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As part of the Hypersonic International Flight Research Experimentation (HIFiRE) 

Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational 

fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier 

Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-

Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the 

simulations and combustor data from four representative tests were used as benchmarks. 

Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. 

Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were 

tuned such that the CFD results closely matched the experimental results. The tuned 

modeling parameters were used to establish a standard practice in HIFiRE combustor 

analysis. Combustor performance and operating mode were examined and were found to 

meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated 

CFD tools were then applied to make predictions of combustor operation and performance 

for the flight configuration and to aid in understanding the impacts of ground and flight 

uncertainties on combustor operation. 

Nomenclature 

A = cross-sectional area 

CC =  compressibility correction 

E = total energy flow rate 

h = enthalpy 

k = turbulent kinetic energy 

KE = kinetic energy flow rate 

momi = momentum components 

M∞ = flight Mach number 

n = unit vector 

P = pressure 

Prt = turbulent Prandtl number 

q∞ = flight dynamic pressure 

Sct = turbulent Schmidt number 

T = temperature 

U = velocity component 
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Uc = velocity correction term in separated flow average 

W = mass flow rate 

x = streamwise coordinate (x = 0 at engine throat), independent parameter 

XCH4 = methane mole fraction in ethylene-methane fuel mixture 

y = transverse coordinate 

y
+
 = non-dimensional distance from the wall in a turbulent shear layer 

Y = mass fraction 

z = spanwise coordinate 

 = generic CFD parameter 

 = turbulent dissipation rate 

 = fuel-air equivalence ratio 

B = burned equivalence ratio =  *c 

a = area correction term in separated flow average 

c = combustion efficiency deduced from CFD analyses 

 = MUSCL parameter  

 = density 

 = injection angle (relative to the wall) 

 = specific turbulent dissipation rate 

 

Subscripts 

i = species or component reference 

ideal = ideal condition 

P1 = primary injector 

S1 = secondary injector 

ref = reference condition 

T, Total = total or stagnation 

I. Introduction 

 collaborative international research effort, the Hypersonic International Flight Research Experimentation 

(HIFiRE) Program aims to study basic hypersonic phenomena through flight experimentation. A number of test 

flights are planned, with some designated to study the operation, performance, and stability characteristics of 

hydrocarbon-fueled supersonic combustors. Within this program, the HIFiRE Flight 2 (HF2) project team is led by 

the US Air Force Research Laboratory (AFRL) with the Australian Defence Science and Technology Organisation 

(DSTO) and NASA as vested partners. HF2 will utilize an alternative test technique, following a rocket-boosted 

suppressed trajectory, for acquiring high enthalpy supersonic combustion flight test data, and will explore Mach 8, 

hydrocarbon-fueled combustor performance and dual-to-scram mode transition in flight. Additionally, HF2 will 

incorporate in-stream laser-based instrumentation at the combustor exit plane. This instrumentation will use diode 

laser absorption spectroscopy to measure water concentration, temperature, and pressure in the combustor exhaust. 

A complete list of primary and secondary objectives for the flight experiment is presented in Table 1.
1
 

 The HIFiRE program follows the HyShot
2
 and HYCAUSE

3
 programs and aims to leverage much of the low-

cost flight test technique developed in those programs. HF2 will be a first of its kind contribution to accelerating 

supersonic combustion research. It will utilize suppressed trajectories using a sounding rocket propelled test article 

to enable studies of dual-to-scram mode transition and supersonic combustion performance. To date, the 

combination of CFD and ground tests has been used to develop the isolator/combustor flowpath for this flight 

experiment.
4
 In the current work, ground test results from a full-scale direct-connect flowpath are used in 

conjunction with CFD analyses to calibrate the numerical modeling parameters so that the CFD tools can be applied 

under similar conditions with improved confidence. This paper will summarize the ground test approach and 

benchmark ground test results identified for CFD validation. It will also describe the analysis tools, the approach 

used in the simulations, the specific analysis results, and comparisons of those results with the ground test data. 

