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Combustion instability due to the nonlinear
interaction between sound and flame

By Xuesong Wu†, Meng Wang AND Parviz Moin

1. Introduction

Combustion instability generally refers to the sustained pressure fluctuations of acous-
tic nature in a chamber where unsteady combustion takes place. It is essentially a self-
excited oscillation, involving a complex interplay between unsteady heat release, the
acoustic fluctuation and the vorticity field, which according to experimental observations
(e.g. Poinsot et al. 1987, Yu, Trouve & Daily 1991, Schadow & Gutmark 1992), may
be described as follows. Unsteady heat release produces sound, which then generates
(Kelvin-Helmholtz) instability waves at the inlet (via a receptivity mechanism as it is
referred to in laminar-turbulent transition). These waves amplify and roll up on the shear
layer and finally break down into small-scale motions, thereby affecting the heat release.
The whole process forms a closed loop.
An important insight into the effect of unsteady heat release on sound amplification

is provided by the Rayleigh criterion, which states that an acoustic wave will amplify
if its pressure and the heat release are ‘in phase’, i.e. the integral of the product of the
pressure and the unsteady heat release over a cycle is positive. The difficulty in applying
this criterion is that unsteady heat release is often part of the solution and thus not known
a priori. A usual remedy is to extrapolate, by using available experimental data, some
empirical relations between the heat release and sound fluctuation. This then leads to a
thermo-acoustic problem. Such an approach has been employed by Bloxsidge, Dowling &
Langhorne (1988) to describe ‘reheat buzz’ (Langhorne 1988). Dowling (1995) formulated
this approach in a more general setting, and discussed, inter alia, the effects of the mean
Mach number and heat distribution.
In the above semi-empirical approach, the hydrodynamic (and chemical) processes

of combustion are completely by-passed. To understand the acoustic-flame coupling on
a first-principles basis, one has to look into the structure of the flame as well as its
associated hydrodynamic field. Fortunately, for premixed flames much knowledge about
the last two aspects above has been obtained by using the powerful asymptotic approach
based on the large-activation-energy assumption (Williams 1985). The reader is referred
to Clavin (1985, 1994) for detailed reviews of the subject. This framework as well as
relevant previous results will be used in our work. Detailed discussions will be presented
in Section 2.
A thorough theoretical treatment of sound-flame coupling is unrealistic at the present

for a practical combustor, where the flow is strongly vortical and turbulent. As a first
step, it is necessary to restrict to the simple case where the hydrodynamic motion is
primarily due to unsteady heat release and remains laminar.
A formal formulation of acoustic-flame coupling has been given by Harten, Kapila &

Matkowsky (1984) for what may be called the ‘high-frequency’ regime, where the acoustic
time scale is comparable to the transit time of the flame, O(d/UL), where d and UL stand
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for the flame thickness and speed respectively. The resulting system is nonlinear and
requires a major numerical attack. Harten et al. considered the flat-flame case in the limits
of low frequency and small heat release, and obtained in each limit the solution which
describes the effect of acoustic pressure on the flame. However, they did not consider how
the flame influences the sound. This inverse process was investigated by Clavin, Pelce &
He (1990), who also removed the assumption of small heat release. By closing the loop,
they were able to show that the mutual interaction leads to amplification of sound, i.e.
to acoustic instability. For a flat flame, the hydrodynamics is completely absent, with
the sole coupling being through the acoustic pressure affecting the temperature.
For a curved flame, there exists an additional coupling mechanism. As was pointed

out by Markstein (1970), the sound pressure modulates the flame and hence alters its
surface area. This in turn leads to modulation of heat release, thereby affecting the sound
itself. The mechanism was further analyzed by Pelce & Rochwerger (1992) in connection
with the experiments of Searby (1992), who observed that sound was generated when a
curved flame was propagating downwards in a tube. The curved flame is due to the well
known Darrieus-Landau (D-L) instability. In developing a mathematical mode, Pelce &
Rochwerger represented the curved flame by the neutrally stable D-L instability mode
(which exists due to the stabilizing effect of gravity). A constant amplitude is prescribed
in calculating the growth rate of sound. They showed that this coupling mechanism could
be stronger by an order of magnitude than that considered in Clavin et al. (1990).
The present work is aimed at improving the model of Pelce & Rochwerger (1992) in two

