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Abstract Comparative molecular field analysis (CoMFA)
and comparative molecular similarity indices analysis
(CoMSIA) based on three-dimensional quantitative struc-
ture–activity relationship (3D-QSAR) studies were
conducted on a series (44 compounds) of diaryloxy-
methano-phenanthrene derivatives as potent antitubercular
agents. The best predictions were obtained with a CoMFA
standard model (q2=0.625, r2=0.994) and with CoMSIA
combined steric, electrostatic, and hydrophobic fields
(q2=0.486, r2=0.986). Both models were validated by a
test set of seven compounds and gave satisfactory predictive
r2 values of 0.999 and 0.745, respectively. CoMFA and
CoMSIA contour maps were used to analyze the structural
features of the ligands to account for the activity in terms of
positively contributing physicochemical properties: steric,
electrostatic, and hydrophobic fields. The information
obtained from CoMFA and CoMSIA 3-D contour maps
can be used for further design of phenanthrene-based
analogs as anti-TB agents. The resulting contour maps,
produced by the best CoMFA and CoMSIA models, were
used to identify the structural features relevant to the
biological activity in this series of analogs. Further analysis
of these interaction-field contour maps also showed a high
level of internal consistency. This study suggests that
introduction of bulky and highly electronegative groups on
the basic amino side chain along with decreasing steric bulk
and electronegativity on the phenanthrene ring might be
suitable for designing better antitubercular agents.

Keywords Antitubercular agents . Diaryloxy-methano-
phenanthrene . 3D-QSAR . CoMFA . CoMSIA

Introduction

Tuberculosis (TB) kills more than 3 million people each
year worldwide and, thus, remains one of the most deadly
infectious diseases in the world. Annually, approximately
ten million people develop the disease, with five million of
these progressing to the infectious stage and, ultimately,
three million dying from it. Despite having modern and
sophisticated methods of prevention, early detection,
diagnosis, and, thereafter, treatment for TB patients, the
appearance of multi-drug-resistant (MDR) strains, with the
threat of global human immunodeficiency virus, has led to
tuberculosis being declared a “global emergency” by the
World Health Organization [1]. Resistance has surfaced for
all first-line drugs (isoniazid, rifampin, pyrazinamide,
ethambutol, and streptomycin) and for several second-
line and newer drugs (ethionamide, fluoroquinolones,
macrolides, nitroimidazopyrans) [2, 3]. Because of this,
there is an urgent need for anti-TB drugs with improved
properties, such as enhanced activity against MDR strains,
reduced toxicity, shortened duration of therapy, rapid
mycobactericidal mechanism of action, and the ability to
penetrate host cells and exert antitubercular effects in the
intracellular environment [4]. Our continuing effort toward
the design and development of new chemical entities for
tuberculosis provided diaryloxy-methano-phenanthrenes
as an encouraging lead for anti-TB agents [5]. Incorpora-
tion of basic aminoalkyl and 2-hydroxy-aminoalkyl
moieties on the diaryloxy-methano-phenanthrene pharma-
cophore gave better antitubercular activity. To rationalize
the design and, thus, to understand physiochemical
properties and structural parameters of the pharmacophore,
a three-dimensional quantitative structure activity relation-
ship (3D-QSAR) study of diaryloxy-methano-phenan-
threne derivatives by comparative molecular field analysis
(CoMFA) [6] and comparative molecular similarity indices
analysis (CoMSIA) [7] was performed. Traditional QSAR
models are unable to explain complex structure–activity
data because the extreme specificity of biological activity is
described by 3-D intermolecular forces and predicated on
3-D molecular structures. Consequently, the most relevant
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QSAR model would be shape-dependent and would
describe steric and electrostatic interactions with sufficient
accuracy. The comparative molecular field analysis
(CoMFA) method meets these requirements. From its
advent, CoMFA has been a powerful tool for studying 3D-
QSAR. CoMFA examines differences in targeted proper-
ties that are related to changes in the shape of the steric and
electrostatic fields surrounding the molecules. A QSAR
table is used to accommodate the details of the shape of
each field by sampling their magnitudes at regular intervals
throughout a specified region of space [6]. More recently,
another alternative molecular field analysis, CoMSIA,
based on molecular similarity indices, was reported. This is
an extension of the CoMFA methodology and differs only
in the implementation of the fields. In CoMSIA, five
different similarity fields are calculated: steric, electrostat-
ic, hydrophobic, hydrogen bond donor, and hydrogen bond
acceptor. Similarity indices are calculated at regularly
spaced grid points for the prealigned molecules. Instead of
the direct measurement of the similarity between all mutual
pairs of a molecule, indirect evaluation of the similarity of
each molecule in the data set with a common probe atom is
calculated [7]. A linear regression equation of similarity
with biological activities is derived. This indirect ligand-
based approach can assist in understanding structure–
activity relationships (SARs) and can also serve as a tool in
designing more potent antitubercular agents.