A 
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II. Ground Test Summary 

 Figure 1 shows the isolator/combustor flowpath design that will be used in HF2 (flow direction is from left to 

right). This flowpath features a constant area isolator section, flush-wall fuel injection from primary (P1) and 

secondary (S1) injector sites, opposed cavity-based flameholders with spark plugs and injectors (CI) for ignition, 

and a constant divergence angle through the combustor (total included angle = 2.6°). The cross-sectional dimensions 

at the isolator entrance are 1-inch x 4-inches and the overall length is just over 28 inches. The width remains 

constant throughout the rectangular flowpath.
4
 

Table 1. Research objectives for HIFiRE Flight 2. 

Primary Objectives 

ID Description 

P1 Evaluate scramjet engine performance and operability through a dual-to-scram mode transition 

P2 Achieve combustion performance of B ≥ 0.7 at Mach 8 flight conditions using a hydrocarbon fuel 

P3 
Demonstrate a scramjet flight test approach that provides a variable Mach number flight corridor at 

nearly constant dynamic pressure 

Secondary Objectives 

ID Description 

S1 Provide a test bed for diode laser-based instrumentation 

S2 
Acquire high-fidelity core-flow measurements of combustion products (water) in a scramjet 

operating environment up through Mach 8 flight conditions 

S3 Evaluate the lean blow-out characteristics of a hydrocarbon fueled scramjet at or above Mach 8 

S4 Evaluate a gaseous fuel mixture as a surrogate for a cracked liquid hydrocarbon fuel 

S5 Validate existing design tools for scramjet inlet, isolator, combustor, and nozzle components 

 

 A full-scale direct-connect version of the flowpath shown in Figure 1 has been thoroughly characterized in 

NASA’s Arc-Heated Scramjet Test Facility (AHSTF).
5
 This test facility is commonly operated in free jet mode, but 

it has been modified to support direct-connect testing of this hydrocarbon-fueled flowpath. Test conditions covering 

the range of interest to the HF2 experiment (M∞ = 6 – 8) are achievable in AHSTF using three facility nozzles 

(nozzle exit Mach 2.51, 3.00, and 3.46). For this phase of HDCR testing, the Mach 3.0 nozzle was not used. The 

flowpath is a modular design using thermal barrier coated copper for the walls. It is heavily instrumented with 144 

pressure taps, 19 thermocouples, and four heat flux gauges. Various fuel injection configurations are available with 

this hardware. The baseline injection configuration, as shown in Table 2, was employed for all results shown in this 

paper. Cavity injectors were used for ignition only at Mach 8 enthalpy test conditions. For all cases considered in 

this paper, the combustor fuel was a binary mixture of ethylene and methane, where the methane mole fraction was 

XCH4 = 0.36.
6
 The fuel total temperature for all cases was 540°R. 
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Figure 1. Side view of isolator/combustor flowpath schematic. 
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 Table 3 shows the specific test cases identified for detailed analysis.
 7,8

 The inflow boundary condition for each 

case consisted of the conditions shown in the facility plenum. The facility nozzle was also modeled in each case. A 

one-dimensional heat transfer wall boundary condition was applied in the nozzle, using one backside wall 

temperature for the sidewall and one for the body and cowl sides. 

Table 2. Baseline fuel injection configuration. 

Injector Station 

Number of 

Injectors Diameter (inch)  (degrees) 

Body Cowl 

P1 4 4 0.125 15 

S1 4 4 0.094 90 

Table 3. Selected test cases for detailed analysis. 

Test Reference 

(Run #; time slice) 

Simulated 

Flight Mach 

Number 

Facility Nozzle 

Mach Number 

Plenum Conditions 

Total P1 S1TT 

(
o
R) 

PT 

(psia) 

123.1; 7.5 sec. 5.84 2.51 2790 215 0.65 0.15 0.50 

125.1; 12.0 sec. 6.5 2.51 3326 217 1.00 0.40 0.60 

135.6; 19.0 sec. 7.5 3.46 4297 634 1.00 0.30 0.70 

136.3; 18.0 sec. 8.0 3.46 4625 620 1.00 0.40 0.60 

 

 Measured pressure distributions from the four cases identified in Table 3 are shown in Figure 2. In each plot, 

pressure data are shown for both tare (fuel off) and fueled conditions. These plots include pressure measurements 

from all four walls of the flowpath. The isolator/combustor flowpath is also shown on each plot for reference. In 

each case, the combustion-induced pressure rise is clearly evident. For the Mach 5.84 and 6.5 conditions, the pre-

combustion shock train is positioned upstream of the primary injectors in the isolator. At the higher Mach number 

conditions, pressure rise begins very near the primary fuel injectors. 