somewhat related respects. First, we note that, like any marginally-stable mode, a neu-
tral D-L mode must modulate in a weakly-nonlinear fashion rather than stay completely
neutral. According to classical weakly-nonlinear theory (Stuart 1960), if the typical mag-
nitude of the mode is ε, the time scale of modulation is O(ε−2), comparable with the
time scale over which the sound amplifies. Second, Searby’s (1992) experiments showed
that the flame was evolving, and that the sound amplified mainly as the flame was evolv-
ing from a curved pattern to a flat one. Therefore for both mathematical and physical
reasons, it is necessary to take into account the evolving nature of the flame as well as
the back reaction of sound on the flame. For this purpose, we give a general formulation
for the sound-flame interaction in what may be regarded as the ‘low-frequency’ regime
in the sense that the acoustic time is much longer than the transit time of the flame. By
using this basic framework, the nonlinear evolution of the acoustic and flame instability
modes is studied in a systematic manner.

2. Formulation

Consider the combustion of a homogeneous premixed combustible mixture in a duct of
width h∗; see Fig. 1. For simplicity, a one-step irreversible exothermic chemical reaction
is assumed. The gaseous mixture consists of a single deficient reactant and an abundant
component, and is assumed to obey the state equation for a perfect gas.
The fresh mixture has a density ρ−∞ and temperature Θ−∞. Due to steady heat

release, the mean temperature (density) behind the flame increases (decreases) to Θ∞
(ρ∞). The flame propagates into the fresh mixture at a mean speed UL, and it has an
intrinsic thickness d. Let (x, y, z) and t denote the coordinates and time variables, nor-
malized by h∗ and h∗/UL respectively. The velocity u ≡ (u, v, w), density ρ, temperature
θ, and pressure p are non-dimensionalized by UL, ρ−∞, Θ−∞, and ρ−∞U2

L respectively.



Combustion instability 133

We define the Mach numberM = UL/a
∗, where the speed of sound a∗ = (γp−∞/ρ−∞)

1
2 ,

with γ being the ratio of specific heats.
A key simplifying assumption is that of large activation energy, corresponding to

β ≡ E(Θ∞ −Θ−∞)/RΘ2
∞ � 1 , (2.1)

where E is the activation energy and R is the universal gas constant. Under this as-
sumption the reaction occurs in a thin region of width O(d/β) centered at the flame
front. Assuming that the front is given by x = f(y, z, t), it is convenient to introduce a
coordinate system attached to the front,

ξ = x− f(y, z, t) , η = y ζ = z ,

and to split the velocity u as u = ui+v , where i is the unit vector along the duct. Then
the governing equations can be written as (Matalon & Matkowsky 1982)

∂ρ

∂t
+
∂ρs

∂ξ
+� · (ρv) = 0 , (2.2)

ρ
∂u

∂t
+ ρs

∂u

∂ξ
+ ρv · � u = −∂p

∂ξ
+ δPr

{
�u+ 1

3
∂

∂ξ

(∂s
∂ξ

+� · v
)}

− ρG , (2.3)

ρ
∂ v
∂t

+ ρs
∂ v
∂ξ

+ ρv · � v = −� p+�f ∂p
∂ξ

+δPr
{
�v+

1
3

(
�−�f ∂

∂ξ

)(∂s
∂ξ

+� · v
)}

, (2.4)

ρ
∂Y

∂t
+ ρs

∂Y

∂ξ
+ ρv · �Y = δLe−1 � Y − δΩ , (2.5)

ρ
∂θ

∂t
+ ρs

∂θ

∂ξ
+ ρv · �θ = δ� θ + δqΩ , (2.6)

supplemented by the state equation γM2p = ρθ, where δ = d/h∗, s = u− ft − v · �f ,

� =
[
1 + (�f)2

] ∂2

∂ξ2
+�2 −�2f

∂

∂ξ
− 2

∂

∂ξ
(�f · �) ;

here the operators � and �2 are defined with respect to η and ζ. Pr and Le denote
the Prandtl and Lewis numbers respectively, and G = gh∗/U2