Computational methods

Data sets

A total of 44 diaryloxy-methano-phenanthrene based
inhibitors with structures and activities were used in the
study (Table 1) [5, 8].1 The minimum inhibitory concen-
tration (MIC) values were converted to the corresponding
pMIC (−logMIC) and used as dependent variables in
CoMFA and CoMSIA analyses. The pMIC values span a
range of 3 log units, providing a broad and homogenous
data set for the 3D-QSAR study. The initial structures of
44 compounds were constructed using the Insight II Builder
module [9]. Conformations of compounds in the training
set and test set were generated using the multisearch utility
in Sybyl 7.0 (TRIPOS, 1699 South Hanley Road, St. Louis,
MO 63144, USA). The conformer with the lowest energy
was extracted and energy minimization was performed
using the Tripos force field [10], with a distance-dependent
dielectric, and the Powell conjugate gradient algorithm,
with a convergence criterion of 0.01 kcal mol−1 Å. Thirty-
seven compounds were used as training set and seven in the
test set. The test set compounds were selected manually
from each subgroup of the training set such that structural
diversity and broad range of activity in the data set were
included. The test set molecules were selected by

considering the fact that this set of molecules represents a
range of biological activity similar to that of the training set.
Thus, the test set is the true representative of the training set.
The MIC values were converted to pMIC (−log MIC)
values and used as dependent variables in the CoMFA and
CoMSIA calculations.

Molecular alignment

Structural alignment is one of the most sensitive parameters
in 3D-QSAR analyses. The accuracy of the prediction of
CoMFA and CoMSIA models and the reliability of the
contour models depend strongly on the structural align-
ment of the molecules [11]. The molecular alignment was
achieved by the Sybyl 7.0 routine database align. The most
active compound 28 (Fig. 1a) was used as the alignment
template, and the rest of the molecules were aligned on it
by using the common substructure (Fig. 1b).

Calculations of atomic charges

Six different kinds of partial atomic charge were considered:
(1) Gasteiger–Hückel charges [12], (2) Gasteiger–Marsili
charges [13, 14], (3) MMFF94 charges [15], (4) Del
Re charges [16], (5) Pullman charges [17], and (6) Hückel
charges [18]. Both the Gasteiger–Marsili and Gasteiger–
Hückel methods calculate atomic charges based on the
information of the atoms and the connectivity within the
molecule. The MMFF94 atomic charges are simply
calculated based on the bond increment parameters in the
MMFF94 force field. The calculation of Gasteiger–Marsili,
Gasteiger–Hückel, MMFF94, Del Re, Pullman, and Hückel
charges in SYBYL 7.0 was automated with SPL scripts.

CoMFA studies

Steric and electrostatic CoMFA fields were calculated
using the Lennard–Jones and the Coloumb potentials [6].
Default parameters (Tripos force field, dielectric distance
1/r2, steric and electrostatic cutoff 30 kal mol−1, positively
charged sp3 hybridized carbon atom, grid spacing 2 Å)
were used unless stated otherwise. With standard options
for scaling of variables, the regression analysis was carried
out using the full cross-validated partial least squares (PLS)
method (leave one out) [19].

CoMSIA studies

The five similarity indices in CoMSIA, that is steric,
electrostatic, hydrophobic, H-bond donor, and H-bond
acceptor descriptors, were calculated using a C1+ probe
atom with a radius of 1.0 Å placed at a regular grid spacing

1 Synthesis and antitubercular activity of compound 1–38 is reported
in Reference [5a,b]. In vitro antitubercular activity of compounds
28, 29–31, and 39–44 (unpublished results).
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Table 1 Structures and inhibitory activities of diaryloxy-methano-phenanthrene analogues

Comp. 
No. 

