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1.  INTRODUCTION 

The quest for higher muzzle velocities in gun propulsion has led to 

the exploration of consolidated or compacted propellants as a means of 

increasing the charge-to-projectile mass ratio (c/m) for a given chamber 

volume. Typical high performance gun systems operate with propelling 

charge loading densities of about 0,9 g/cm
3
.  Mechanical compaction of 

granular propellants allows loading densities as high as 1.25 g/cm
3
, with 

a resulting 40-percent increase in c/m.  In certain cases, such as reported 

by Fortinol, velocity increases of up to 13 percent have been achieved 

with consolidated charges without a significant increase in peak pressure. 

Conventional interior ballistic theory, as shown by Witt
z
 and 

Grollman
3
, requires, however, enhanced progressive burning of a propelling 

charge in order to obtain velocity increases at very high loading densities. 

A propelling charge burns progressively if the mass burning rate, m, 

increases with projectile velocity.  In conventional guns progressivity 

is usually enhanced through surface area modification or chemical tailoring 

of the propellant's linear burning rate, r.  The common multi-perforated 

propellant geometry used in large caliber systems and the deterred propel- 

lants used in small arms are typical examples.  In a consolidated charge 

the objective is to enhance these methods using macroscopic progressivity 

which we define as a controlled release of surface area, S, through a 

continuous deconsolidation process. 

The basic combustion law of interior ballistic theory is stated as: 

dm/dt = m = p • r • S 

where p is the propellant density. Hence, the overall mass burning rate, 

m, is proportional to the product of the instantaneous linear burning rate 

and the available burning surface area.  In granular charges, surface area 

progressivity is obtained by choice of propellant geometry.  Figure 1 

illustrates the surface area enhancement, S/S , as a function of mass 

fraction burned obtainable with multiperforated grain geometries, where 

S  is the initial propellant surface area.  In consolidated charges 

enhanced progressivity results from surface area increases as the compacted 

charge burns through or fractures into smaller aggregates along natural 

stress lines in the charge. This breakup is aided by external or internal 

pressurization. There are some penalties to be paid in consolidating 

propellants, however. The compaction process may destroy or substantially 

F.E.  Fortino,   "Improved Ballistic Ferformance for 30-rm Ammunition 
Using Consolidated Charges",  Frankford Arsenal    TR-76064,  September 1976. 

W.   Witt,  E.  Melahior,   "Thermodynamisahes Modell der Innenballistik", 

Wehrteohnik,   Juni   [1974]   222. 

3
B.B.   Grollman,  P.O.   Baer,   "Theoretical Studies of the Use of Multi- 
Propellants in High Velocity Guns",  Ballistic Research Laboratory, 

Report No.   R-1411,  August 1968. 
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modify the original grain geometry. This may result in reduced single 

grain progressivity as well as a lower initial single grain surface area. 

One significant observation made in studies to date has been that, operat- 

ing at a peak chamber pressure equivalent to that obtained with pranulai 

propellant, requires the use of faster burning propellants to compensate 

for the reduced surface area.  It becomes important, therefore, to deter- 

mine the overall or macroscopic progressivity for a consolidated propelling 
charge. 

Although the development of the propelling charge surface area 

profile is a dominant factor of interest in conventional interior 

ballistic theory, other factors are also important and necessary for a 

more complete one-dimensional, two-phase flow, fluid dynamic modeling of 

the process.  The details of flame propagation through a porous bed and 

of the eventual transition to a fluidized bed are also necessary.  Such 

modeling of granular propelling charge performance has been quite success- 

ful recently^.  It would be a significant advantage if such models 

could be applied to describing the functioning of consolidated charges. 

Details such as grain breakup, gas permeability, and gas flow resistance, 

are largely unknown and quite difficult to pin down for consolidated 

charges, as indicated in a previous study by Juhasz^,  Yet, if quantitative 

measurements can be made of the qualitative phenomenology of consolidated 

charge functioning, the development of a successful consolidated charge 

design methodology, using a combined experimental and theoretical approach, 

would be greatly enhanced. 

2.  RATIONALE AND TEST PLAN 

The basic purpose of our experiments was to extract quantitative 

information about the burning surface area development in consolidated 

charge combustion in an environment devoid of the complications of a 

moving projectile boundary.  Previous work-' indicated that a systematic 

survey of the effects of compaction density, ignition stimulus, and pro- 

pellant composition on macroscopic progressivity is a necessary first 

step towards a generalized description of S/S for consolidated charges. 

Fortino" recently reported some experiments directed at a similar goal. 