L is the normalized gravity
force. The reaction rate Ω is taken to be described by the Arrhenius law:

Ω ∼ δ−2ρY exp
{
β(

1
Θ+

− 1
θ
)
}
, (2.7)

where Θ+ = 1+q is the adiabatic flame temperature. The large-activation-energy asymp-
totic approach requires the Lewis number Le to be close to unity, or more precisely

Le = 1 + β−1l with l = O(1) . (2.8)

To make analytical progress, we assume, in addition to β � 1 , that

δ 
 1 , M 
 1 . (2.9)

The whole flow field then is described by four distinct asymptotic regions as illustrated in
Fig. 1. In addition to the thin reaction and preheated zones, there are also hydrodynamic
and acoustic regions, which scale on h∗ and h∗/M respectively. In the reaction zone, the
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Figure 1. Sketch of the problem and the asymptotic structure

heat release due to the reaction balances the thermal diffusion, and the species variation
balances the mass diffusion (Matkowsky & Sivashinsky 1979). In the preheated zone,
the dominant balance is between the advection and diffusion. All the four regions are
interactive, in that the complete solution relies on the investigation of all these regions.
The direct interaction between the sound and the flame is through the hydrodynamic

region, which we now consider. In this region, the solution expands as

(ρ, θ) = (R0,Θ) + δ(ρ1, θ1) + . . .
(u, v, f) = (u0, v0, f0) + δ(u1, v1, f1) + . . .

p = (R0Gξ) + p0 + δp1 + . . .


 . (2.10)

The solution for the density (Pelce & Clavin 1982, Matalon & Matkowsky 1982),

R0 =
{

1 ≡ R− ξ < 0
(1 + q)−1 ≡ R+ ξ > 0 ,

is accurate to all orders in δ. In the following, the subscript ‘0’ will be omitted. Substi-
tution of Eq. (2.10) into Eqs. (2.2)–(2.4) leads to the equations governing (u0, v0, p0):

∂s0
∂ξ

+� · v0 = 0 , (2.11)

R

{
∂u0

∂t
+ s0

∂u0

∂ξ
+ v0 · � u0

}
= −∂p0

∂ξ
, (2.12)

R

{
∂ v0

∂t
+ s0

∂ v0

∂ξ
+ v0 · � v0

}
= −� p0 +�f0 ∂p0

∂ξ
−RG�f0 , (2.13)

where s0 = u0 − f0,t − v0 · �f0.
Embedded in the hydrodynamic zone are the preheated zone and the much thinner

reaction zone. The jump conditions across the preheated zone were first derived by Pelce
& Clavin (1982) for v, f 
 O(1), and by Matalon & Matkowsky (1982) in the general
case v, f ∼ O(1). These are

[u0] = q[1 + (�f0)2]− 1
2 , [v0] = −q� f0/(1 + (�f0)2)1/2 , [p0] = −q . (2.14)

The front evolution is governed by the equation

f0,t = u0(0−, η, ζ, t)− v0(0−, η, ζ, t) · �f0 − [1 + (�f0)2] 12 . (2.15)

The results Eqs. (2.14)–(2.15) were originally derived by assuming that the flow is in-
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compressible. Fortunately, they are valid for low-Mach-number flows because the acoustic
pressure does not directly affect the preheated zone or the reaction zone to leading order.
It only contributes a small correction of a higher order (see Clavin et al. 1990).
The leading-order system suffices for most part of our work. However, a more general

result may be derived if we include the jumps at O(δ), which were derived by Pelce &
Clavin (1982) and Matalon & Matkowsky (1982). The full version is rather complex, but
our subsequent analysis requires only the linearized results:

[u1] = − 1
2 lD(q)(�2f0 +� · v0) , [p1] = −2 [u1] + q�2f0 + ln(1 + q)

∂u0

∂t
, (2.16)

[v1] = Pr
[
∂ v0

∂ξ

]
+ ln(1 + q)