R1         R2           R3        R4 R5  MICa 
(µg/mL) 

-logMIC CoMFA 
pMIC 

Residual CoMSIA 
pMIC 

Residual 

 
Training Set 

1 H,          H,            H p-OCH3 
p- 

N
 

        

6.25 4.905 4.911 -0.006 4.914 -0.009

2 H,          H,            H p-OCH3 
p-

N

 
6.25 4.892 4.870 0.022 4.835 0.057

4 H,          H,            H p-OCH3 
p- N  

6.25 4.894 4.914 -0.020 4.877 0.017

5 H,          H,            H m-OCH3 
p- 

N
 

12.5 4.603 4.598 0.005 4.577 0.026

6 H,          H,            H m-OCH3 
p-  

N

 
12.5 4.591 4.585 0.006 4.625 -0.034

7 H,          H,            H m-OCH3 
p- N  

12.5 4.593 4.551 0.042 4.598 -0.005

9 H,          H,            H o-OCH3 
p-  

N

 
12.5 4.591 4.612 -0.021 4.624 -0.033

10 H,          H,            H o-OCH3 
p-  

N
 

12.5 4.567 4.569 -0.002 4.596 -0.029

11 H,          H,            H o-OCH3 
p-   N  

12.5 4.593 4.602 -0.009 4.626 -0.033

12 H,          H,            H p-OCH3 
o- 

N
 

 

12.5 4.603 4.592 0.011 4.623 -0.020

13 H,          H,            H p-OCH3 
o-   

N

 
12.5 4.591 4.600 -0.009 4.608 -0.017

14 H,          H,            H p-OCH3 
o- 

N
 

 4.266 4.300 -0.034 4.302 -0.036

15 H,          H,           H p-OCH 3 
o- N  

6.25 4.894 4.896 -0.002 4.818 0.076

16 H,          H,           H p-OCH 3 

p- 
N

OH  

12.5 4.629 4.643 -0.014 4.602 0.027

18 H,          H,           H p-OCH3 

p- OH

N

H  

6.25 4.941 4.947 -0.006 5.000 -0.059

19 H,          H,           H p-OCH3 

p- OH

N

H  

 4.304 4.318 -0.014 4.329 -0.025

20 H,          H,           H p-OCH3 
p- OH

N
O
 

4.329 4.290 0.039 4.298 0.031

21 H,          H,           H p-OCH3 
 OH

N
N CH3 

p- 

12.5 4.641 4.625 0.016 4.624 0.017

25 

25 

25 

R3

R2

R1

OR4

OR5

Comp. 
No. 

R1         R2           R3        R4 R5  MICa 
(µg/mL) 

-logMIC CoMFA 
pMIC 

Residual CoMSIA 
pMIC 

Residual 

 
Training Set 

1 H,          H,            H p-OCH3 
p- 

N

        

6.25 4.905 4.911 -0.006 4.914 -0.009

2 H,          H,            H p-OCH3 
p-

N

 
6.25 4.892 4.870 0.022 4.835 0.057

4 H,          H,            H p-OCH3 
p- N  

6.25 4.894 4.914 -0.020 4.877 0.017

5 H,          H,            H m-OCH3 
p- 

N
 

12.5 4.603 4.598 0.005 4.577 0.026

6 H,          H,            H m-OCH3 
p-  

N

 
12.5 4.591 4.585 0.006 4.625 -0.034

7 H,          H,            H m-OCH3 
p- N  

12.5 4.593 4.551 0.042 4.598 -0.005

9 H,          H,            H o-OCH3 
p-  

N

 
12.5 4.591 4.612 -0.021 4.624 -0.033

10 H,          H,            H o-OCH3 
p-  

N
 

12.5 4.567 4.569 -0.002 4.596 -0.029

11 H,          H,            H o-OCH3 
p-   N  

12.5 4.593 4.602 -0.009 4.626 -0.033

12 H,          H,            H p-OCH3 
o- 

N
 

 

