  a dif ferent flame type that  the combustion noise spectra are s e t  by the 
spectra of the incoming cold f l ow  turbulence. It w i l l  be recal led that  the 
cold flow can turbulence spect ra l  shapes were invariant with flow rate.  The 
only minw differences seen in the  codust ion noise spectra were weak shifts 
i n  the minor resonances with mixture ra t io .  Viewing E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. (2), i f  the theory 

the can l i n e r  hole s ize  was not varied i n  L i s  program, t h i s  dependence could 
not be checked. Verif ication of such a dependence w i l l  be par t  of future ef for ts .  

and experiment are t o  agree with one another wc l / h  B should resul t .  Since 

llhe 400 Hz spect ra l  peak i s  not related %o a natural  mode of the can. If 
i t  were, the frequency would shift with mixture ra t i o  (speed of sound). The ab- 
sence of strong spectral  spikes at natural  frequencies of the can could poss- 
i b l y  be interpreted as an indicatior, tne can walls are highly absorbing. This 
is  not believed t o  be the case because of the work of reference 14; i n  that  
work it was shown that w a l l n  with a high ra t i o  of s o l i d  to  open area (as i s  
the case here) with a reasonable flow ra te  through the holes i s  a high i m -  
pedance wall. The interpretat ion here f o r  the absence of spectral  peaks is  
that  the combustion process i s  a source of grimarily velocity osci l lat ions,  
not pressure f luctuations, within the can. Thesevelocity f luctuations coming 
out of the ta i lp ipe act  as an ef fect ive monopole source t o  the far f ie ld .  To 
support this interpretat ion,  pressure measurements should bs made inside of 
the can; this w i l l  be done i n  future work. If the can had been terminated 
with a nozzle, say, strong spectral  peaks could be anticipated because the 
velocityf luctuations going through the nozzle would require ref lected pressure 
waves. As has been mentioned, th is  was deliberately avoided i n  th i s  program. 
Hcrwever, i n  an ins ta l led configuration such ef fects would appear and the acous- 
t i c a l  behavior of the ent i re  ductwork would have to  be known i f  the noise out- 
put were t o  be computed. 

Consider now a comparison of je t  noise with :ornuation noise. I f  an acoustic 
modlflcation factor %,,-is defined as the sound power radiated i n  an ins ta l l -  
ed configuration divided by the sound power radiated by the same flame when 
burning i n  the can configuration of t h i s  programp it i s  shown i n  Appendix B 
that 7 
the jeI7co8ust ion noise power ra t io .  It is  known (ref. 15) that  if a mono- 
pole source i s  ducted and the w a l l s  are hard the source w i l l  radiate more 
power than i f  it radiated t o  a f ree f ie ld ,  due t o  a change i n  the radiat ion 
impedance of the source. Consequently, 7 
unity. Consider a lower limit of 7 91. %king - 5 x aa representative 

7 F i s  a unique function of j e t  velocity for  constant values of 

can be expected o be greater than 

of the f ree flame can-type combust% process, khassuming F= 0.03, F > 
1.5 x 10-7. Using the j e t  noiPe data of reference 16, f igure 16 is 
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Figure 16. Relative importance of combustion noise t o  
j e t  noise; no at tenuat ion is assumed as the 
combust im noise propagates through the  
engine. 



Shorn is  a J ine on which combustion noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis equal t o  jet  noise, assuming the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tg value contains no attenuation of the sound zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApower ir, t ravel l ing from the 
cobus tor  t o  the engine exit. It i s  seen from the stated rimers that combustion 
noise becomes equal t o  or  greater than j e t  noise above a je t  velocity of about 
150 m/s. 
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COIVCLUSIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARECOMMENDA~ONS 

It i s  concluded that 

k 1. For cans of the general type used i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt h i s  program and with Jp-4 fue 
the thermoacoustic efficiency for  noise radiation lies i n  the range 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 10' 
t o  3 x 10-5. I n  an instal led cof igurat ion the thermoacaustic eff iciency is  
l i ke l y  t o  be higher than this value, neglecting any attenuation damstream 
of the can. However, calculations of the duct ef fects require accurate knowl- 
edge of the duct acoustic properties. 