III. Computational Resources 

 Three-dimensional CFD simulations were performed using the VULCAN and CFD++ codes. VULCAN
9
 is a 

structured, three-dimensional, cell-centered, multi-bock grid, finite volume flow solver for reacting and non-reacting 

fluids ranging from subsonic to hypersonic speeds. The fluid can be solved as a calorically perfect gas or as a 

mixture of thermally perfect gases. Steady state solutions can be obtained using a diagonalized approximate 

factorization (DAF) scheme or an incomplete lower/upper (ILU) factorization scheme. Wall matching functions and 

multi-grid methods for elliptic and space marching schemes are available to reduce computational cost. Flow solver 

capabilities include models for compressibility, Reynolds stress anisotropies, turbulent diffusivity, finite rate 

chemistry, and turbulence-chemistry interaction effects. Available turbulence models include several one and two-

equation models as well as large eddy simulation (LES) and hybrid Reynolds-Averaged Navier-Stokes (RANS) / 

LES options. 

 For the current work, steady state, thermally perfect solutions were obtained using the DAF scheme with the 

wall matching functions of Wilcox.
10

 The turbulence model used was the blended 1988 Wilcox k-ω and the Jones 

Launder k-ε model of Menter.
11

 The inviscid fluxes were solved using the low-diffusion flux split scheme of 

Edwards.
12

 To ensure that the solution would be total variation diminishing (TVD), the van Leer flux limiter was 

used. The monotone upstream-centered scheme for conservation laws (MUSCL) interpolation coefficient, κ, was 

chosen to be 1/3. The turbulent Prandtl number (Prt), which determines the turbulent transport of energy was set to 

be 0.89 for all of the cases. The turbulent Schmidt number (Sct), which determines the turbulent transport of mass, 

and the compressibility correction were varied to calibrate the model for all cases. The turbulence-chemistry 

interaction model used was the eddy dissipation concept (EDC) of Magnussen and Hjertager.
13

 This model allowed 

for significantly reduced computational requirements and is valid for mixing-limited solutions such as those in the 

current work. 
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 The VULCAN CFD solutions were one-dimensionalized using a mass-flux weighted average according to 

 
 
 







dAnU

dAnU







  (1) 

where is the variable to be one-dimensionalized, ρ is the density, U


is the velocity vector, n


 is the unit vector 

normal to the cross-sectional plane, and A is the area over which the average is being performed.  

 CFD++ is a general-purpose CFD tool developed by Metacomp Technologies.
14

 CFD++ uses a finite-volume 

numerical framework, with multi-dimensional TVD schemes and Riemann solvers for accurate representation of 

supersonic flows. Multi-grid acceleration is available to provide a fast and accurate solution methodology for both 

steady and unsteady flows. A variety of one-, two-, and three-equation turbulence models are available for RANS 

calculations, along with LES and hybrid RANS/LES options. Chemically reacting flows can be handled with a 

general finite-rate kinetics model or a user specified function for chemistry. The code supports both structured 

(quadrilateral and hexahedral) and unstructured (triangle, prism, and tetrahedral) grids. Message Passing Interface 

(MPI) is used to take advantage of modern parallel-processing computers. 
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 (a) Run 123.1, M∞ = 5.84 (b) Run 125.1, M∞ = 6.5 
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Figure 2. Pressure distributions from selected ground test cases. 
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 CFD++ has several types of Riemann solvers; the HLLC (Harten Lax van Leer Contact) Riemann solver with 

Minmod flux limiting was used in the current simulations. Unless otherwise specified, turbulence was modeled with 

the two-equation cubic k- model. This model has non-linear terms that account for normal-stress anisotropy, swirl, 

and streamline curvature. At solid surfaces, an advanced two-layer wall function with the blended mode of 

equilibrium and non-equilibrium was employed to reduce grid requirements. The turbulent Schmidt (Sct) and Prandtl 