12.5 4.603 4.592 0.011 4.623 -0.020

13 H,          H,            H p-OCH3 
o-   

N

 
12.5 4.591 4.600 -0.009 4.608 -0.017

14 H,          H,            H p-OCH3 
o- 

N
 

 4.266 4.300 -0.034 4.302 -0.036

15 H,          H,           H p-OCH 3 
o- N  

6.25 4.894 4.896 -0.002 4.818 0.076

16 H,          H,           H p-OCH 3 

p- 
N

OH  

12.5 4.629 4.643 -0.014 4.602 0.027

18 H,          H,           H p-OCH3 

p- OH

N

H  

6.25 4.941 4.947 -0.006 5.000 -0.059

19 H,          H,           H p-OCH3 

p- OH

N

H  

 4.304 4.318 -0.014 4.329 -0.025

20 H,          H,           H p-OCH3 
p- OH

N
O
 

4.329 4.290 0.039 4.298 0.031

21 H,          H,           H p-OCH3 
 OH

N
N CH3 

p- 

12.5 4.641 4.625 0.016 4.624 0.017

25 

25 

25 

R3

R2

R1

OR4

OR5
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of 2 Å. CoMSIA similarity indices Aq
F;K jð Þ for a molecule j

with atoms i at a grid point q are calculated by Eq. 1:

Aq
F;K jð Þ ¼

X
ωprobe;kωike

�αr2iq (1)

In this equation, k represents the following physiochemical
properties: steric, electrostatic, hydrophobic, H-bond
donor, and H-bond acceptor. A Gaussian-type distance
dependence was used between the grid point q and each

Table 1 Continued

30 H,          H,            H p-OH 
p- N  
 

12.5 4.580 4.600 -0.020 4.618 -0.038

31 H,          H,            H p-OH 
p- 

N
 

12.5 4.591 4.622 -0.031 4.591 0.000

32 H,          H,            H 
p-

N
 p- 

N
 

6.25 4.981 4.956 0.025 4.944 0.037

33 H,          H,            H 
p-

N
 p-

N
 

6.25 4.919 4.934 -0.015 4.890 0.029

34 H,          H,            H p-

N
 

p-
N

 
6.25 4.964 4.951 0.013 4.960 0.004

35 H,          H,            H p-

OH

N

 
p- OH

N

 
12.5 4.703 4.700 0.003 4.688 0.015

36 H,          H,            H 
OH

N
N C 

p- 
p- OH

N
N CH3 

12.5 4.785 4.772 0.013 4.757 0.028

37 H,          H,            H p-

N

OH  
p-

N

OH  

6.25 5.023 5.020 0.003 4.990 0.033

38 H,          H,            H p-

OH

N

H

 
p- OH

N

H  

6.25 5.041 5.059 -0.018 5.048 -0.007

39 OCH3  OCH3     OCH3 p-OCH3 
p- 

N
 

12.5 4.645 4.635 0.010 4.660 -0.015

40 OCH3  OCH3     OCH3 p-OCH3 
p N  

12.5 4.666 4.690 -0.024 4.703 -0.037

41 OCH3  OCH3     OCH3 p-OCH3 
p-

N
 

25 4.374 4.394 -0.020 4.394 -0.020

43 OCH3  OCH3     OCH3 p-OCH3 
o- N  

25 4.365 4.345 0.020 4.355 0.010

44 OCH3  OCH3     OCH3 p-OCH3 
o-

N
 

25 4.374 4.370 0.004 4.347 0.027

22 H,          H,            H p-OCH3 
OH

N
N

 
p- 

 4.396 4.390 0.006 4.360 0.036

23 H,          H,            H p-OCH3 

p OH

N
N

O

H  

6.25 4.965 4.945 0.020 4.951 0.014

24 H,          H,            H p-OCH3 
OH

N

H

N
N

 
p- 

3.12 5.263 5.231 0.032 5.294 -0.031

25 H,          H,            H p-OCH3 

p- OH

N

H  

3.12 5.254 5.283 -0.030 5.263 -0.010

27 H,          H,            H p-OCH3 
p- OH

N

 
6.25 4.915 4.911 0.004 4.942 -0.027

25 

Table 1 (continued)
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atom i of the molecule. The default value of 0.3 was used as
the attenuation factor (α). Here, steric indices are related to
the third power of the atomic radii, electrostatic descriptors
are derived from atomic partial charges, hydrophobic fields
are derived from atom-based parameters [20], and H-bond
and acceptor indices are obtained by a rule-based method
based on experimental results [21].