{ ∂
∂t
(v0 +� f0) +G� f0

}
− q�f1 , (2.17)

where D(q) =
∫ ∞

0

ln(1 + q e−x) dx, u0 and v0 as well as their derivatives are evaluated

at the front ξ = 0−. The function f1 satisfies the equation

f1,t = u1(0, η, ζ, t) +
{1 + q

q
ln(1 + q) +

1
2q
lD(q)

}{
�2f0 +� · v0

}
. (2.18)

3. Strongly-nonlinear sound-flame interaction: a general formulation

3.1. Acoustic zone
The appropriate variable describing the acoustic motion in this region is

ξ̃ =Mξ . (3.1)

Because the transverse length is much smaller than the longitudinal length, the motion
is a longitudinal oscillation about the uniform mean background, and the solution, for
the velocity and pressure say, can be written as

u = U± + ua(ξ̃, t) + . . . , p =
1

γM2
+M−1pa(ξ̃, t) + . . . , (3.2)

where U± are the mean velocities behind and in front of the flame respectively, with
U+ − U− = q. The pressure pa and velocity ua satisfy the linearized equations

R
∂2pa

∂t2
− ∂2pa

∂ξ̃2
= 0 , and R

∂ua

∂t
=
∂pa

∂ξ̃
. (3.3)

As ξ̃ → ±0,
ua → ua(0±, t) + . . . , pa → pa(0, t) + p′a(0

±, t)ξ̃ + . . . .

As will be shown in Section 3.2, the acoustic pressure is continuous across the flame, but
the flame induces a jump in ua i.e.

[pa] = 0 , [ua] = q
{
(1 + (�F0)2)

1
2 − 1

}
, (3.4)

where φ stands for the space average of φ in the (η, ζ) plane, and F0 is defined in Eq. (3.5).

3.2. Hydrodynamic zone
In the hydrodynamic zone, ua and pa,ξ̃ appear spatially uniform on either side of the
flame, and can be approximated by their values at ξ̃ = 0±. To facilitate the matching
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with the solution in the acoustic region, we subtract from the total field the acoustic
components as well as the mean background flow, by writing

u0 = U±+ua(0±, t)+U0 , p0 =
1

γM2
+P±+p′a(0

±, t)ξ+P0 , f0 = Fa+F0 , (3.5)

where P± is the mean pressure (with P+ − P− = q), and F ′
a = U− − 1 + ua(0−, t). Let

v0 = V0. Then the leading-order hydrodynamic field satisfies the following equations

∂U0

∂ξ
+� · V0 =

∂V0

∂ξ
· �F0 , (3.6)

∂U0

∂ξ
+R

{
∂Ũ0

∂t
+ S0

∂U0

∂ξ
+V0 · �U0

}
= −∂P0

∂ξ
−RJ h(ξ)∂U0

∂ξ
, (3.7)

∂V0

∂ξ
+R

{
∂V0

∂t
+ S0

∂V0

∂ξ
+V0 · � V0

}
= −�P0 +�F0

∂P0

∂ξ
−RJ h(ξ)∂V0

∂ξ

−RG�F0 + p′a(0
±, t)�F0 , (3.8)

while the flame front is governed by

F0,t = U0 − V0 · �F0 −
{
(1 + (�F0)2)

1
2 − 1

}
, (3.9)

where h(ξ) is the Heaviside step function, J = [ua], and S0 = U0 − F0,t − V0 · � F0.
Matching with the outer acoustic solution requires that

U0 → 0 , V0 → 0 , P0,ξ → 0 as ξ → ±∞ . (3.10)

The unsteady pressure and transverse velocity jumps are

[P0] = 0 , [V0] = −q�F0/(1 + (�F0)2)1/2 . (3.11)

The hydrodynamic motion affects the ambient acoustic regions by inducing a longitu-
dinal velocity jump. To derive this key result, we take the spatial average of Eq. (3.6)
in the (η, ζ) plane, and integrate with respect to ξ to obtain U0 = V0 · �F0, where the
overbar denotes the mentioned spatial average. Inserting the first relation in Eq. (3.5)
into Eq. (2.14), and taking the spatial average and using the second relation in Eq. (3.11),
we find

J = [ua] = q
{
(1 + (�F0)2)