2. me acoustic pmer radiated i s  proportional t o  the ef fect ive air f low 
velocity t o  an exponent of 2.6. TheroreticaUy the exponent is  equal t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

3. The acoustic power radiated is only weakly dependent upon fuel /a i r  
r a t i o  at l a w  values of this ratio but appears t o  make a t ransi t ion t o  a stronger 
increase i n  noise power with fuel/rair r a t i o  a t  some c r i t i c a l  f'uel/air rat io.  

4. I n  an instal led configuration the combustion noise should theoretical ly 
be proportional t o  the pressure, inversely proportional t o  the square root of 
the turbine inlet temperature and inversely proportional to  the square of the 
combus tor  i n l e t  temgerature . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 .  !he primary ef fect  of fuel type on the noise power radiated is through 
the heat of combustion and not the f i e 1  react iv i ty 
power output on heat of combustion is  one of P a 
ponent is 2. 

The dependence of sound 
Theoretically, the ex- 

6. There is  an invariance of the cold flow turbulence spectral  shape with 
a change i n  flow velocity and an invariance i n  the coinbmtion noise spectral  
shape with 3 change i n  all parameters tested. It is a postulate of the theory, 
which has been ver i f ied for  other flame types, that the turbulence and comb~s- 
t o r  noise spectra are 1inked;the flow variables tha t  w i l l  change one w i l l  change 
theother.The observed invariance i n  spectral  shapo i s  9 confirmation of the 
postulate . 

7. In can type cordbustors i n  insta l led configuratione corribustion noise 
should be at  l eas t  as large as jet  noise for je t  veloci t ies be la r  150 m/s. 

As a resul t  of this program it is recommended that 

1. Experiments should be conducted varying the l i n e r  hole s ize i n  order t o  
confirm o r  re ject  the theory developed here. 

2. Experiments should be conducted with terminating nozzles on the can t o  
determine whether entropy noise or direct  combustion noise i s  the more impcrtant 
noise source. 
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3 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPressure instrumentzbion should zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe employed ins ide the  can t o  
provide confidence i n  the theoret ica l  model, provide crosscorrelations 
with the far f i e l d  pressure and t o  determine the pressure buildup by can 
resonances when terminating nozzles are used. 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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%a 

SYMBOIS 

exponent defined i n  Eq. (1) 

speed of sound 

speci f ic  heat at constant pressure 

f ie1 mass f ract ion 

average l i n e r  hole s ize,  such as the hydraulic diameter 

fuel heating value 

air mass f l aw  rate 

fuel flow rate 

normal 

sound power 

coordinate vector 

Reynolds number based cn U and h 

area on the can ex i t  area of close correlation of f luctuating 
quant it iss 

ex i t  plane area 

temperature 

time 

velocity f luctuation magnitude normal t o  the downstream flame 
surface 

root mean square turbulence velocity of cold flow 

ef fect ive airf low veloci ty,  i / p o  

thermoacoustic efficiency, P/r",H 
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acoustic modification factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
%c 

v frequency 

P gas density 

W c i rcu lar  frequency 

Subscripts 

C 

0 cold upstream conditions 

1 hot downstream conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
STOIC stoichiometric value 

4 vector quantity 

frequency at which the maximum occurs i n  the SPL spectrum 
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APPENDIX A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
THEORY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOMBUSTOR CAN NOISE 

In  references zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 and 10 a consis tent  p ic tu re  of noise production by 
open flames anchored on t he  end of burner tubes emerged i f  it w a s  assumed 
t h a t  a )  the cold flow turbulence scal ing laws determined the  scal ing laws 
f o r  t h e  combustion noise spect ra and b) the  character  of t he  noise sources 
was zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,n effect ivemonorole source caused by ve loc i t y  f luc tua t ions  down- 
strew of the  flame, not by pressure f luctuat ions.  
a t i o r s  are caused by d i f f e ren t  f l u i d  elements being heated d i f f e ren t l y  
because of  random turbulent  excursions i n  t h e  amount o f  product gas 
entrained i n  a react ing element at  the  time of react ion.  I n  reference 
17 the equivalence of the ve loc i ty  f luctuat ions downstream o f  the flame 
and the  volume d i s t r i bu t i on  of heating rate f luc tuat ions w a s  proven. 
Therefore,combustion noise may be viewed e i t h e r  as caused by a surface 
on which there  are ve loc i ty  f luctuat ions or  as a volume containing 
randomly react ing pocket of gas. 
concepts t o  the combustor can s i t ua t i on .  A severe complication a r i s e s  
at the outse t ,  however, and t h a t  is the  e f f e c t  o f  t he  ducting upcn t h e  
noise radiated. 