Regression analysis

To derive 3D-QSAR models, the CoMFA and CoMSIA
descriptors were used as independent variables and the
pMIC as the dependent variable. Partial least squares (PLS)
regression analysis was conducted with the standard
implementation in the Sybyl 7.0 package. The predicted
values of the models were evaluated by leave-one-out
cross-validation. The cross-validated coefficient (q2) was
calculated using Eqs. 2 and 3 [22].

q2 ¼ 1� PRESS
PN

i¼1 yi � ymð Þ2 (2)

PRESS ¼
XN

i¼1

ypredi � yi
� �

2
(3)

where yi is the activity for training set compounds, ym is the
mean observed value corresponding to the mean of
the values for each cross-validation group, and ypred,i is
the predicted activity for yi.

Table 1 Continued

 
Test Set 

3 H,          H,            H p-OCH3 
p-

N
 

12.5 4.567 4.572  -0.005 4.586  -0.019 

8 H,          H,            H o-OCH3 
p- 

N
 

12.5 4.603 4.604  -0.001 4.650  -0.047 

17 H,          H,            H p-OCH3 
p- OH

N

 
12.5 4.617 4.618  -0.001 4.622  -0.005 

26 H,          H,            H p-OCH3 
p OH

N

H  
6.25 4.920 4.921  -0.001 4.921  -0.001 

28 H,          H,            H p-OCH3 
p- OH

N

H  
1.56 5.523 5.535  -0.012 5.099  0.424 

29 H,          H,            H p-OH 
p- 

N
 

12.5 4.554 4.560  -0.006 4.634  -0.080 

42 OCH3  OCH3     OCH3 p-OCH3 
p-

N

 
12.5 4.665 4.662  -0.003 4.659  0.006 

Table 1 (continued)

aThe abbreviation MIC stands for minimum inhibitory concentration, and it is defined as the concentration of the drug at which 90% of the
mycobacteria (H37Rv) was inhibited [5a–c]

Fig. 1 a Template used for alignment (common substructure shown
in blue). b Training set compounds aligned on minimum energy
conformation of compound 28
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Predictive r-squared

To validate the derived CoMFA and CoMSIA models,
biological activities of an external test set of seven
compounds (Table 1) were predicted using models derived
from the training set. The predictive ability of the models is
expressed by the predictive r2 value, which is analogous to
cross-validated r2 (q2) and is calculated using the formula

r2pred ¼
SD� PRESS

SD

SD is the sum of the squared deviations between the
biological activities of the test set molecules and PRESS is
the sum of the squared deviations between the observed
and the predicted activities of the test molecules.

Hardware and software

Insight II 2000.1 and Sybyl 7.0 were used for molecular
modeling and 3D-QSAR analysis on a SGI Origin 300
workstation equipped with four 600-MHz R 12000
processors.

Results and discussion

CoMFA and CoMSIA 3D-QSAR models were derived
using a series of derivatives based on diaryloxy-methano-
phenanthrene, possessing antitubercular activities [8].2 The
chemical structures of the molecules and their actual pMIC
values are shown in Table 1. The data set was divided into a
training set of 37 and a test set of seven molecules
(Table 1). For developing the CoMFA and CoMSIA
models, all compounds of the training set were aligned on

the minimum energy conformation of the most active
molecule 28, obtained by using the Multisearch utility of
Sybyl 7.0. The alignment of the training set is important as
structural information with the nature of the receptor and its
binding is not available.

CoMFA studies

The idea underlying the CoMFA methodology is that
differences in biological activity are often related to
differences in the magnitudes of molecular fields surround-
ing the receptor ligands investigated. The robustness and
predictive ability of CoMFA models varies with the
alignment, number of components, grid spacing, column
filtering, and partial atomic charges. Proper prediction of the
3D-QSAR model depends on the method by which partial
atomic charges are calculated in a particular data set.
Therefore, to optimize the partial charges to be used,
different sets of partial charges were used in building the
CoMFA models and all of them exhibit good statistical
quality. The statistical details are summarized in Table 2. The
cross-validated correlation coefficient (q2) for Gasteiger–
Marsili, DelRe, MMFF94, and Pullman charges are more or
less similar (0.612, 0.615, 0.616, and 0.588), but is highest in
the case of the Gasteiger–Hückel charges (0.625) and lowest
in the case of Hückel charges (0.439). The conventional non-
cross-validated correlation coefficients (r2) for Gasteiger–
Hückel and Gasteiger–Marsili are comparable (0.994 and
0.993), and those for DelRe,MMFF94, and Pullman charges
(0.988, 0.983 and 0.983) are also comparable, while it is
lowest (0.920) in the case of Hückel partial charge. The
standard error of estimation value for Gasteiger–Hückel
partial charges is better than the other five partial charges.
Based on the above observations, the best CoMFA model,
obtained using Gasteiger–Hückel partial charges, was
chosen for further analysis.