1
2 − 1

}
. (3.12)

On the scale of acoustic wavelength, the right-hand side is equivalent to the rate of a
concentrated unsteady heat release, which is shown to be proportional to the change of
the surface area of the flame.
The jump condition for U0 becomes

[U0] = q
{
(1 + (�F0)2)−

1
2 − (1 + (�F0)2)

1
2

}
. (3.13)

The hydrodynamic equations, Eqs. (3.6)–(3.9), and the acoustic equations Eq. (3.3)
form an overall interactive system via Eq. (3.4): the acoustic pressure modulates the
flame, which in turn drives sound by producing unsteady heat release. This system uses
two distinct spatial variables to describe two distinct motions so that, in terms of ξ̃,
the acoustic motion has an O(1) characteristic speed (see Eq. (3.3)), comparable with
the hydrodynamic velocity. This has a significant advantage from the numerical point of
view, because the acoustic speed does not impose a severe restriction on the time step.
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4. A weakly nonlinear case

A flat flame may become unstable owing to differential diffusivity of mass and heat, or
to the hydrodynamic effect associated with gas expansion. The latter is the D-L instability
mentioned in Section 1. An interesting question is: how large-scale combustion instability
is related to flame instabilities, which occur over small scales over which the unsteady flow
can be treated as incompressible. A natural proposal is that combustion instability arises
when acoustic modes of the chamber are excited and amplified by the flame instabilities
through mutual resonance. D-L instability perhaps is the most important candidate for
driving combustion instability since, for most mixtures, the Lewis number is close to
unity so that the instability due to differential diffusivity is ruled out.
In general, D-L instability occurs at all wavenumbers. However it can be stabilised by

gravity effect, which introduces a small-wavenumber cut-off (Pelce & Clavin 1982). The
mode with this cut-off wavenumber is nearly neutral. On the other hand, an acoustic
mode is neutral on a linear basis. A mutual interaction can take place between the two
when their magnitudes are still small. Such a weakly-nonlinear coupling will be analysed
by using the general formulation in Section 3. The present analysis is motivated by the
experiments of Searby (1992), where such an effect apparently operates.

4.1. Analysis of the hydrodynamics of the flame
For simplicity, we assume that the flame is two dimensional. The flame is stable when the
flame speed UL is less than the critical value UL = (gh∗/(π(1 + q)))

1
2 , as was shown by

Pelce & Clavin (1982); see also below. Suppose that the magnitude of the nearly neutral
D-L mode is of O(ε). Then the weakly nonlinear interaction takes place over the time
scale of O(ε−2) (Stuart 1960), and thus we introduce the slow variable

τ = ε2t . (4.1)

In keeping with this, UL is allowed to deviate from its critical value by O(ε2), and thus
we write

gh∗

U2
L

= π(1 + q) + ε2gd ≡ Gc + ε2gd with gd = O(1) . (4.2)

To take account of the effect of Markstein length, we assume that δ = O(ε2), and without
losing generality we take ε2 = δ.
The velocity and pressure in the hydrodynamic region expand as

(U0, V0, P0) = ε(Û1, V̂1, P̂1) + ε2(Û2, V̂2, P̂2) + ε3(Û3, V̂3, P̂3) + . . . . (4.3)

The expansion of F0 is somewhat unusual and has the form

F0 = F̂0(τ) + εF̂1 + ε2F̂2 + ε3F̂3 + . . . , (4.4)

where the O(1) term is due to the advection of the front by the accumulated streaming
effect. By substituting the expansion into Eqs. (3.6)–(3.9) and expanding to O(ε3), we
obtain a sequence of equations at O(εn) (n = 1, 2, 3).
The leading-order solution is given by (cf. Pelce & Clavin 1982)

(Û1, P̂1, F̂1) = A(τ)
{
(−P± e−kξ +C±), (P± e−kξ −R±GcF1), F1

}
(ei kη +c.c.)

V̂1 = A(τ)P± e−kξ(i ei kη +c.c.)

