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1. INTRODUCTION

Tre quest for higher muzzle velocities in gun propulsion has led to
the exploration of consolidated or compacted propellants as a means of
increasing the charge-to-projectile mass ratio (c/m) for a given chamber
volume. Typical high performance gun systems operate with propelling
charge loading densities of about 0.9 g/cm3 Mechanical compactlon of
granular propellants allows loading densities as high as 1.25 g/cm with
a resu1t1n§ 40-percent increase in c¢/m. In certain cases, such as reported
by Fortino!, velocity increases of up to 13 percent have been achieved
with ccnsolldated charges without a significant increase in peak pressure.

Ccnventional interior ballistic theory, as shown by witt? and
Grollman3, requires, however, enhanced progressive burning of a propelling
charge in order to obtain velocity increases at very high loading densities.
A propelling charge burns progressively if the mass burning rate, m,
increases with projectile velocity. In conventional guns progressivity
is usually enhanced through surface area modification or chemical tailoring
of the propellant's linear burning rate, r. The common multi-pertorated
propellant geometry used in large caliber systems and the deterred propel-
lants used in small arms are typical examples. In a consolidated charge
the objective is to enhance these methods using macroscopic progressivity
which we define as a controlled release of surface area, S, through a
continuous deconsolidation process.

The basic combustion law of interior ballistic theory is stated as:

dn/dt =m=p =T + S

where p is the propellant -density. Hence, the overall mass burning rate,
m, is proportional to the product of the instantaneous linear burning rate
and the available burning surface area. In granular charges, surface area
progressivity is obtained by choice of propellant geometry. Figure 1
illustrates the surface area enhancement, S/S , as a function of mass
fraction burned obtainable with multiperforated grain geometries, where

S is the initial propellant surface area. In consolidated charges
enhanced progressivity results from surface area increases as the compacted
charge burns through or fractures into smaller aggregates along natural
stress lines in the charge. This breakup is aided by external or internal
pressurization. There are some penalties to be paid in consolidating
propellants, however. The compaction process may destroy or substantially
JF E. Fortino, "Improved Ballistic Performance for 30-mm Ammunition

Using Comsolidated Charges", Frankford Arsenal TR-76064, September 1976.
2W. Witt, E. Melchior, "Thermodynamisches Modell der Innenballistik”,
Wehrtechnik, Juni [1974] 222.

3B.B. Grollman, P.G. Baer, "Theoretical Studies of the Use of Multi-
Propellants in High Velocity Guns', Ballistic Research Laboratory,

Report No. R-1411, August 1968.
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modify the original grain geometry. This may result in reduced single
grain progressivity as well as a lower initial single grain surface area.
One significant observation made in studies to date has been that, operat-
ing at a peak chamber pressure equivalent to that obtained with eranula:
propellant, requires the use of faster burning propellants to compensate
for the reduced surface area. It becomes important, therefore, to deter-

mine the overall or macroscopic progressivity for a consolidated propelling
charge.

Although the development of the propelling charge surface area
profils is a dominant factor of interest in conventional interior
ballistic theory, other factors are also important and necessary for a
more complete one-dimensional, two-phase flow, fluid dynamic modeling of
the process. The details of flame propagation through a porous bed and
of the eventual transition to a fluidized bed are also necessary. Such
modeling of granular propelling charge performance has been quite success-
ful recently4. It would be a significant advantage if such models
could be applied to describing the functioning of consolidated charges.
Details such as grain breakup, gas permeability, and gas flow resistance,
are largely unknown and quite difficult to pin down for consolidated
charges, as indicated in a previous study by Juhasz>. Yet, if quantitative
measurements can be made of the qualitative phenomenology of consolidated
charge functioning, the development of a successful consolidated charge
design methodology, using a combined experimental and theoretical approach,
would be greatly enhanced.