The ve loc i ty  f luc tu -  

One could attempt t o  extend these 

If the  fhme were located i n  a duct,  t he  ve loc i ty  f luc tua t ions  
induced by the  flame would induce pressure waves rad iated as sound which 
i n te rac t  wi th the walls, inducing a back react ion on the flame which 
changes i t s  rad ia t ion  impedance. The amount of sound power generated 
is usual ly  g rea ter  than i f  the flame i s  not enclosed ( re fs .  15 ar.d 18) 
because of the  change i n  rad iat ion impedance. If the  duct is long, far 
enough from the source pure plane waves develop, i f  the frequencies are 
below those of the f i r s t  t rmsverse  mode of the  duct. i f  the duct is  
open t o  t h e  atmosphere there  w i l l  be re f lec t ions  of the incident waves 
caused by the impedance mismatch between the tube and the open end. 
A s ta t ionary  noise standing wave system would then be s e t  up i n  the 
tube and t h i s  should be calculable as a plane wave problem according 
t o  the  results of reference 18. 

I n  the  present experiments the  frequency content of the  noise 
ce r ta in l y  qua l i f i es  i t  f o r  a plane wave problem s ince the  f i r s t  t rans-  
verse mode would not occur fo r  t h i s  can u n t i l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 3500 Hz f o r  c = 600 m/s.  
The problem is t h a t  the  duct is not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlong enough f o r  purely plcne waves 
t o  be set u?. In fac t ,  there  are  no strong resonances, at frequencies 
corresponding t o  longi tud ina l  modes of the cw., ever seen i n  the  data.  
The open end of the  can i s  not behaving as an impedance mismatch plane 
t o  cause re f lec ted  waves back in to  the can. 
in te rpre ted  as one of ve loc i ty  f luctuat ions at  the t a i l p i p e  wi th  
negl ig ib le  pressure f luctuat ions.  The rad iat ing surface is the ta i l -  

This s i tua t i on  may be 
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pipe open area and now the problem resembles that of an open flame 
radiat ing t o  f ree  surroundings. To be sure, i f  an extension were placed 
on the can tha t  were zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlong enough, duct modes would be seen. This was 
not done i n  t h i s  experiment because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof heat traisfer problems and the 
requirement i n  the data reduction fo r  taking in to  account temperature 
gradients. 

Another possible interpretat ion of the experimental resul ts  is that 
the can walls are highly absorbent t o  sound so t h a t  the only thing left 
t o  radiate sound is the  presence of veloci ty f luctuations at  the tai l-  
pipe. 
work of reference 14; the can w a l l s  shoKLd be acoustical ly hard. 

It is not believed that t h i s  is the case, however, because of the 

Given the veloci ty f luctuations at the exit  plane as t he  acoustic 
source, the problem may be analyzed exactly as i n  reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, neglecting 
scatter ing by the external can surfaces. 
power radiated is 

The resu l t  f o r  the acoustic 

The order of magnitude of Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A - l ) ,  estimated in the same manner as i n  
reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17, i s  

U s i n g  the postulate that  the frequency should scale as the "frequency" 
of the energy containing eddies of theincmingturbulence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas measured 
i n  cold flow, 

U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I7IIs 

wc - 
s z  cor 

(A-3 1 

Experimentally it was found t h a t  u a U but tha t  ~1 was independent of 

U. From dimensional analysis S IX h f(Re, M ,  F )  is t o  be expected. 

For law Mach number flows, however, Mach number usually disappears as a 
relevant dimensionless group and only Re and F should remain relevant. 
Experimentally, however, wc w a s  found independent of F. The only wa;y that  
w 
t8 hold : 

- F C 

cor 

can be independent of U, therefore, i s  fox the following scal ing l a w  

U 

s 2  cor 
uc a - 

(A-4) 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Scor2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa h Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A-4 1 

Eqs. (A-3) and (A-4) have the  in terest ing consequence tha t  as the l i n e r  
hole s i ze  is changed the  frequency spectra should change. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
was not investigated i n  t h i s  program. 