(Prt) numbers control the modeled turbulent transport of mass and energy, respectively, and they were set to 

constant values. The value for Sct and the compressibility correction were varied to best match the experimental data 

shown in Table 3 and Figure 2. The value for Prt was selected to be 0.9. Chemical reactions were modeled using the 

reduced kinetic mechanism generated by the Princeton University
15

. This mechanism consists of 22 species and it 

was developed based on the detailed mechanism of Wang and Laskin.
16

 

 Three-dimensional CFD data were reduced to equivalent one-dimensional results using the separated-flow 

averaging technique. This method uses two distortion terms and results in the preservation of mass, momentum, and 

energy flows along with the pressure force and kinetic energy flow while introducing little artificial entropy gain. In 

this method, the projected areas (Ai), mass flow (W), momentum flows (momi), total energy flow (E), pressure force 

in each direction (PAi), and kinetic energy flow (KE) are determined by integrating the CFD solution. Species mass 

fractions are determined from the ratio of each species flow to the total mass flow. The static pressure is found using 

 
AA

AAP
P 






 . (2) 

The static enthalpy is determined from 

 
W

KEE
h


 . (3) 

The density, temperature, and entropy are then determined using the equation of state that was used in the CFD 

solver. Next, the velocity components are found using 

 z y,  x,= ifor  
W

PAmom
U ii
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 . (4) 

Finally, the extra distortion terms are found using 

    UUW

KE
U

AU

W
ca 







2
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 . (5) 

Typically, the distortion terms remain near unity for non-separated flows. In these cases, the separated flow 

averaging technique yields values that are very close to other averaging procedures. For separated flows like those 

encountered in shock trains and over cavity flameholders, the value of ηa decreases to mimic the effective flow area. 

 Burned equivalence ratio was computed at the combustor exit station using B =  * c. In this expression, the 

combustion efficiency at the combustor exit is computed based on static enthalpy change using 
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 , (6) 

where the reference condition is based on the mass flow rate at the isolator entrance, the total air flow rate, and the 

total fuel flow rate, and the ideal condition is determined from an equilibrium calculation using the static pressure 

and static enthalpy at the combustor exit station. Both VULCAN and CFD++ use this expression to compute 

combustion efficiency. 

 In order to judge whether a particular solution was converged, criteria were established for each code based on 

the established best practices. VULCAN solutions were considered converged when the mass flow error was less 

than 0.2% and the residual showed an order of magnitude decrease on the finest grid. For the CFD++ calculations, 

the relative change of mass conservation was reduced to about 0.1% and the residuals for the governing equations 

were no longer increasing. 
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IV. Ground Test Simulation Results 

 At the conclusion of the first phase of HDCR ground tests, CFD simulations were run to match selected ground 

test data and calibrate the tool input parameters. Several studies were conducted to determine the best grid size, 

appropriate turbulent Schmidt number, and application of a compressibility correction. The quality of the simulation 

was assessed by the location of the pressure rise in the isolator region and the magnitude of the pressure peak in the 

combustor. All of the results shown here were obtained with CFD++, but parallel studies performed with VULCAN 

produced similar results. 

A. Grid Sensitivity 

 Because the accuracy of the results can be strongly influenced by the size of the grid, two grids were run to 

determine whether a coarser grid would provide accurate, but computationally faster, results. Each grid represented 

one quarter of the rig geometry and included the facility nozzle. The coarse grid contained 1.4 million cells while the 

fine grid contained 11.1 million cells. As shown in Figure 3, the one-dimensional pressure results are very similar. 

Running on 96 processors, the fine grid required about two months to reach convergence whereas the coarse grid 

only required ten days. Because of the similarity of the results and the large reduction in run time, the coarse grid of 

1.4 million cells was chosen to run the CFD++ simulations in the rest of this paper. A similar study was performed 

using VULCAN, resulting in a grid size of 6.4 million cells with a maximum combustor y
+
 of 30. The VULCAN 

cases were run on 120 processors and required about 3 days of runtime. 