2. RATIONALE AND TEST PLAN

The basic purpose of our experiments was to extract quantitative
information about the burning surface area development in consolidated
charge combustion in an environment devoid of the complications of a
moving projectile boundary. Previous work® indicated that a systematic
survey of the effects of compaction density, ignition stimulus, and pro-
pellant composition on macroscopic progressivity is a necessary first
step towards a generalized description of S/S_ for consolidated charges.
Fortino® recently reported some experiments directed at a similar goal.
Given a general surface area progressivity relationship, useful a priori
interZor ballistic performance predictions are then possible. Of further
interest in our study is the effect of these parameters on the variability
of conbustion behavior. Unacceptably large ballistic variability has been
a major reason for the failure of consolidated propelling charges to find

‘4.0, Horst, T.C. Minor, "Ignition-Induced Flow Dynamics in Bagged-

Charge Artillery", 4th International Symposium on Ballistics, Monterey,
California, October 1978.

5A.A. Juhasz, I.W. May, "The Effects of Consolidation on the Burning

of Gun Propellants", 15th JANNAF Combustion Meeting, Chemical Propulsion
Information Agency, Laurel, MD, Publication 297, December 1978.

6F.E. Fortino, "Effect of Consolidation Parameters on the Burning of
Consolidated Propellant Charges', 1979 JANNAF Propulsion Meeting,
Anahzim, California, March 1973.
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their way into fielded gun systems. It must be noted at this point that
the parameters studied here are by no means all inclusive. Process
variables in the manufacture of consolidated propellants loom as serious

complicating factors which may severely restrict any generalizations of
our results.

3. EXPERIMENTAL DETAILS

In this study we restricted the scope to a consideration of two
generic propellant compositions, compacted by one consolidation technique

at several densities, and with two different igniters. Table 1 summarizes
the test matrix.

S ils ProEellants

Available, single-perforated, undeterred, single base (SB) and double
base (DB) propellants were chosen to be consolidated. Table 2 lists
the basic compositions and grain dimensions. There is nothing unusual
about their chemistry and they should, therefore, be considered as typical
single and double base compositions. The webs and, perhaps more Zmport-
antly, the grain length-to-diameter ratios (L/D), are quite different.
The single base propellant with a L/D of 4.24 can be expected to

consolidate somewhat differently from the double base propellant with
an L/D of 1.18.

3.2. Consolidation Process

The propellants chosen for this study were consolidated under Contract
DAAK11-77-C-0031 to BRL by Hercules, Inc.”7 The process is depicted sche-
matically in Figure 2. The propellant surface is softened by a vapor
solvation process before compacting and drying to the original presolvated
weight. It is unlikely that the basic chemistry has changed significantly
because of the consolidation process. Grain surface hardness changes are
likely, however, with possible effects on ignitability and low pressure
burning rates. The samples are molded into simple wafers with a diameter
of nearly 40 mm and a length of 25 mm. The wafers were circumferentially
inhibited with EA-946+. The coating covered the exposed outermost surface
of the propellant grains, but did not penetrate into the consolidated
charge. The samples were cemented into thin steel cylinders with fast
acting epoxy. This procedure prevents flamespread down the cylinder
walls of the wafers. Experimentally, it results in a more nearly one-
dimensional flame propagation.

. Seott, "Comnsolidated Propellant Charge Investigation,'" Volume 1:

Preparation of Consolidated Charge Increments,' Ballistic Research
Laboratory, Contract Report ARBRL-CR-00408, November 1979. (AD #B043967L)

*
Contract DAAKI1-77-C-0031
T4 product of the Hysol Division, Bendixz Corporation.

10
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3.3. Igniters

The two igniter configurations were -chosen to give what was felt to
be a reasonable, though not overpowering difference in output characteristics.
The M52 primer with 1 g of FFFG black powaer results in substantially
more rapid pressurization of the closed vessel than the relatively slow
electric match with the same amount of black powder. The differences are
readily apparent in Figure 3 which shows pressure-time characteristics
of the two igniters only. The closed vessel was filled with an appropriate
amount of inert filler. The '"harsh'" ignition obtained with the M52
primer results also in a higher final ignition pressure, and shorter
igniter functioning time.

3.4. Test Device and Measurements

A closed vessel, illustrated in Figure 4, with an internal diameter
of 40 mm was designed and built for this study. The steel-sleeved samples
were slipped into the vessel and cemented in place to prevent movement
during the experiment. A Kistler 607C piezoelectric gage was used to
measure pressure versus time. The data were acquired digitally on a
laboratory minicomputer, smoothed, and differentiated to obtain a Lusic
data file of pressure, dp/dt, and time.

