
Comet:

odel-Based Reasoning to Accounting Systems

Robert Nado, Melanie Chams, Jeff Delisio, and Walter Hamscher

Price Waterhouse Technology Centre

68 Willow Road

Menlo Park, CA 94025-3669

{nado chams delisio hamscher)@tc.pw.com

Abstract

An important problem faced by auditors is gauging

how much reliance can be placed on the accounting

systems that process millions of transactions to

produce the numbers summarized in a company’s

financial statements. Accounting systems contain

internal controls, procedures designed to detect and

correct errors and irregularities that may occur in the

processing of transactions. In a complex accounting

system, it can be an extremely difficult task for the

auditor to anticipate the possible errors that can occur

and to evaluate the effectiveness of the controls at

detecting them. An accurate analysis must take into

account the unique features of each company’s

business processes. To cope with this complexity and

variability, the Comet system applies a model-based

reasoning approach to the analysis of accounting

systems and their controls. An auditor uses Comet to

create a hierarchical flowchart model that describes

the intended processing of business transactions by an

accounting system and the operation of its controls.

Comet uses the constructed model to automatically

analyze the effectiveness of th< controls in detecting

potential errors. Price Waterhouse auditors have used

Comet on a variety of real audits in several countries

around the world.

Auditors have the task of determining whether the financial

statements of a company are a fair presentation of the

company’s financial position. An important problem faced

by auditors is gauging how much reliance can be placed on

the accounting systems that produce the numbers

summarized in the financial statements. Accounting

systems contain internal controls, procedures designed to

detect and correct errors and irregularities that may occur

in the processing of transactions. In a complex accounting

system, it can be an extremely difficult task for the auditor

to anticipate the possible errors that can occur, to

determine their downstream effects in the accounting

system, and to evaluate the effectiveness of the controls at

detecting them. An accurate analysis must take into

account the unique features of each company’s business

processes. To cope with this complexity and variability, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1482 IAAI-96

the Comet system applies a model-based reasoning

approach (cf. Hamscher et al., 1992) to the analysis of

accounting systems and their controls.

Comet supports the creation of hierarchical flowcharts

that ultimately describe the processing of business

transactions in terms of a set of primitive activities for

operating on records and a set of controls for detecting and

correcting errors that may occur in the processing. Using

knowledge of the basic ways in which the primitive

activities can fail, Comet finds potential failures that can

occur in the accounting system and uses the structure of

the flowchart to analyze the impact of those failures on the

validity of the accounts. Comet then matches each

potential failure to the set of controls capable of detecting

it and evaluates the effectiveness of the controls in

reducing the risk that the potential failure will go

undetected. Finally, Comet ranks the controls with respect

to their relative contribution to reducing the risk of

undetected failures and selects a subset of key controls

whose proper operation should be tested.

In the United States, the SEC requires a yearly

independent audit of the financial statements of public

companies. Other countries have similar requirements. An

accounting firm that is engaged to perform an audit of a

public company has the task of issuing an opinion on

whether the financial statements are a fair characterization

of the financial position of the company and follow

generally accepted accounting principles. The numbers

that appear in the financial statements are typically the

accumulated results of thousands, even millions, of

detailed financial transactions in which the company has

participated over the previous year.

There are two main approaches that can be taken to

assessing the accuracy of financial statements. The

substantive approach attempts to obtain evidence of the

validity of financial statements by examining records of

detailed transactions and applying analytical methods to

gauge the reasonableness of the reported numbers. By

contrast, the systems-reliant approach focuses not on

From: IAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

verifying the numbers themselves but on assessing the

adequacy of the accounting systems that produced the

numbers. In taking a systems-reliant approach, an auditor

looks at the internal controls that are in place in the

accounting systems and evaluates their effectiveness in

detecting and correcting errors that may occur in

processing transactions.

For example, a company’s “purchases and payables”

system handles transactions involving the purchase of

goods from suppliers. Such a system is designed to receive

and record purchase orders, transmit them to suppliers,

ensure that goods are received, payables recorded, and the

supplier eventually paid for goods received. In auditing

such a system, it is important to focus not so much on the

computer system itself but on the business processes which

it supports. A business process usually contains both

manual and computerized steps and is partially performed

by parties outside the company.