B. Turbulence Treatment 

 The turbulent Schmidt number is the ratio of the eddy viscosity to the eddy mass diffusivity. It controls the 

turbulent mixing rate of the fluids in a CFD simulation. Lower values of the turbulent Schmidt number enhance the 

turbulent mixing of the solution. Because the experimental data showed dual-mode operation at the low Mach 

numbers (5.84 and 6.5) and scramjet-mode operation at the high Mach numbers (7.5 and 8.0), at least two different 

turbulent Schmidt number values were anticipated. Each set of data (see Table 3) was run with varying Schmidt 

numbers to determine the best value for that set of data. Results are shown in Figure 4. The best match for runs 

123.1 and 125.1, which exhibit dual-mode operation, was Sct = 0.6. For scramjet-mode operation, as in runs 135.6 

and 136.3, the Sct was set to 0.3 to best match the data. Also, note that the compressibility correction (CC) was 

activated for the higher Mach number cases (runs 135.6 and 136.3). This parameter corrects the over-mixing of high 

speed shear layers predicted by two-equation turbulence models. In the HDCR geometry, the cavity region is a shear 

layer region of particular concern. Again, all of the baseline experimental data cases were run with the calibrated 

turbulent Schmidt number and with the compressibility correction factor on and off. The results are shown in Figure 

5. For runs 123.1 and 125.1, the best match is obtained with the compressibility correction turned off. The results 

calculated with the compressibility 

correction turned on show an overshoot in 

the pressure rise in the isolator as well as 

the cavity close-out. Also, the pressure 

does not match the data as well near the 

combustor exit. The higher Mach number 

data, runs 135.6 and 136.3, require the 

compressibility correction factor be turned 

on. Although the results with the 

compressibility correction turned off 

produce a better match at the combustor 

exit, the pressure data is matched much 

better in the isolator and cavity areas with 

the compressibility correction turned on. 

 Using the results of these input 

parameter studies, a standard practice was 

adopted for all of the HDCR data analyses 

and HIFiRE 2 flight predictions. Table 4 

shows parameter selections for dual-mode 

and scramjet-mode simulations using both 

CFD++ and VULCAN. 
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Figure 3. Grid sensitivity results of one-dimensional pressure, run 

136.3, M∞ = 8.0. 
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Figure 4. Sensitivity of one-dimensional pressure to turbulent Schmidt number. 
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Figure 5. One-dimensional pressure showing sensitivity to compressibility correction. 
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Table 4. Standard practice for HDCR and HF2 flight predictions. 

Operating Mode 
CFD++ Vulcan 

Sct CC Sct CC 

Dual-Mode 0.6 Off 0.5 Off 

Scramjet-Mode 0.3 On 0.325 On 

C. Results from Calibrated Tools 

 Combustor pressure distributions obtained from the calibrated CFD tools are shown in Figure 6 along with the 

companion data from the experiment. In these plots, the one-dimensional data from the CFD simulations are shown 

along with all of the measured pressure data from the experiment. During ground testing, an arbitrary constraint on 

isolator margin was applied during dual-mode operation in an attempt to account for anticipated uncertainties in the 

flight experiment (e.g., angle of attack, dynamic pressure, and fuel flow rate) and their influence on isolator 

operability. The station at x = 4 inches was selected (50% isolator length), and fuel distributions that positioned the 

pre-combustion shock train upstream of this location were deemed unsatisfactory for the flight fuel schedule. 

Several other features are worth noting in the figure. First, the general agreement between the two CFD codes is 

quite good, especially in the dual-mode operation cases, despite the fact that the grids, turbulence models, and 

combustion kinetics models are different between the codes. Second, using the calibrated input parameters, the 

comparisons with experimental data are also quite good. For dual-mode operation, the axial position of the pre-
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Figure 6. One-dimensional pressure distributions from experiment and CFD simulations. 
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combustion shock train is well-captured along with the peak pressure in the vicinity of the cavity flameholders. The 

start of the pressure rise and the peak pressure are also well-predicted in the high Mach cases. However, in the Mach 