In CoMFA, the optimal number of components to be
used in the analysis significantly influences the prediction

Table 2 Influence of different partial charges on CoMFA models

CoMFA1 CoMFA2 CoMFA3 CoMFA4 CoMFA5 CoMFA6

Partial charge Gasteiger–Huckel Gasteiger–Marsili MMFF94 DelRe Pullman Huckel
q2a 0.625 0.612 0.616 0.615 0.588 0.439
r2b 0.994 0.993 0.983 0.988 0.983 0.920
Sc 0.021 0.024 0.036 0.031 0.036 0.079
F valued 1,088.387 840.517 364.612 509.249 361.521 71.769
Ne 5 5 5 5 5 5
Contributions
Steric 0.391 0.407 0.449 0.415 0.439 0.684
Electrostatic 0.609 0.593 0.551 0.585 0.561 0.316
Column filtering 2.0
aCross-validated correlation coefficient
bNon-cross-validated correlation coefficient
cStandard error of estimate
dF test value
eOptimum number of components

2 Please see footnote 1.
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ability of the model. The number of components describes
the degree of complexity of the model; at some point
adding more detail corresponds to fitting the data to noise,
and the predictive ability begins to diminish. Usually, the
optimal number of components is determined by selecting
the highest q2 value, which most often corresponds to the
smallest S value. Whenever the last added component
improved q2 by less than about 5%, the less complex model
was chosen. To find out the optimum number of
components to be used in CoMFA studies, CoMFA models
with different numbers of components were generated
(Table 3). The best CoMFA model (q2=0.625) and
minimum standard error value (0.021) are obtained with
five components, and further increase in the number of
components has no effect on the q2 value. Hence, five is

selected as the optimum number of components for further
analysis.

To explore the effect of column filtering on the CoMFA
model with 2.0-Å grid spacing and Gasteiger–Hückel
charges, different column-filtering values were used.
Minimum sigma (Column filtering) values of 0, 1.0, 1.5,
2.5, and 3.0 kcal mol−1 (which were different from the
default setting of 2.0 kcal mol−1; Table 4) were also
investigated, but all lead to a decrease in the q2 value. The
best q2 was observed at 2.0 kcal mol−1. Thus, to improve
the signal-to-noise ratio by omitting those lattice points
whose energy variation is below this threshold and also
because of the computing time, the default setting at
2.0 kcal mol−1 was used in the further studies.
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Fig. 2 Cross-validated r2

(q2) and standard error value for
different field combinations.
S, E, H, D, and A represent
steric, electrostatic, hydropho-
bic, hydrogen bond donor, and
acceptor fields, respectively

Table 4 Influence of column filtering value on the CoMFA models

CoMFA1 CoMFA2 CoMFA3 CoMFA4 CoMFA5 CoMFA6

Column filtering (kcal mol−1) 0 1 1.5 2 2.5 3
q2 0.606 0.617 0.623 0.625 0.605 0.619
r2 0.995 0.995 0.996 0.994 0.983 0.980
S 0.020 0.019 0.019 0.021 0.037 0.040
F value 1,141.883 1,272.419 1,391.348 1088.387 348.174 299.863
Number 5 5 5 5 5 5
Contributions
Steric 0.350 0.384 0.387 0.391 0.429 0.439
Electrostatic 0.650 0.616 0.613 0.609 0.571 0.561

Table 3 Influence of number of optimum number of components on the CoMFA models

CoMFA1 CoMFA2 CoMFA3 CoMFA4 CoMFA5

Number 1 2 3 4 5
q2 0.320 0.516 0.616 0.625 0.625
r2 0.747 0.884 0.946 0.978 0.994
S 0.132 0.091 0.063 0.041 0.021
F value 103.290 129.074 191.430 357.849 1,088.387
Contributions
Steric 0.425 0.444 0.415 0.397 0.391
Electrostatic 0.575 0.556 0.585 0.603 0.609
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CoMSIA studies