There are many things that can go wrong in a purchases

and payables system. For example:

e An invoice may be received from a supplier for goods

which were never ordered or received.

e The quantity or price of goods listed on the invoice

may be incorrect, either due to an error at the supplier

or because of an operator error in entering the invoice

into the computer system.

e A fictional invoice may be entered into the system as

part of an attempt to defraud.

In order to detect and correct such problems, a purchases
I and payables system should contain a number of internal

controls. For example:

0 Invoices that have been entered on to the computer

system should be matched to corresponding purchase

orders and records of goods received, with quantities

and prices agreed. Although the matching process can

be computerized, any discrepancies will generally

need to be manually investigated and resolved.

0 Access to the computer system for data entry should

be restricted to authorized personnel by means of an

appropriate security system.

e Data entry of an invoice should not be performed by

the same person who later authorizes or reviews the

invoice.

In practice, any given audit will combine elements of

both the substantive and system-reliant approaches with

the relative emphasis dependent on the particular

characteristics of the business and its components. With

large companies that have complex, computerized

accounting systems processing vast numbers of

transactions, the systems-reliant approach is becoming

increasingly important, both to obtain adequate audit

evidence and to reduce the cost of the audit. A specialized

category of auditor, called a CIS (Computerized

Information Systems) auditor’, brings to bear skills in both

accounting and systems analysis to carry out a systems-

reliant audit approach.

In order to take a systems-reliant approach, a @IS

auditor must obtain and document an understanding of

how an accounting system processes business transactions

and of the internal controls that are in place. In preparing

this “model”, the auditor may make use of available

systems documentation from the client. However, systems

documentation generally is not prepared from an audit

point of view. It may explain how the system works in

great detail, but generally does not contain adequate

information on controls, does not have a business process

focus, and omits the manual components of the business

process. The auditor must supplement information

obtained from documentation with observation of the

system in operation and interviews with key personnel.

In determining the effectiveness of controls, it is

important to distinguish the role of a control in the design

of an accounting system from how well it is performed in

practice. By analyzing the processes and data flows of an

accounting system, an auditor attempts to determine those

controls that play key roles in the prevention and detection

of errors that may affect the validity of the financial

statements. In order to obtain sufficient comfort that the

system is actually operating as designed, the key controls

need to be tested to ensure that they are being properly

performed.

For complex accounting systems, a thorough and

accurate controls evaluation is almost impossible to

perform efficiently without some form of computer-based

support. There are many different possible sources of

error, some of which may be overlooked. It is extremely

difficult to manually trace the effects of possible errors

through the transaction processing to determine whether

they are significant to the audit. There may be redundancy

in the coverage of errors by controls, but detailed analysis

is required to determine this with confidence. Because

systems evolve rapidly, it is costly to determine the impact

of system changes on controls effectiveness. Most

importantly, human fallibility in the face of complex

systems can lead to costly consequences.

Prior to Comet, CIS auditors have used a combination of

flowcharting software and controls checklist software in

their evaluation of controls. Commercial flowcharting

software can be used to document major activities carried

out in an accounting system but the result is not in a form

that allows automated analysis. Checklist software is

populated with libraries of controls that could be expected

to be found in a client’s system to address the major areas

of risk. Although different libraries of controls can be

1. Variously called an EDP (Electrow Data Processmg) auditor, or an

ISRM (Information Systems Risk Management) auditor

Case Studies 1483

developed for the major components of generic accounting

systems as well as for different accounting software

packages, it is difficult to tailor checklist software to

reflect the varying characteristics of different industry

sectors and the idiosyncratic aspects of a particular client’s

implementation. Furthermore, controls checklist software

takes no advantage of the information captured in

flowchart documentation.