}

(4.5)
where A is the amplitude function of the D-L mode, and C− = 0 to satisfy the upstream
matching condition. The wavenumber k = π so that V̂1 = 0 at η = 0, 1. The front
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equation implies that P− = 0, while the jump conditions are given by the linearized
version of Eq. (3.11) and Eq. (3.13), i.e.

P+ −R+GcF1 = −R−GcF1, −P+ + C+ = 0, P+ = −qkF1 .

The requirement of a non-zero solution gives the eigen-relation: gh∗/U2
L = (1+ q)π. The

eigenfunction is normalized by setting F1 = 1, and then P+ = C+ = −qπ ≡ P .
The O(ε2) terms in Eq. (4.3) and Eq. (4.4) are governed by the following equations

∂Û2

∂ξ
+
∂V̂2

∂η
=
∂V̂1

∂ξ

∂F̂1

∂η
, (4.6)

R
∂Û2

∂t
+
∂Û2

∂ξ
= −∂P̂2

∂ξ
−R

{
Û1
∂Û1

∂ξ
+ V̂1

∂Û1

∂η

}
, (4.7)

R
∂V̂2

∂t
+
∂V̂2

∂ξ
= −∂P̂2

∂η
−R

{
Û1
∂V̂1

∂ξ
+ V̂1

∂V̂1

∂η

}
(4.8)

+
∂P̂1

∂ξ

∂F̂1

∂η
−RGc

∂F̂2

∂η
+ p′a,1(0

±, t)
∂F̂1

∂η
, (4.9)

F̂2,t = Û2(0−, η, t)− V̂1(0, η, t)
∂F̂1

∂η
− 1

2

(∂F̂1

∂η

)2

, (4.10)

subject to the jump conditions[
Û2

]
= −1

2
q
[
(�F̂1)2 + (�F̂1)2

]
,

[
V̂2

]
= −q� F̂2 ,

[
P̂2

]
= 0 . (4.11)

As the forcing terms on the right-hand side indicate, there exists a mutual interaction
between the sound and flame as well as the self-interaction of the flame. The solution,
for Û2 and F̂2 say, takes the form

Û2 = Û2,aAB(ei kη +c.c.) ei ωt +Û2,2A
2(e2 i kη +c.c.) + Û2,0A

2

F̂2 = F̂2,aAB(i ei kη +c.c.) ei ωt +F̂2,2A
2(e2 i kη +c.c.)

}
. (4.12)

At cubic order, the governing equations are found to be

∂Û3

∂ξ
+
∂V̂3

∂η
=
∂V̂1

∂ξ

∂F̂2

∂η
+
∂V̂2

∂ξ

∂F̂1

∂η
, (4.13)

R
∂Û3

∂t
+
∂Û3

∂ξ
= −∂P̂3

∂ξ
−RA′Û1 −R

{
Û1
∂Û2

∂ξ
+ Û2

∂Û1

∂ξ
+ V̂1

∂Û2

∂η
+ V̂2

∂Û1

∂η

}

+R
{
F̂0,τ + F̂ ′

2,a + V̂1
∂F̂1

∂η

}∂Û1

∂ξ
−RJ h(ξ)∂Û1

∂ξ
+ Pr�2 Û1 ,(4.14)

R
∂V̂3

∂t
+
∂V̂3

∂ξ
= −∂P̂3

∂η
−RA′V̂1 −R

{
Û1
∂V̂2

∂ξ
+ Û2

∂V̂1

∂ξ
+ V̂1

∂V̂2

∂η
+ V̂2

∂V̂1

∂η

}

+p′a,1(0, t)
∂F̂2

∂η
+
∂P̂1

∂ξ

∂F̂2

∂η
+
∂P̂2

∂ξ

∂F̂1

∂η
−R±Gc

∂F̂3

∂η

+R
{
F̂0,τ + F̂ ′

2,a + V̂1
∂F̂1

∂η

}∂V̂1

∂ξ
−RJ h(ξ)∂V̂1

∂ξ
+ Pr�2 V̂1 , (4.15)

where J = qk2. Expansion of the front equation gives

F̂1,τ + F̂3,t = Û3(0−, t)− V̂1 · �F̂2 − V̂2 · �F̂1 −�F̂1 · �F̂2 . (4.16)
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To this order, it is only necessary to consider the component that coincides with the
fundamental of the D-L mode, and thus we write