Given a general surface area progressivity relationship, useful a priori 

interior ballistic performance predictions are then possible.  Of further 

interest in our study is the effect of these parameters on the variability 

of combustion behavior. Unacceptably large ballistic variability has been 

a major reason for the failure of consolidated propelling charges to find 

4 ... 
A.W.   Horst,   T.C.  Mvnor,   "Igmtvon-Induoed Flow Dynamics in Bagged- 
Charge Avtiltery",   4th International Symposium on Ballistics,  Monterey, 
California,  October 1978. 

A.A.   Juhasz,   I.VJ.   May,   "The Effects of Consolidation on the Burning 
of Gun Propellants",   15th JANNAF Combustion Meeting,  Chemical Propulsion 
Information Agency,   Laurel,  MB,   Publication 297,   December 1978. 

F.E.   Fortino,   "Effect of Consolidation Parameters on the Burning of 
Consolidated Propellant Charges",   1979 JANNAF Propulsion Meeting, 
Anaheim,  California,  March 1979. 

9 
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their way into fielded gun systems.  It must be noted at this poini- that 

the parameters studied here are by no means all inclusive. Process 

variables in the manufacture of consolidated propellants loom as serious 

complicating factors which may severely restrict any generalizations of 
our results. 

3.  EXPERIMENTAL DETAILS 

In this study we restricted the scope to a consideration of two 

generic propellant compositions, compacted by one consolidation technique 

at several densities, and with two different igniters. Table 1 summarizes 
the test matrix. 

3.1. Propellants 

Available, single-perforated, undeterred, single base (SB) and double 

base (DB) propellants were chosen to be consolidated. Table 2 lists 

the basic compositions and grain dimensions. There is nothing unusual 

about their chemistry and they should, therefore, be considered as typical 

single and double base compositions. The webs and, perhaps more import- 

antly, the grain length-to-diameter ratios (L/D), are quite different. 

The single base propellant with a L/D of 4.24 can be expected to 

consolidate somewhat differently from the double base propellant with 
an L/D of 1.18. 

3.2. Consolidation Process 

The propellants chosen for this study were consolidated under Contract 

DAAK11-77-C-0031 to BRL by Hercules, Inc.*7 The process is depicted sche- 

matically in Figure 2. The propellant surface is softened by a vapor 

solvation process before compacting and drying to the original presolvated 

weight.  It is unlikely that the basic chemistry has changed significantly 

because of the consolidation process. Grain surface hardness changes are 

likely, however, with possible effects on ignitability and low pressure 

burning rates. The samples are molded into simple wafers with a diameter 

of nearly 40 mm and a length of 25 mm. The wafers were circumferentially 

inhibited with EA-946t.  The coating covered the exposed outermost surface 

of the propellant grains, but did not penetrate into the consolidated 

charge. The samples were cemented into thin steel cylinders with fast 

acting epoxy. This procedure prevents flamespread down the cylinder 

walls of the wafers. Experimentally, it results in a more nearly one- 
dimensional flame propagation. 

7 
L.   Scott,   "Consolidated Propellant Charge Investigation," Volume 1: 
Preparation of Consolidated Charge Increments," Ballistic Research 

Laboratory,  Contract Report ARBRL-CR-00408,  November 1979.  (AD #B043967L) 

Contract DAAK11-77-C-0031 

f 
A product of the Hysol division,  Bendix Corporation. 

10 
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3.3. Igniters 

The two igniter configurations were chosen to give what was felt to 

be a reasonable, though not overpowering difference in output characteristics, 

The M52 primer with 1 g of FFFG black powaer results in substantially- 

more rapid pressurization of the closed vessel than the relatively slow 

electric match with the same amount of black powder. The differences are 

readily apparent in Figure 3 which shows pressure-time characteristics 

of the two igniters only. The closed vessel was filled with an appropriate 

amount of inert filler. The "harsh" ignition obtained with the M52 

primer results also in a higher final ignition pressure, and shorter 

igniter functioning time. 

3.4. Test Device and Measurements 

A closed vessel, illustrated in Figure 4, with an internal diameter 

of 40 mm was designed and built for this study. The steel-sleeved samples 

were slipped into the vessel and cemented in place to prevent movement 

during the experiment. A Kistler 607C piezoelectric gage was used to 

measure pressure versus time.  The data were acquired digitally on a 

laboratory minicomputer, smoothed, and differentiated to obtain a "jasic 

data file of pressure, dp/dt, and time. 