The development of Comet was motivated by the

intuition that an accounting system can be hierarchically

decomposed into a structure that bottoms out in instances

of a small set of primitive types of actions for processing

records and for implementing internal control. Provided

that the behavior of the primitive activity and control types

can be suitably characterized, a model-based approach can

be taken to the analysis of failures and their detection by

internal controls. As a consequence, the auditor can

concentrate on developing an accurate model of the

accounting system under review, with Comet automating

the more burdensome aspects of controls evaluation.

Application Description

Although model-based reasoning has been previously

applied to financial domains, the models have generally

consisted of equations and constraints representing the

relationships between financial and microeconomic

quantities [Bouwman, 1983, Hart et al., 1986, Bridgeland,

1990, Hamscher, 19941. Comet is novel in its application

of a model-based approach to analyzing systems for

processing financial records.

Basic Modeling Concepts

Accounting systems process records of business

transactions through activities that create, use, alter. and

store those records. Comet represents the processing

performed by an accounting system as a hierarchically

structured flowchart graph. The two most important kinds

of nodes in a Comet flowchart are collection nodes and

activity nodes. Collection nodes represent repositories of

records, which may be in either paper or electronic form.

Activities are represented hierarchically, starting with

nodes representing activities at a high-level of abstraction

and progressively decomposing them until nodes

representing primitive activities are obtained.

Figure 1 shows the top-level flowchart of PURCHASE,

a model of a simple Purchases and Payables accounting

system. The top-level flowchart is intended to give a high-

level overview of the system, indicating the major

activities performed by the system, the relevant general

ledger accounts, and important collections of records that

are accessed and updated by the processing of a

transaction. Activity nodes are distinguished by having a

rectangular icon in their lower-left comer. Collection

Figure I: A Top-Level Flowchart

1484 IAAI-96

Figure 2: Expansion of the Payment Activity

nodes have a trapezoidal icon for paper records and a

cylindrical icon for electronic records. Nodes representing

general ledger accounts contain a “boxed T” icon. There

are two kinds of arcs connecting nodes in the flowchart.

The solid arcs represent data flow relationships between

activities and collections. The dashed arcs represent

precedence relationships between activities; the activity at

the tail of a dashed arc must be completed before the

activity at the head of the arc can proceed.

The Order Processing activity prepares a Purchase

order, which is sent off to a Supplier to be filled and also

recorded in the Orders DB. When the Supplier fills the

order it sends a goods received note (GRN) and an invoice

along with the goods. The Goods receiving activity records

the GRN in the GRN DB and tries to match it up with a

corresponding record in the Orders DB. The Purchase

invoice activity records the invoice from the Supplier in

the lnvozces DB and compares it with the corresponding

record on the Orders DB. If a matching order can be

found, the Purchase invoice activity posts a credit to the

Creditors account and a debit tc the Expenses account.

The Payment activity periodically extracts invoices that

are due for payment, prepares checks for payment to

suppliers, debits the Creditors account, and credits the

Cash account.

Since the top-level flowchart of PURCHASE gives a

high-level overview of the system, it contains no primitive

activities or controls. Each of the top-level activity nodes

has a decomposition into a sub-flowchart that gives more

detail about how that activity is performed. Figure 2 shows

the flowchart for the decomposition of the Payment

activity; it may be reached by double-clicking on the

Payment node in the top-level flowchart. The nodes in

Figure 2 that have dashed light-gray borders are called

reference nodes; they refer to collections whose primary

depiction is elsewhere in the flowchart. When an activity

node is decomposed, each collection node to which it is

directly connected has a reference node automatically

created in the sub-flowchart. The reference nodes allow the

input and output collections of the top-level activity to be

referenced by the activities in the sub-flowchart.

Comet contains a predefined vocabulary of activity and

control types, called verbs, that are used as a focal point

for organizing the knowledge that Comet contains about

accounting systems and their controls. Some verbs, such as

transfer, copy, create, merge, jnd, compute, and copy-

field, represent typical operations on records that are

Case Studies 1485

I- Creator of Itwolces DE should precede Extract Invoices for payment

L Creator of GRN should precede @ata input

Purchase invoice processing

Figure 3: Example Review Dialog Box

treated as primitive by Comet. Other verbs, such as

maintain-standing-data and data-entry, represent

processing patterns that are common enough that Comet

provides automatic decompositions for nodes using those

verbs. For describing internal controls, Comet provides a

set of control verbs, including authorize, compare-agree,

grant-access, reconcile, and review. The verb associated

with an activity or control node is indicated in the display

of that node using a one or two letter code inside the icon

in the lower-left comer.