(Û3, P̂3, F̂3) = (Û3,1, P̂3,1, F̂3,1)(ei kη +c.c.) , V̂3 = V̂3,1(i ei kη +c.c.) . (4.17)

The jump conditions at this order need some attention. A direct expansion of Eq. (3.11)
and Eq. (3.13) shows that at O(ε3),[

Û3

]
= −q� F̂1 ·�F̂2 ,

[
P̂3

]
= 0 ,

[
V̂3

]
= −q�F̂3 +

q

2
(�F̂1)2 �F̂1 . (4.18)

However, since δ = O(ε2), the (εδ) terms in Eq. (2.10) are of the same order as the O(ε3)
terms in Eq. (4.5). The jumps Eqs. (2.16)-(2.17) must be added to Eq. (4.18) to give[

Û3,1

]
= 1

2 lD(k)k
2A− 2qk2F̂2,2A

3[
P̂3,1

]
= −lD(q)k2A− qk2A[

V̂3,1

]
= −kqF3,1 − Prqk2A+ ln(1 + q)(kGcA) + 3

2qk
3A3



. (4.19)

The equation controlling the front motion is

A′ = Û3,1(0−)− 2k2F̂2,2A
3 − kV̂2,2(0)A3 − k2

{1 + q
q

ln(1 + q) +
1
2q
lD(q)

}
A . (4.20)

After substituting the leading- and second-order solutions into the right-hand sides of
Eqs. (4.13)-(4.15), the solution for Û3,1, V̂3,1, etc. can be written down. Inserting it into
Eq. (4.19) and Eq. (4.20), we obtain the amplitude equation

A′ = κA+ γsA
3 − γb|B|2A , (4.21)

κ = − q

2(1 + q)
gd − 1

2
k2

{
q +

1 + q
q

(
(q + 2) ln(1 + q) + lD(q)

)}
, (4.22)

γs =
{
−1
2
q +

3
2
+

2
q

}
k3 = (4− q)(1 + q)k3/(2q) , (4.23)

γb =
{
4(R+ −R−)2(1 +R+/R−)kω2 sin2(R

1
2−σωL)

}
/
{
(R+ +R−)2ω2 + 4k2

}
. (4.24)

4.2. Analysis of the acoustics
The pressure and velocity of the acoustic fluctuation are expanded as

pa = εB(τ)pa,1 + ε3pa,2 + . . . , ua = εB(τ)ua,1 + ε3ua,2 + . . . , (4.25)

where B is the amplitude function.
To leading order, pa,1 and ua,1 satisfy Eq. (3.3), and they have the solution

pa,1 = ei ωt
[
a±r e− i R

1
2
±ωξ̃ +a±l ei R

1
2
±ωξ̃

]

ua,1 = ei ωtR
− 1

2±
[
a±r e− i R

1
2
±ωξ̃ −a±l ei R

1
2
±ωξ̃

]

 (4.26)

where a±r and a±l are constants, and for convenience we take a−l = ei R
1
2
−σωL. The end

conditions are: ua,1 = 0 at ξ̃ = −σL, and pa,1 = 0 at ξ̃ = (1− σ)L, where L is related to
the dimensional length of the duct l∗ by L =Ml∗/h∗, and σ is a parameter characterizing
the mean position of the flame front. Both ua,1 and pa,1 are continuous across the flame,
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i.e. [u1,a] = 0 and [p1,a] = 0, as the expansion of Eq. (3.4) shows. Application of these
conditions leads to the dispersion relation of the acoustic mode (cf. Clavin et al. 1990),

(R+/R−)
1
2 tan(R

1
2−σωL) tan(R

1
2
+(1− σ)ωL) = 1 . (4.27)

Inserting Eq. (4.25) into Eq. (3.3), and solving the resultant equations at O(ε3), we
find

pa,2 = ei ωt
{(
b±r e− i R

1
2
±ωξ̃ +b±l ei R

1
2
±ωξ̃

)
−R 1

2±B
′ξ̃

(
a±r e− i R

1
2
±ωξ̃ −a±l ei R

1
2
±ωξ̃

)}
,

ua,2 = ei ωt
{
R

− 1
2±
(
b±r e− i R

1
2
±ωξ̃ −b±l ei R

1
2
±ωξ̃

)
−B′ξ̃

(
a±r e− i R

1
2
±ωξ̃ +a±l ei R

1
2
±ωξ̃

)}
.