3.5. Data Reduction 

The data obtained from an experiment are analyzed using a computer 

program, CBRED II. The program described previously by PriceS and 

Juhasz^ for the extraction of linear burning rates was modified to 

allow the inverse process of extracting surface area given linear burning 

rate information. The problem is, therefore, reduced to determining the 

linear burning rate of the unconsolidated propellant using the same closed 

vessel. The assumption is then made that the consolidation process has 

not significantly affected the chemistry and hence the burning rate. 

Finally the linear burning rate is then used to extract surface area 

profiles, S/S0, as a function of the fraction of propellant burned, z, 

using CBRED II.  This information can then be used directly in a suitable 

gun interior ballistics model. 

4.  RESULTS 

In the data to follow, it is important to keep in mind that in the 

Priae,  C.F.S  Juhasz, A.A.,   "A Versatile Usev-Oviented Closed Bomb 
Data Reduction Program  (CBRED)",  Ballistic Research Laboratory R-2018, 
September 1977.   (AD #A049465) 

9 
Juhasz,  A.A.,  Price,   C.F.,   "The Closed Bomb Techmque for Burmng Rate 
Measurement at High Pressure",  Experimental Diagnostics in Combustion 
of Solids,   ed.  T.L.   Boggs and B.T.   Zinn,   Vol.   63,  Progress in 

Astronautics and Aeronautics,   [1978]   129. 

14 
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figures showing the surface area ratio, S/S0, as a function of the fraction 

of propellant burned, S0 represents the initial surface area for the 

equivalent amount of loose, granular propellant. 

4.1. Baseline Propellant Burning Rates 

The results from standard closed vessel experiments on granular Ml 

and HES propellants are shown in Figure 5.  Each propellant was burned 

at 21
0
C with excellent reproducibility down to nearly 3 MPa.  Burning 

rate variability at low pressures is not at all uncommon for closed vessel 

burning rate tests.  It is usually ascribed to ignition and flamespread 

variability.  It should also be noted that the burning rate curves for 

both propellants are linear only above 40 MPa, As expected the more 

energetic double base propellant also burns substantially faster.  For 

each of ~he propellants an average burning rate table was constructed 

for use in the surface-area ratio analysis. 

To -est the internal consistency of the surface-area extraction 

routine in CBRED II, S/S0 was computed for the loose propellant data from 

which the burning rate table was constructed.  The results are shown in 

Figures 6 and 7.  Superimposed on the "inverse" experimental curves is 

the ideal, single-perforated grain progressivity curve obtained from 

purely geometric considerations. The agreement from 10 to 80 percent of 

the fraction burned is pleasing. Again, ignition and flamespread effects 

as well as imperfect grain geometries are sufficient to explain the 

discrepancies in the extremes. From this exercise it should be obvious 

that the experimental variability for consolidated charges can only be 

greater. 

4.2. Grain Deformation 

The effect of the mechanical deformation of the single grain geometry 

is of interest. Figures 8 and 9 show samples of the base grain, the con- 

solidated wafer, and mechanically broken-apart consolidated wafers.  The 

single base propellant (RAD 68108) was not graphited, the double base 

propellant (HES 8567.HE) had a 0.02 percent graphite coating.  Sample 

deconsolidation was done by placing single wafers between the plateus 

of a hydraulic press and pressing till initial wafer fracture took place. 

The differences in the grain break-up characteristics between the single 

and double base propellants are immediately apparent.  Not so obvious, 

although of perhaps greater significance, is the observation of much less 

grain deformation with the lower L/D (1,18) DB propellant than with the 

high L/D (4.24) SB propellant.  Physically, the single base wafers are 

stronger, presumably because of the greater intertwining of the longer 

grains.  Of interest also, is the observation that the mechanical decon- 

solidation process results in granular aggregates of many different sizes. 

Some grain fracture is also observed.  For the Ml propellant grains, col- 

lapse of the perforation is quite common.  This is in distinct contrast 

with the double base propellant. 

17 
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Deconsolidated, whole, single grains were collected for standard clored 

vessel experiments. Assuming no geometry changes, pseudo-burning rates 

were then extracted as shown in Figures 10 and 11.  For the Ml propellant, 

for which substantial perforation collapse is observed, the compaction 

process has a noticeable effect on the pseudo-burning rate. This is in 

distinct contrast to the double base propellant for which little change 

is noted.  Our interpretation is that the greater single base grain L/D 

ratio is largely responsible for this effect, rather than any intrinsic 

composition effects.  For comparison, pseudo-burning rates assuming per- 

fect single grain geometry are shown in Figure 12 for consolidated double 

base wafers. The reduction in apparent burning rate due to the much 

lower burning surface area in the consolidated propellant is dramatic. 