Figure 2 contains four primitive activity nodes with the

verbs extract (EX), copy (CO). debit (DR) and credit

(CR). Figure 2 also contains foul control nodes (the nodes

with the circle icon) using two different control verbs,

authorize (AU) and review (R). In addition to nodes

representing collections, activities, and controls, Figure 2

contains three smaller, rectangular nodes, called selectors.

Selector nodes are used to indicate the fields of records

that are accessed or modified by activities. For example,

the selector node between the Debit Creditors activity and

the Creditors account indicates that the debits involve a

field called Value.

Model-building Support

The analysis performed by Comet depends for its validity

on the accuracy of the models that it operates on. Auditors

attempt to verify the accuracy of a model by walking

through the transaction processing steps specified in the

model, checking for matching steps performed in the

modeled system. Ideally, the walkthrough is performed by

a person not involved in the mods1 preparation. Although

Comet cannot ensure that the models constructed by users

are, in fact, accurate representations of the modeled

accounting systems, Comet incorporates a number of tools

to aid in the construction of models that are at least

internally consistent and that contain enough detail to

support Comet’s analysis.

Each type of node has an associated set of declarative

constraints on the ways that a node of that type may be

correctly connected by arcs to neighboring nodes. For

example, a Credit activity node must have exactly one

input collection and at least one output collection. Every

output collection must be an account. Finally, there must

be selector nodes intervening between the Credit node and

each of its output accounts giving the fields that are posted

to the accounts. As the user edits a model. Comet

monitors the constraints on each node and draws a red flag

on those nodes whose constraints are not satisfied. For any

node with a red flag. the user may obtain an explanation of

the unsatisfied constraints.

Comet contains a number of review commands for

examining the completeness and consistency of a model:

0 Finding all nodes with violated syntactic constraints

0 Finding all unexpanded generic activity nodes

e Finding control nodes that have been incompletely

described

0 Finding inconsistencies between the fields read from a

collection node and the fields written to it

0 Finding activity nodes that access records fi-om a

collection node without having a preceding activity

node that creates records on the collection

0 Finding inconsistencies between the inputs and

outputs specified for an activity node and for its sub-

flowchart

The results of the review commands are presented in the

form of dialog boxes that allow convenient navigation to

the points where problems occur in the model (cf. Figure

3).

eneration and Propagation

Comet categorizes the errors and irregularities that can

occur in an accounting system into three broad categories

of failure corresponding to the focus on the processing of

1486 IAAI-96

Figure 4: Failure Coverage Risks

records. A missing failure occurs when an activity that

should have produced a record as output fails to do so. A

spurious failure occurs when an activity produces an

unauthorized or duplicate record as output. Finally, an

incorrect failure occurs when an activity produces an

incorrect value for a field in a record. An incorrect failure

is associated with the name of the affected field. Each

primitive activity type has associated with it the categories

of failure to which it may give rise.

The first stage of Comet’s analysis of a model generates

the set of potential failures corresponding to each of the

primitive activities in the model. Comet then determines

which of the potential failures have audit significance. A

failure has audit significance if its downstream effects in

the flowchart model could cause any of several types of

disagreement between the transactions that actually

occurred and the way that they are recorded in the

accounts. Comet works backwards in the flowchart from

the account collections using a few fixed simple rules for

the different primitive activity types to determine how

failure effects on an output collection may be produced

from failure effects on input collections. The result of this

stage is to determine for each potential failure the impact

that it may have, if any, on the validity of each account

collection.

When constructed at a level of detail appropriate to the

control evaluation task, a Comet model typically contains

on the order of hundreds of primitive activities. Since

each of these can fail only in a small number of ways, it is

a tractable task to enumerate the set of potential failures

and to determine their effects on the validity of accounts.