7.5 and 8 simulations, CFD++ consistently underpredicts the level of pressure rise downstream of the cavity 

flameholders while VULCAN does a better job matching the experimental data in this region. Third, at higher Mach 

number conditions, the CFD codes generally overpredict the isolator entrance pressure (i.e., the pressure at x = 0 

inches). For these test conditions, it is expected that two elements combine to cause this phenomenon. The first is 

that the physical throat area of the facility nozzle is expected to experience some distress at the high stagnation 

temperatures and pressures required for simulating these flight conditions. Post-test nozzle throat height 

measurements have shown a nozzle height reduction of as much as 5.7% at Mach 6 and 5.4% at Mach 8. The second 

potential contributor is that, at the high stagnation temperatures encountered in these test conditions, there is a high 

probability of thermodynamic non-equilibrium in the air flow entering the isolator. Neither CFD code is currently 

equipped to model this phenomenon. Both of these observations would drive the CFD simulations to predict a 

higher static pressure entering the isolator. Details of these discrepancies can be found in Reference 8. 

 One-dimensional Mach number 

distributions through the 

isolator/combustor flowpath are shown in 

Figure 7 for the Mach 7.5 and 8 cases. The 

Mach number begins to drop sharply just 

downstream of the primary fuel injector 

location for both cases. As expected, the 

minimum Mach number occurs just 

downstream of the cavity ramp region 

followed by gradual acceleration to the 

combustor exit. As shown in Table 1, the 

flight engine must operate in scramjet-

mode at Mach 8. For the HF2 project, 

scramjet-mode is satisfied by meeting two 

criteria: no significant pressure rise ahead 

of the primary injector and a one-

dimensional Mach number (as verified 

through analyses) greater than unity 

throughout the flowpath. The results in 

Figure 6 and Figure 7 satisfy this 

definition of scramjet-mode for these 

inflow and fueling conditions, as the 

minimum Mach number in the flowpath is 

always supersonic and the pressure rise 

begins in the vicinity of the primary fuel 

injectors. 

 Finally, Table 5 contains combustion 

performance results from the cases 

studied. These results indicate good 

combustion efficiencies for all four cases. 

Recall that the two solvers used different 

mechanisms to solve for the chemistry in 

the reacting flow. Also, for the scramjet-

mode conditions, the CFD++ results 

underpredicted the combustor pressure 

downstream of the cavity flameholders. 

This leads to a commensurate 

underprediction of the wall pressure force 

(and, therefore, combustor exit stream 

thrust and combustion efficiency). As 

such, it is not surprising that the 

combustion efficiency results from the two 

codes are somewhat different, especially 
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Figure 7. One-dimensional Mach number distributions from CFD 

simulations. 
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for Mach 7.5 and 8.0 conditions. As noted in Table 1, the only combustion performance objective for this flight 

experiment is associated with the Mach 8 flight condition (B ≥ 0.7). The results shown in Table 5 for this condition 

suggest this objective can be met with substantial margin. 

Table 5. HDCR combustion performance results from CFD simulations. 

Test Reference 

(Run #; time slice) 

Simulated Flight 

Mach Number 

CFD++ VULCAN 

c B c B 

123.1; 7.5 sec. 5.84 86.8% 0.56 91.0% 0.59 

125.1; 12.0 sec. 6.5 85.9% 0.86 84.0% 0.84 

135.6; 19.0 sec. 7.5 81.2% 0.81 93.0% 0.93 

136.3; 18.0 sec. 8.0 83.6% 0.84 93.0% 0.93 

V. Flight Test Prediction Results 

 In order to predict the performance of the engine during flight, the flight geometry was run using the CFD 

model calibrated by matching HDCR data. The flight geometry is identical to the ground test geometry from the 

isolator entrance plane to the combustor exit plane. As illustrated in Figure 8, the flight geometry includes a 

forebody and inlet. The forebody surfaces commence with a nine-inch opening followed by opposing planar 

surfaces 32.8 inches long, at a constant 7° compression angle, leading to the inlet. The inlet is 4.8 inches wide and 

1.0 inch high at the mouth and 7.63 inches long with a 3° lateral compression on each sidewall. Details on the 

forebody and inlet design can be found in Reference 17. 

 Although a baseline fuel schedule was identified through ground testing, a slightly modified schedule will be 

tested in flight. The modified schedule delays the start of fueled operation slightly to take advantage of expanded 

operability margin at Mach 6.5. This change allows the flight fuel system to be simplified while still achieving all of 

the science objectives. Figure 9 shows the flight fuel schedule. By following this schedule, the flight test maintains a 

constant fuel split of P1/S1 = 0.4/0.6 during 

the test window. The total fuel-air 

equivalence ratio remains equal to 1.0 

from Mach 6.5 to 8 while transitioning 

from dual-mode to scramjet-mode 

operation. 