To maintain ballistic equivalency in a gun firing, an approximately 50 

percent reduction in web would be required in this particular case to 

compensate for the reduced surface area. 

4.3. Reproducibility 

Experimental variability of consolidated charges appears to be quite 

strongly correlated with compaction density.  Figure 13 shows very poor 

reproducibility is obtained for the low compaction density samples.  At 

high compaction densities much better reproducibility is observed as 

shown in Figure 14.  We speculate that the higher strength wafers are 

much less susceptible to variations in igniter-induced grain break-up. 

4.4. Compaction Density 

Several trends emerge from the representative runs for the Ml propel- 

lant shown in Figure 15.  The low density runs show a degressive behavior 

that is similar to the single grain surface profile although at a sub- 

stantially reduced surface area.  The high density (1.35 g/cm^) surface 

area profile gives strong evidence of enhanced progressivity if S0 is re- 

defined to be the initial surface area of the wafer at the end of the 

ignition-flame-spread phase.  The intermediate density results fall in 

between the extremes.  For the double base propellant data shown in Figure 

16, the trends are not as clear.  While the surface area decreases with 

increasing compaction density for the Ml propellant, as one would expect, 

the double base wafers show no such clear trend.  With some imagination, 

the trend towards more progressivity with increased compaction density may, 

however, still be discerned. The concept of a macroscopic progressivity 

for consolidated propellants appears to be valid. 

4.5. Ignition Effects 

At the high compaction densities it was not possible to discern any 

substantial igniter-related effects.  Apparently, if the wafers are strong 

enough to withstand a given ignition pulse, little changes in the combust- 

ion behaviors are to be expected.  A modest, though not well understood, 

effect is, however, seen in the low density double base experiments shown 

23 



en 

a. TJ-* 

^   .. Q 
LU 

cn 

UJ 

< 
CQ 

L J_J L 

<  c 

1 
O 
CN 

io 
c 

• r- 
n3 
t_ 

C3 

o +-> 

o c 
n3 

o 
r-^ 0) 

Q. 
O 
S- 
a. 

Oi 
00 

nj 
CQ 

^■^^ 

a O) 

Q- 

^ 

•r- 
00 

^—w* "O 
OJ 
s 

UJ 
o 

O QC 
o 3 0) 

Q 

■^ UO S_ 
o 

CO M- 

LU 

ac: (0 

O- 
cc 

Dl 
C 

•r— 
c 
s- 
rs 

CQ 
1 
o 

■a 
3 
cu 
c/i 

Q. 

O 
r"~ O 

i— 

01 
s_ 

24 



LU 

a 
LU 

r^ 
o CN 

10 r— 

CO II 

IS) Q 
LU ^^ 
X  i 

o 
o 
o 

o 
o 

o 

LU 

QC 

D 

CO 

LU 
cs: 

1 
O 
CN 

O       CO O "^ 

00 

c 

-M 
c 
n3 

CL 
o 
(. 

Q_ 

0) 
cy) 
re 

CO 

QJ 

-Q 

O 
o 

g 
o 
4- 
OJ 
Q 

o 

QJ 
+-> 
10 

OS 

en 
c 

•I— 

C 
S- 
3 

DO 
I 

O 
-a 

QJ 

QJ 

cn 

25 



LU 
r— / 
r— 

• _ 
' IN. 

vO Q 
' U") LU 

00 1— 

CO < 

LU g — 

X 

0 
LU CO 

O 
o 

z 
O 
u 

- 

\ 

1 

1 
1 

\ ^ 
1 1 

\      \ 

\^ V      \ _ 

\ ^ 
V      \ 
\    \ ( 
\ ^ " 

\      \ 
\      \ 

\   ^ 
\      \ 
\       \ 
\  ^ _ 

\ 

^ \         \ 

—J  LA    I       i            i 1 L      ! i 

0 

o 
o 

to 
CO 

LU 
eel 
Q- 

-_ o 

C 

<D 
o_ 
O 

Q- 

0) 
l/l -—- 
ra   >, 

+-> 
O) O) 
r- E 
J3 O 
3 O) 
O CD 
Q 

-a « 
<u s- 
-P CD 
ro 

"O   OJ 

r— cr> 
O C 
en -r- 
c oo 
o 
o +-> 

o 
■ cu 

O) M- 
t—   S- 

O   0) 
.c O- 

T3 
t. OJ 
O E 

M- 3 
(/I 

OJ CO 
■U < 
ro 
Q: C 

o 
ov,- 
c +-> 
•i- o 
c: 3 
s- -o 

ca D: 

o"~ 
-o S- 
^ 0) 
0) it- 
i/) n3 

O- 3 

OJ 

CD 

(s/ujo) givy  oNm^na 



o 
00 

oo 
E 
(_> 

_o en 

^ 

s • o 

co 
o 

oo 
. tr   / 00 LD 

^ 

/ 

d o 

/ 

LU 

Z 
s. 
<u 

1 

i [ — 
t  

  
  