This effect 

Now u' is interpreted as the sound causing bypetus which i n  turn 
is  caused by the combustion process. 
could be taken t o  be proportional t o  the velocity change i n  going from 
unburned t o  burned gases. 
process 

In reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 i t  was found that  u' 

For a constant pressure, constant area heating 

i FH 
c T  
P O  

po/pl = T1/To = ( 1 + - 

Then fo r  u' Ul, 

u'  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1+- FH ) u  c T  
P O  

(A-5 1 

The work of reference 9 was based on premixed flames. The f l w  l,;,.e i s  a 
diffusion flame wherein the  air and fuel  enter t h e  combustion chamber 
i n  an unmixed s ta te .  
of F i n  Eq. (A-5) .  
f luctuations i n  F w i l l  occur. In fact ,  some elements may burn wi th  

It might appear reasonable t o  choose F = 

the maximum f luctuation in  u' t h a t  might be at ta inable;  on the other 
hand, mre l y  as F gets luwer and lower one would expect the overal l  
magnitude of the heating f luctuat ion t o  decrease. To allow f o r  t h i s  
uncertainty, Eq. (A-5) is replaced by 

This causes some ambiguity i n  the interpretat ion 
That is ,  the concern here is with fluctuations, and 

while other elements can burn e i ther  f ie1  lean or fue l  r ich. 

i n  Eq. (A-5) t o  measure 
= FSTOIC 

F~~~ IC 

O s a s l  

with the exponent "a" t o  be determined by experiment. 
has been assumed tha t  FH/cpT0 >> 1. 

an indication is  given that F = FSTOIC should be chosen i n  Eq.  (A-5) .  

In Eq. (A-6) it 
If a = 1, the case of using F instead 

is under consideration. If a = 0 is observed experimentally, 
Of FSTOIC 
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Placing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEqs. (A-6) and (A-7) in to  Eq. (A -2 ) ,  there resul ts  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU4 F2" (H/c T )2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a 'can P O  (A-7) 

as the f i n a l  theoret ica l  scaling law for acoustic power. 
duced as Ey. (1) i n  the  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt e x t .  

This is  repro- 

More correctly, t o  keep the order of magnitude of Eq. (A-5) the  
same, Eq. (A-6) should be t te r  be represented by 

a 1-a H 
FSTOIC c T 

P O  

u' a F  

In this case 

(H/cpTo l2 28. 2 (1-a) 
r= FSTOIC 

would resu l t .  

of Eq. (4) of the text would resul t .  

Since FSMIC is a f'unction of fue l  type a modification 

The regression f i t including 

2(1-a) would modify t h e  exponent on H/c T The resu l t  including 
FSTOIC P 0' 
t h i s  effect is t o  replace Eq. (4) by 

0.2 Fo.l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.9 2 . 3  
P a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ s 6  sL FSMIC m a x  
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AJ?F?ENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB 

RELATION BETWEEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJET NOISE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND COMBUSTION NOISE 

From the  da ta  of reference 18 the  overa l l  power radiated by pure j e t  
noise may be put i n  the form 

9.116 
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx i o  6 Watts 
j e t  pouj 

where M j  is t h e  jet Mach number based on the ambient speed of  sound, po 
is t he  anbient density and U j  i s  the  j e t  ve loc i ty .  
U j  and po are i n  units of kg/s, m/s and kg/m3, respect ively.  
fac to r  accounting f o r  t he  d i rec t i ona l i t y  pa t te rn  given by 

I n  t h i s  formula 16, 
C i s  a 

03-2 1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 C = - (1 - 0.94 Mc) 

C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8M 

where Mc is the convection Mach number equal  t o  0.65 M j .  
i s  given by 

Combustion noise 

Subst i tu t ing Eq. (B-3) i n to  Eq. (B-1) 

6 2.6 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 C 

Choosing sea level condit ions and Jp-4 f ue l ,  t he  r i gh t  hand s ide  of Eq. 
(B-4) i s  a unique function of j e t  ve loc i ty  f o r  f ixed ra t i os  Pcomb/Pjet. 

Equation (B-1) i s  developed from the data of reference 18 by a )  using 
thc . or re la t i on  fo r  overa l l  sound pressure l eve l  at 20' of f  the downstream 
a i d ,  b )  using the ana ly t i ca l  law f o r  d i rec t i ona l i t y  given i n  that  re fe r -  
ence and c )  in tegra t ing  over 3, f t r  f ie ld sphere t o  obtain the  sound power. 
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