Control Evaluation

In order to evaluate the controls documented for an

accounting system, Comet assesses for each potential

failure with audit significance the likelihood that, if it

occurs, it will not be detected by any control in the system.

We call this likelihood, for a given failure, its failure

coverage risk. To determine whether the potential failures

are adequately covered by detecting controls, a CIS auditor

using the system is required to associate with each account

an allowable risk level. The allowable risk is the highest

level of risk the auditor is willing to accept that any failure

that occurs and is relevant to the account is not detected by

any control.

Figure 4 shows a table generated by Comet of those

potential failures generated for the PURCHASE model that

have audit significance and the failure coverage risks that

have been determined for them. Certain controls in a

Comet model may be designated as proposed; proposed

controls are used to explore the effects of recommending

to the client that additional controls be added to the

accounting system to address control weaknesses. The

failures table in Figure 4 contains two columns listing

failure coverage risks in percentage terms. The first

Case Studies 1487

column (Prop) gives the failure coverage risk taking into

account both proposed controls and controls that are

actually present in the modeled system; the second column

(Act) takes into account only controls that are actually

present. If a failure coverage risk is above the allowable

risk level for one of the accounts that the failure affects,

that failure coverage risk is highlighted by enclosing it in

brackets. A failure with a bracketed failure coverage risk

indicates a potential control weakness in the accounting

system that the CIS auditor should carefully examine.

In determining the failure coverage risk for a failure,

Comet first determines the set of controls in the flowchart

model that are relevant to the detection of the failure and

then assesses, for each relevant control, the likelihood that

the control will fail to detect the failure, called the control

detection risk. The failure coverage risk for a failure is

determined by multiplying together the control detection

risk for each control that could detect the failure. The risks

are multiplied together because we assume that the

controls operate independently, and for a failure not to be

detected, all of the potentially detecting controls would

have to miss it.

In assessing the control detection risk for a given control

and potential failure, Comet takes into account three

different factors -- control strength, control defeat, and

control attenuation:

Control strength is an assessment of the intrinsic

effectiveness of the control, based on its type and how

well it is performed. In Comet, the control strength is

initially determined from the answers supplied by the

modeler to a generic series of questions about how the

control is performed. The control strength may be

later adjusted as a result of testing the control.

Control defeat is an assessment of the degree to which

a control is rendered ineffective by problems with the

maintenance of reference data upon which it depends.

For example, a control cannot be relied upon if the

maintenance process for a database of information that

it employs has potential failures that are not

sufficiently mitigated by controls.

Control attenuation is a measure of the degree to

which the effectiveness of a control is reduced by the

distance in the flowchart between the control and the

primitive activity whose failure it may detect. Control

attenuation varies with the type of control and the

types of the activities along the path from the control

to the failing activity.

Key Controls Selection

A set of key controls is a subset of controls in the model

that is sufficient to adequately mitigate the risk of all those

potential failures that both have audit significance and are

adequately mitigated by the full set of controls. Since

placing reliance on a set of controls requires that the

controls be tested for proper operation, testing costs can be

reduced by choosing a minimal set of key controls.

Unfortunately, the problem of finding a minimal set of key

controls is a computationally intractable minimal set

covering problem. Comet uses a greedy algorithm that

works well in practice, but does not guarantee a minimal

set.

In selecting a set of key controls for testing, Comet uses

a relative measure of the importance of a control in

reducing the failure coverage risk of potential failures; this

measure is called control contribution. The control

contribution for a control is relative to a set of failures, F,

to be covered, and a set of controls, C, to be compared. At

each point in the selection process, the set F consists of

those potential failures whose risk is sufficiently mitigated

(with respect to allowable risks) by the complete set of

controls in the model, but not yet by those controls already

selected for testing. The set C consists of those controls

not yet selected for testing. If there are any failures in F

that have unique detectors in C with a control detection

risk that is less than 1, all these unique detectors are added

to the set of key controls. Otherwise, the next control

selected for addition to the key controls is that control with

the highest control contribution relative to F and C. The

algorithm terminates when the set F is empty or there are

no controls in C with non-zero control contributions.