 CFD++ model predictions for one-

dimensional pressure versus axial location 

for nominal flight conditions are shown in 

Figure 10a. As expected, the analyses 

show that the pressure rise occurs ahead of 

the primary injector for Mach 6.0 and 6.5 

flight conditions, exhibiting dual-mode 

operation. Less than 50% of the isolator is 

utilized, allowing margin for uncertainties 

in the flight trajectory, angle of attack, and 

fueling levels. Between Mach 7.0 and 8.0, 

 

Figure 8. Side view of HIFiRE Flight 2 geometry. 
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the pressure rise is downstream of the primary injector, indicating scramjet-mode operation, as required by the flight 

science objectives (see Table 1). 

 The one-dimensional Mach number in the flight flowpath, as predicted by CFD++, is shown in Figure 10b for 

Mach 6.0, 6.5, 7.0, and 8.0 flight cases. As in the ground test data analyses, the Mach number drops sharply in the 

vicinity of the primary injector for Mach 7.0 and 8.0. Although the Mach 7.0 case does not meet the criteria for pure 

scramjet-mode (1-D Mach drops below 1.0), the Mach 8.0 prediction does meet the scramjet-mode definition and 

satisfies the flight science objectives. 

 Table 6 provides the burned fuel equivalence ratios, as calculated by the calibrated CFD++ model for four 

nominal flight cases. The flight requirement for B > 0.70 at Mach 8.0 is achievable and is predicted to be met with 

substantial margin. These results indicate that HF2 can be successful in meeting all objectives with the nominal 

flight trajectory. 

Table 6. Flight combustion performance results predicted by CFD++ simulations. 

M∞ q∞ (psf) TOTAL P1 S1 B 

6.0 1817 1.0 0.4 0.6 0.84 

6.5 1783 1.0 0.4 0.6 0.91 

7.0 1730 1.0 0.4 0.6 0.92 

8.0 1600 1.0 0.4 0.6 0.90 

VI. Conclusions 

 In support of HIFiRE Flight 2, experimental ground test data were chosen to calibrate the analysis tools used for 

flowpath analyses. This was accomplished for four ground test cases at different simulated flight enthalpies. The 

results were used to predict flight flowpath performance and ensure that margin exists in the flight hardware to 

successfully achieve all flight science objectives. 

 Several sensitivity studies were run using CFD++ and VULCAN computational codes to determine the best grid 

size, turbulent Schmidt number, and compressibility correction. A coarse grid was used in the analyses because it 

provided accurate results, but required less computational time to run. The turbulent Schmidt number was varied for 

all four test cases, but ultimately resulted in two calibrated values: one for dual-mode operation and another for 

scramjet-mode operation. At low Mach, dual-mode simulations, the compressibility correction is not required to 

match experimental data, but at high Mach, scramjet-mode simulations, it proved beneficial. These studies provided 

a standard practice to be used in all HIFiRE Flight 2 analyses, including ground test data calibration and flight 

performance predictions. Comparisons between the results calculated by CFD++ and VULCAN were favorable, 

providing confidence in the simulations. 

 Using the calibrated CFD model, flight simulations were run for four trajectory points. The results show that all 

combustion performance flight science objectives can be met. Dual-mode operation was demonstrated at Mach 6.0 
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through 7.0. At Mach 8.0, the model predicts no significant pressure rise ahead of the primary injector and a one-

dimensional Mach number greater than unity throughout the flowpath. These two criteria define the required 

scramjet-mode operation in flight. In addition, the model predicts a burned fuel equivalence ratio of 0.90 at Mach 

8.0, providing confidence that the burned fuel equivalence ratio in flight will be at least 0.70, as required. 

 Once the HIFiRE Flight 2 experiment is successfully completed and the data has been analyzed, the calibration 

of CFD tools described here will be verified. This information will be valuable in future flight projects as a means to 

bridge the differences between direct-connect ground tests and atmospheric flight tests of dual-mode scramjet 

engines. 
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