CoMSIA is an alternative approach to performing 3D-
QSAR by comparative molecular field analysis. Molecular
similarity is compared in terms of similarity indices. The
CoMSIA method defines explicit hydrophobic (H) and
hydrogen bond donor (D) and acceptor (A) descriptors in
addition to the steric (S) and electrostatic fields (E) used in
CoMFA. Primarily, the intention is to partition the different
properties into various locations where they play a decisive
role in determining the biological activity. In optimizing
CoMSIA performance, the most important parameter is
how to combine five fields in a CoMSIA model. To select
the optimal result, we systematically changed the combina-
tion of field and PLS analysis of various CoMSIA models
with different combinations of fields. Figure 2 shows the
distribution of q2 that resulted from the 30 field combina-
tions. The CoMSIA model that included S, E, and H fields
only performed relatively better than other field combina-
tions. The q2 of this model (0.486) is more or less
equivalent to the SHD (Steric–Hydrophobic–Hydrogen
bond donor) and SE (Steric–Electrostatic) model with q2 of
0.504 and 0.490, respectively, but with a lower standard
error value of 0.033 as compared to 0.072 and 0.037 of the
SHD and SE models, respectively. Hence, the optimal field
combination CoMSIA model that included the steric,
electrostatic, and hydrophobic fields was chosen for further
analysis.

Using the S, E, and H field combination, the sensitivity
of the CoMSIA models to different column-filtering values
was also investigated, and the results show that the column-
filtering effect on the CoMSIA models agreed with the
CoMFA models (Table 5). Here, the best q2 was also
obtained with the column-filtering value of 2.0 kcal mol−1.

In CoMSIA, a Gaussian-type, distance-dependent func-
tion is used. In the preliminary parameter study, we
calibrated the attenuation factor α to 0.3. To decide whether
this is an appropriate value, α was varied in a parameter
study within the range from 0.1 to 0.5 in steps of 0.1 and,
subsequently, similarity indices and q2 values were
computed each time (Table 6). The q2 value was highest
(0.486) when the attenuation factor α was 0.3 with low
standard error value (0.033). Thus, our study shows that
α=0.3 is optimum for this data set.

Predictive power of CoMFA and CoMSIA models

To test the predictability of the analyses, the activities of
training set compounds were calculated from the best
CoMFA and CoMSIA models considering Gasteiger–
Hückel partial charges; 2.0 kcal column filtering; five
components; and steric, electrostatic, and hydrophobic
field combinations. The correlations between experimental
and the predicted activities for the training set for the
CoMFA and CoMSIA models is shown in Fig. 3a,b,

Table 6 Attenuation factor

CoMSIA1 CoMSIA2 CoMSIA3 CoMSIA4 CoMSIA5

α 0.1 0.2 0.3 0.4 0.5
q2 0.321 0.486 0.486 0.479 0.482
r2 0.947 0.973 0.986 0.991 0.993
S 0.064 0.046 0.033 0.026 0.023
F value 110.287 225.655 427.948 721.770 909.116
Contributions
Steric 0.271 0.246 0.246 0.251 0.257
Electrostatic 0.536 0.512 0.474 0.441 0.414
Hydrophobic 0.193 0.242 0.280 0.308 0.330