3.5. Data Reduction

The data obtained from an experiment are analyzed using a computer
program, CBRED II. The program described previously by Price8 and
Juhasz® for the extraction of linear burning rates was modified to
allow the inverse process of extracting surface area given linear burning
rate information. The problem is, therefore, reduced to determining the
linear burning rate of the unconsolidated propellant using the same closed
vessel. The assumption is then made that the consolidation process has
not significantly affected the chemistry and hence the burning rate.
Finally the linear burning rate is then used to extract surface area
profiles, S/So, as a function of the fraction of propellant burned, z,
using CBRED II. This information can then be used directly in a suitable
gun interior ballistics model.

4. RESULTS

In the data to follow, it is important to keep in mind that in the

8Price, C.F., Juhasz, A.A., "A Versatile User-Oriented Closed Bomb
Data Reduction Program (CBRED)", Ballistic Research Laboratory R-2018,
September 1977. (AD #A049465)

9Juhasz, A.A., Price, C.F., "The Closed Bomb Technique for Burning Rate
Measurement at High Pressure", Experimental Diagnostics in Combustion
of Solids, ed. T.L. Boggs and B.T. Zinn, Vol. 63, Progress in
Astronautics and Aeronautics, [1978] 129.

14
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figures showing the surface area ratio, S/S,, as a function of the fraction
of propellant burned, S, represents the initial surface area for the
equivalent amount of loose, granular propellant.

4,1. Baseline Propellant Burning Rates

The results from standard closed vessel experiments on granular M1
and HES propellants are shown in Figure 5. Each propellant was burned
at 21°C with excellent reproducibility down to nearly 3 MPa. Burning
rate variability at low pressures is not at all uncommon for closed vessel
burning rate tests. It is usually ascribed to ignition and flamespread
variability. It should also be noted that the burning rate curves for
both propellants are linear only above 40 MPa. As expected the more
energetic double base propellant also burns substantially faster. For
each of zhe propellants an average burning rate table was constructed
for use in the surface-area ratio analysis.

To zest the internal consistency of the surface-area extraction
routine in CBRED II, S/S, was computed for the loose propellant data from
which the burning rate table was constructed. The results are shown in
Figures 6 and 7. Superimposed on the "inverse' experimental curves is
the ideal, single-perforated grain progressivity curve obtained from
purely geometric considerations. The agreement from 10 to 80 percent of
the fraczion burned is pleasing. Again, ignition and flamespread effects
as well as imperfect grain geometries are sufficient to explain the
discrepancies in the extremes. From this exercise it should be obvious
that the experimental variability for consolidated charges can only be
greater.

4.2, Grain Deformation

The effect of the mechanical deformation of the single grain geometry
is of inzerest. Figures 8 and 9 show samples of the base grain, the con-
solidated wafer, and mechanically broken-apart consolidated wafers. The
single base propellant (RAD 68108) was not graphited, the double base
propellant (HES 8567.11E) had a 0.02 percent graphite coating. Sample
deconsolidation was done by placing single wafers between the plateus
of a hydraulic press and pressing till initial wafer fracture took place.
The differences in the grain break-up characteristics between the single
and double base propellants are immediately apparent. Not so obvious,
although of perhaps greater significance, is the observation of much less
grain deformation with the lower L/D (1.18) DB propellant than with the
high L/D (4.24) SB propellant. Physically, the single base wafers are
stronger, presumably because of the greater intertwining of the longer
grains. Of interest also, is the observation that the mechanical decon-
solidation process results in granular aggregates of many different sizes.
Some grain fracture is also observed. For the Ml propellant grains, col-
lapse of the perforation is quite common. This is in distinct contrast
with the double base propellant.

17
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Deconsolidated, whole, single grains were collected for standard clored
vessel experiments. Assuming no geometry changes, pseudo-burning rates
were then extracted as shown in Figures 10 and 11. For the M1 propellant,
for which substantial perforation collapse is observed, the compaction
process has a noticeable effect on the pseudo-burning rate. This is in
distinct contrast to the double base propellant for which little change
is noted. Our interpretation is that the greater single base grain L/D
ratio is largely responsible for this effect, rather than any intrinsic
composition effects. For comparison, pseudo-burning rates assuming per-
fect single grain geometry are shown in Figure 12 for consolidated double
base wafers. The reduction in apparent burning rate due to the much
lower burning surface area in the consolidated propellant is dramatic.