It follows from substituting F0 into Eq. (3.4) and expanding to O(ε3) that

[p2,a] = 0 , [u2,a] = 2qk2F̂2,aA
2B ,

The above relations together with the end conditions, ua,2 = 0 at ξ̃ = −σL and pa,2 = 0
at ξ̃ = (1− σ)L, lead to the amplitude equation for the acoustic mode:

B′ = χA2B , (4.28)

χ =
i 2qk3R

− 1
2− (R+ −R−)Λ

L(i(R+ +R−)ω + 2k)
, (4.29)

Λ =
tan(R

1
2−σωL)

σ sec2(R
1
2−σωL) + (1− σ)(R+/R−) sec2(R

1
2
+(1− σ)ωL) tan2(R

1
2−σωL)

. (4.30)

4.3. Amplitude equations
The sound-flame interaction is thus described by the coupled amplitude equations

A′(τ) = κA+ γsA
3 − γb|B|2A , B′(τ) = χA2B . (4.31)

Now if the flame amplitude A is taken to be a constant, then the equation for B reduces
to the result of Pelce & Rochwerger (1992) with B growing exponentially. In their model,
the coupling is one-way. The present work includes the back-effect of the sound on the
flame, leading to a better description of the experiments of Searby (1992); see below.
The effects of the nonlinear interactions become clear if one inspects the signs of the

coefficients. According to Eq. (4.29) and Eq. (4.24), �(χ) > 0 and γb > 0, indicating
that the flame always acts to amplify the acoustic field, while sound inhibits the flame.
Note also that γs is positive (negative) for q < 4 (q > 4), and hence the self-nonlinearity
of the flame is destabilizing for q < 4 and stabilizing for q > 0.
Assuming that the flame and sound are weak initially so that the nonlinear terms in

the amplitude equations can be ignored, then the appropriate initial conditions are

A ∼ eκτ , B ∼ b0 exp{χ e2κτ} as τ → −∞ , (4.32)

where b0 
 1. Figure 2 shows the evolution of A and B for b0 = 0.1, 0.05, (with γs, γb

and χ being arbitrarily taken to be unity). The background noise remains constant when
the flame is of small amplitude, but starts to amplify when the latter has gained a certain
strength. The amplification is extremely abrupt, taking place primarily when the curved
flame evolves into a flat one. The flattening of the flame is caused by the back-reaction of
the sound. Eventually the sound saturates at a constant level. For comparison purposes,
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Figure 2. Nonlinear evolution of the acoustic amplitude B and flame amplitude A.
b0 = 0.05; b0 = 0.1.

Figure 3. Time traces of the acoustic pressure and flame position from Searby’s experiment
(Fig. 3b of Searby (1992)).

Searby’s experimental results are shown in Fig. 3. It is clear that the present theoretical
predictions are entirely consistent with his observations in the qualitative sense.

5. Conclusions

In this paper, the acoustic-flame coupling, the key process underlying combustion
instability, is studied by using matched-asymptotic-expansion techniques based on the
assumptions of large activation energy and low Mach number. A general asymptotic for-
mulation was given for the lower-frequency regime of practical relevance, for which the
acoustic source is found to be directly linked to the shape of the flame. The basic frame-
work was then used to study the weakly nonlinear interaction between an acoustic mode
of the duct and a nearly-neutral D-L instability mode. A system of coupled amplitude
equations was derived, and was found able to describe the experimental observations of
Searby (1992) qualitatively.
We note that the present analysis can be extended to include the effect of ‘weak

turbulence’ (i.e. convected gusts) in the oncoming fresh mixture. It would be interesting
to solve the fully-nonlinear system in Section 3 numerically, with a view to addressing
whether or not the coupling leads to self-sustained large-amplitude pressure oscillations.
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