Performance

Comet has been successfully used by Price Waterhouse

CIS auditors to construct and analyze models of complex

client accounting systems. A representative example is a

stock trading room system whose Comet model has a total

of 934 nodes, including 2 17 primitive activities, 104

composite activities, 118 collections, and 139 controls.

Comet’s analysis produced 709 potential failures, of which

338 were found to have an impact on the validity of

accounts and 68 were potential defeators of controls. Of

these relevant failures, all but 17 were found to be

adequately covered by the controls in the system. Comet

found 60 controls to be key and therefore candidates for

inclusion in a plan for testing controls. The total time

required for the analysis was under 30 seconds on a 66Mz

Pentium PC.

Application Use an

A Beta release of Comet has been used on a pilot basis by

Price Waterhouse CIS auditors on a variety of real audits

in several countries around the world, including Australia,

Argentina, Brazil, India, Malaysia, Mexico, the U.S., the

U.K., and much of Western Europe. The pilot audits have

involved clients from a representative cross-section of

different industries, including banking, insurance, oil and

gas, manufacturing, and entertainment. The official 1 .O

version of Comet was released this April.

1488 MI-96

The CIS audit partners and managers who have

supervised the pilot audits believe, based on their

experience, that use of Comet will lead to a significant

improvement in auditor productivity. It is difficult at this

point to reasonably estimate the size of the gain as a

number of factors must be taken into account:

0 The nature of the work performed changes with use of

Comet. Business processes and their controls are

documented to a greater level of detail and more

rigorously than they would have been previously. This

increases the documentation cost but the analysis

performed by Comet allows the auditor to spend much

less time anticipating possible errors and thinking

about the controls available to detect and correct

them. The increased detail and rigor of the models in

conjunction with the analysis performed by Comet

allows a greater reliance to be placed on controls with

a comparable level of auditor effort.

0 There is a nontrivial learning curve that applies to

efficient use of Comet to model and analyze systems.

Experience on the pilot audits suggests that it takes a

typical user three to four jobs before they become

truly proficient in the use of Comet. Part of what a

user needs to learn through evperience is the choice of

an appropriate level of detail at which to model a

system. Enough detail needs to be added to allow a

useful Comet analysis to be performed; too much

detail adds to the modeling cost without an additional

payoff from the analysis.

e The cost of using Comet to model a system and its

controls can be more effectively amortized over

several years than previous methods of documenting

the system. Comet is most appropriately used in a

“year of change” , either when a new or substantially

updated system has been installed by the client or with

a new client. In subsequent years, when minor system

updates occur, the Comet model can be quickly

updated and the impact of the changes on controls’

effectiveness analyzed. This justifies somewhat

greater initial modeling effort in the year of change as

the work that needs to be performed in subsequent

years is reduced.

0 Use of Comet can reduce the cost of testing. Because

of the difficulty of manually performing a thorough

and precise evaluation of controls, there is a

temptation to perform more detailed testing of

transaction records than v * uld be required if the

controls work could be done ; tore efficiently. Comet’s

ability to automatically gen :rate lists of key controls

also leads to more focused controls testing, as each

control to be tested has been determined to make an

important contribution to mitigating the risk of

possible failures in the systent.

e Comet’s rigorous analysis can uncover both control

weaknesses and control redundancies, leading to

recommendations to the client that are a key value-

added function of the audit.

Application evelopment and Deployment

In 1991, the Savile project was begun at the Price

Waterhouse Technology Centre to examine the potential of

applying a model-based approach to evaluating accounting

systems and their internal controls. An initial prototype,

also called Savile, was developed in Lucid Common Lisp

running on a UNIX workstation to establish proof of

concept. The record processing performed by an

accounting system was described using an imperative

programming language called SPLAT. Expressions in the

SPLAT language were transformed into a causal network

to support the evaluation of controls (Hamscher, 1992).