  
  
  

0
.2

  
  

  
  

  
 0

.4
  
  
  
  
  
 0

 
F

R
A

C
T

IO
N

  
  
 B

U
 4- 

fD 

-a 
0) 

4-J 
ro 

T3 
•f— 

"o 

C 
O 

CJ 

>1 
+J 

CD 
Q 

5 
C 
_l 

M- 
O 

>, 
+-> 
•i— 

• 00 • 
O o • 

o 
CN 

• 
o 

o 

)d
u

c
ib

i 
;i
o

n
) 

(0S/S) oiivy V3yv aDv^ns 

re
 

1
3

. 
  
  

R
e

p
rc

 
Ig

n
i t

 

27 



+-> 

O 
00 

n 

00 

O 
o 
o 

(0s/s)  ouvy   va^v   3DV^nS 

E 
u 

CD 

CO 
o 

co 

a 

ro 

■a 
OJ 
-M 

03 

O 
m 

C 
O 

>l 

c 
0) 
o 

en 

u c 
3  o 
•a -r- 
o 4-> 
s- 1- 
Q. C 
OJ   CD 

O) 
s- 
3 

28 



(0s/s) onvy v3yv 3Dv^ns 

29 



n 

00 

O 

E 
u r£ 

■^ >H /  ^^ 

0) 
0) 

lO U") 
<N   y 

I              ,    -> 

(0s/s) ouvy  vg^iv   3DVdyns 

30 



in Figure 17. The "soft" ignition shows a fairly normal behavior.  The 

initial overshoot in the surface area profile may be due to a small amount 

of igniter induced wafer break-up which is then burned up and collapses 

to the bulk wafer combustion mode. A rapidly damped, local pressure 

disturbance can also explain the overshoot. The "harsh" ignition case, 

however, shows clear evidence of pressure waves in the dp/dt data.  These 

pressure wave disturbances then result in very erratic surface area profiles, 

At this time, we speculate that the "harsh" ignition, besides inducing a 

pressure wave disturbance in its own right, causes enhanced igniter-induced 

wafer fracture which may amplify the pressure wave problem.  For future 

tests, it seems worthwhile to find the threshold ignition pulse which 

begins to have substantial effects on the combustion behavior of a 

consolidated charge of any compaction density. 

Charge ignition delays were observed to be nearly 1.5 times longer 

for the soft igniter configuration.  In addition, Ml is substantially 

less ignitable than the HES propellant as shown by a factor of two increase 

in ignition delay times. 

5.  SUMMARY 

The postulated fracture-and flamespread-caused macroscopic surface 

area progressivity attributed to consolidated charges has indeed been 

experimentally verified, at least for the Ml single base propellant wafers. 

Figure 18 illustrates that even for the double base propellant an increase 

in the surface area ratio over loose, single-perforated grains is obtained. 

The compaction sensitivity of this phenomenon suggests that possibilities 

exist for improving and controlling the surface area profiles. 

Reproducibility has been found to be strongly related to compaction 

density and, in this study, weakly ignition-dependent.  We conjecture 

that with a much stronger ignition pulse than our "harsh" igniter, a 

larger igniter dependence might also be observed for the structurally-stronger, 

high-compaction density wafers. This hypothesis will be tested in the 

near future. 

From the results of this experimental survey it has become apparent 

that sample burning characteristics can be related back to charge strength 

and base grain geometry characteristics.  Some of the progressivity hoped 

for from consolidated propellants has already been realized.  Further 

experimental efforts would do much to improve consolidated charge design 

capabilities.  In addition to grain L/D, wafer strength can be controlled 

by other properties, such as presence/absence of graphite on the base 

grain or the use of a "binder" such as collodion in forming the base 

grain.  The binder coating on the grains could act as a chemical deterrent 

as well.  The combustion and progressivity characteristics of such samples 

could be readily examined via the closed bomb technique.  Further, flash 
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x-ray diagnostics would be of great use in visualizing sample deconsolid- 

ation processes during burning. Real advances in consolidated charge 

design methodology can be realized through the interaction of preparation 

techniques, combustion diagnostics, and theoretical and experimental 

interior ballistic studies. 

7,4 
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