To maintain ballistic equivalency in a gun firing, an approximately 50
percent reduction in web would be required in this particular case to
compensate for the reduced surface area.

4.3. Reproducibility

Experimental variability of consolidated charges appears to be quite
strongly correlated with compaction density. Figure 13 shows very poor
reproducibility is obtained for the low compaction density samples. At
high compaction densities much better reproducibility is observed as
shown in Figure 14. We speculate that the higher strength wafers are
much less susceptible to variations in igniter-induced grain break-up.

4.4. Compaction Density

Several trends emerge from the representative runs for the M1 propel-
lant shown in Figure 15. The low density runs show a degressive behavior
that is similar to the single grain-surface profile although at a sub-
stantially reduced surface area. The high density (1.35 g/cm3) surface
area profile gives strong evidence of enhanced progressivity if S, is re-
defined to be the initial surface area of the wafer at the end of the
ignition-flame-spread phase. The intermediate density results fall in
between the extremes. For the double base propellant data shown in Figure
16, the trends are not as clear. While the surface area decreases with
increasing compaction density for the M1 propellant, as one would eXxpect,
the double base wafers show no such clear trend. With some imagination,
the trend towards more progressivity with increased compaction density may,
however, still be discerned. The concept of a macroscopic progressivity
for consolidated propellants appears to be valid.

4.5. Ignition Effects

At the high compaction densities it was not possible to discern any
substantial igniter-related effects. Apparently, if the wafers are strong
enough to withstand a given ignition pulse, little changes in the combust-
ion behaviors are to be expected. A modest, though not well understood,
effect is, however, seen in the low density double base experiments shown

23
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in Figure 17. The '"soft" ignition shows a fairly normal behavior. The
initial overshoot in the surface area profile may be due to a small amount
of igniter induced wafer break-up which is then burned up and collapses

to the bulk wafer combustion mode. A rapidly damped, local pressure
disturbence can also explain the overshoot. The '"harsh" ignition case,
however, shows clear evidence of pressure waves in the dp/dt data. These
pressure wave disturbances then result in very erratic surface area profiles.
At this time, we speculate that the "harsh" ignition, besides inducing a
pressure wave disturbance in its own right, causes enhanced igniter-induced
wafer fracture which may amplify the pressure wave problem. For future
tests, it seems worthwhile to find the threshold ignition pulse which
begins to have substantial effects on the combustion behavior of a
consolidated charge of any compaction density.

Charge ignition delays were observed to be nearly 1.5 times longer
for the soft igniter configuration. 1In addition, M1 is substantially
less ignitable than the HES propellant as shown by a factor of two increase
in ignition delay times.

5. SUMMARY

The postulated fracture-and flamespread-caused macroscopic surface
area progressivity attributed to consolidated charges has indeed been
experimentally verified, at least for the M1 single base propellant wafers.
Figure 18 illustrates that even for the double base propellant an increase
in the surface area ratio over loose, single-perforated grains is obtained.
The compaction sensitivity of this phenomenon suggests that possibilities
exist for improving and controlling the surface area profiles.

Reproducibility has been found to be strongly related to compaction
density and, in this study, weakly ignition-dependent. We conjecture
that with a much stronger ignition pulse than our 'harsh'" igniter, a
larger igniter dependence might also be observed for the structurally-stronger,
high-compaction density wafers. This hypothesis will be tested in the
near future.

From the results of this experimental survey it has become apparent
that sample burning characteristics can be related back to charge strength
and base grain geometry characteristics. Some of the progressivity hoped
for from consolidated propellants has already been realized. Further
experimental efforts would do much to improve consolidated charge design
capabilities. In addition to grain L/D, wafer strength can be controlled
by other properties, such as presence/absence of graphite on the base
grain or the use of a '"binder" such as collodion in forming the base
grain. The binder coating on the grains could act as a chemical deterrent
as well. The combustion and progressivity characteristics of such samples
could be readily examined via the closed bomb technique. Further, flash
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x-ray diagnostics would be of great use in visualizing sample deconsolid-
ation processes during burning. Real advances in consolidated charge
design methodology can be realized through the interaction of preparation

techniques, combustion diagnostics, and theoretical and experimental
interior ballistic studies.
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