The CIS audit community within Price Waterhouse

responded enthusiastically to the Savile prototype and

resources were authorized to implement the Savile

approach on the standard platform found in Price

Waterhouse practice offices -- IBM PC clones running

Microsoft Windows. In late 1992, work began on

developing a more graphical form of representation for

Savile models that would both support a highly interactive

flowcharting system and support the analysis of failures

and evaluation of controls. Franz Inc’s Allegro Common

Lisp for Windows was chosen as the implementation

language to support rapid application development in the

Windows environment.

Since early 1993, an average of three full-time

programmers have worked on the development of Comet.

In addition, the involvement of CIS auditors was critical to

developing a system that matched the requirements of the

CIS audit task. A senior CIS manager was assigned to the

Price Waterhouse Technology Centre for two months in

1994, two months in 1995, and one month in 1996 to work

intensively with the Comet developers to refine the system

design.

CIS audit staff have developed a training course in the

effective use of Comet in response to increasing worldwide

demand. To date, approximately 20% of the total number

of CIS auditors in Price Waterhouse firms worldwide have

taken the course. In the European firm, all CIS auditors

with more than one year of experience are being trained in

the use of Comet and it is the recommended tool for use

with relatively complex client systems.

Maintenance

As a model-based application, Comet does not contain a

large knowledge base encoding expert experience in the

domain of CIS audit. This eliminates the often difficult

Case Studies 1489

issues surrounding knowledge base update and

maintenance. Rather, the behavior of Comet’s analysis

engine is a product of the properties of a small set of

primitive activity and control types and the structure of the

particular accounting system model being analyzed. The

set of primitive activity and control types has been

remarkably stable over the course of Comet’s development

and has been found adequate to model a large variety of

different client systems encountered during the pilot audits.

After the official release of Comet, responsibility for

evolutionary development will transfer from the R&D

group in the Price Waterhouse Technology Centre to a

Price Waterhouse organization responsible for supporting

audit-related software.

Conclusion

Most applications of model-based reasoning have been to

engineering domains. Comet applies model-based

reasoning techniques to a new task domain, the analysis of

the effectiveness of controls in accounting systems.

Because of the complexity and variability to be found in

realistic accounting systems, CIS auditors have difficulty

evaluating controls to the level of detail required to place a

high degree of reliance on systems when performing an

audit of a company’s financial statements. Comet allows a

CIS auditor to focus on building a model that accurately

describes the accounting system, then makes use of that

model to automate the analysis of the adequacy of the

controls for detecting potential errors in the system.

Demand from the Price Waterhouse CIS audit community

for deployment of Comet has been high because it is an

effective tool in support of delivering high-quality audits to

clients.

Acknowledgments

We would like to acknowledge the contributions of two

Price Waterhouse CIS auditors who have been

instrumental in the development and deployment of

Comet. Pat Russell gave us early guidance on the issues of

importance to CIS audit and has been a tireless champion

of Comet within the firm. Robert Halliday worked

intensively with us on key design issues and has been our

day-to-day liaison with the CIS audit practice, giving us

numerous suggestions on how to make Comet more useful

to the CIS auditor.

References

Bouwman, M. J. 1983. Human diagnostic reasoning by

computer: An illustration from financial analysis.

Management Science, 29(6):653-672.

Bridgeland, D. M. 1990. Three qualitative simulation

extensions for supporting economics models. In

Proceedings of the Sixth Conference on Artificial

Intelligence Applications, 266-273. Los Alamitos, Calif.:

IEEE Computer Society Press.

Hamscher, W. C. 1992. Modeling Accounting Systems to

Support Multiple Tasks: A Progress Report. In

Proceedings of the Tenth National Conference on

Artificial Intelligence, 5 19-524. Menlo Park, Calif.: AAAI

Press/ The MIT Press.

Hamscher, W. C., Console, L., and de Kleer, J. eds. 1992.

Readings in Model-based Diagnosis. San Francisco,

Calif.: Morgan Kaufmann.

Hamscher, W. C. 1994. Explaining Financial Results.

International Journal of Accounting, Finance, and

Management, 3(l): l-19.

Hart, P. E.; Barzilay, A.; and Duda, R. 0. 1986.

Qualitative reasoning for financial assessments: A

prospectus. AI Magazine, 7(1):62-68.

1490 IAAI-96