Table 5 Influence of column filtering value on the CoMSIA models

CoMSIA1 CoMSIA2 CoMSIA3 CoMSIA4 CoMSIA5 CoMSIA6

Column filtering (kcal mol−1) 0 1 1.5 2 2.5 3
q2 0.493 0.497 0.500 0.486 0.489 0.496
r2 0.990 0.987 0.987 0.986 0.988 0.987
S 0.028 0.031 0.032 0.033 0.031 0.032
F value 597.257 479.485 460.408 427.948 503.461 465.969
Number 5 5 5 5 5 5
Contributions
Steric 0.219 0.239 0.242 0.246 0.245 0.255
Electrostatic 0.520 0.487 0.482 0.474 0.475 0.466
Hydrophobic 0.262 0.274 0.276 0.280 0.279 0.279
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respectively, indicating good agreement of experimental
and predicted values (Table 1). A set of seven manually
selected compounds (3, 8, 17, 26, 28, 29, and 42 in
Table 1), reserved as test set, was used to verify the efficacy
of the CoMFA and CoMSIA models. The predictive
correlation coefficient r2 was 0.999 (CoMFA) and 0.745
(CoMSIA) (Table 1). Figure 4a,b shows the comparative
plot of the predictions for the test set for the two models. In
CoMFA, the predicted values fall very close to the actual
pMIC, while the CoMSIA model predicted lower activity
for one molecule of the test set. While both CoMFA and
CoMSIA demonstrated good predictive ability, CoMFA is
slightly better than CoMSIA.

CoMFA and CoMSIA contour maps

The CoMFA steric and electrostatic fields from the final
non-cross-validated analysis were plotted as 3-D colored
contour maps (Fig. 5). The field energies at each lattice
point were calculated as the scalar results of the coefficient
and the standard deviation associated with a particular
column of the data table (SD*coeff), always plotted as the
percentages of the contribution of CoMFA equation. These
maps show regions where differences in molecular fields

are associated with differences in biological activity. The
CoMFA contours for steric and electrostatic fields are
shown in Fig. 5, while those of CoMSIA steric, electro-
static, and hydrophobic fields are shown in Figs. 6, 7 and 8,
respectively. In these contour maps, each colored contour
represents particular properties such as green contours for
regions of high steric tolerance (80% contribution), yellow
for low steric tolerance (20% contribution), red contours for
regions of decreased tolerance for positive charge (20%
contribution), blue for regions of decreased tolerance for
negative charge (80% contribution), yellow contours
represent hydrophobically favored regions (80% contribu-
tion) and white contours for hydrophobically disfavored
regions (20%) contribution). The larger size of the green–
yellow region than the red–blue region indicates a greater
contribution of steric fields than electrostatic ones in
determining the biological activity.

As can be seen in Fig. 5, sterically favored large green
polyhydra were found around the aminoalkyl and 2-
hydroxy aminoalkyl groups attached to the para position of
one of the phenyl rings, indicating that any bulkier
substituent is preferred at this position for higher activity.
The CoMSIA contour map for steric field (Fig. 6) also has a
similar green polyhydron indicating the importance of
steric bulk at the same region. Thus, this is an important
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Fig. 3 a CoMFA and b CoMSIA predicted activities (pMIC) vs the
experimental activities (−logMIC) of diaryloxy-methano-phenan-
threne training set compounds
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Fig. 4 a CoMFA and b CoMSIA predicted activities (pMIC) vs the
experimental activities (−logMIC) of the testing set compounds
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region as almost all contours show a similar-sized green
polyhydron and indicate the importance of bulk in this
region. However, this region is also important due to the
presence of red and white polyhydra in CoMSIA contour
plots in Figs. 7 and 8, respectively, indicating that increase
of steric bulk, electronegative and hydrophilic groups in
this region is favorable for the activity of this series of
compounds (Table 1). Sterically non-favored yellow
polyhydra; positively charged, favored blue regions; and
hydrophobically favored yellow region are situated around
the 1, 2, 3 positions of phenanthrene, indicating that the
substitution of hydrogen by bulkier, electronegative, and
hydrophilic groups like methoxy decreases the activity
(compounds containing trimethoxy on phenanthrene).

Conclusions

In this study, 3-D CoMFA and CoMSIA QSAR analyses
were used to predict the antitubercular activity of a set of
diaryloxy-methano-phenanthrenes. The QSAR models

gave good statistical results in terms of q2 and r2 values.
The CoMFA model provided the most significant correla-
tion of steric and electrostatic fields with the biological
activities. Overall, the CoMFA method provided better
statistical models than CoMSIA, which implies the
significance of steric and electrostatic fields in the selec-
tivity and activity of these compounds. The statistical
significance and robustness of the 3D-QSAR models
generated were confirmed using a test set. The effects of
the steric, electrostatic, and hydrophobic fields around the
aligned molecules on their activities were clarified by
analyzing the CoMFA and CoMSIA contour maps. The
information from this study suggests that incorporating
bulk, higher degree of electronegativity, and hydrophilicity
on basic amino side chain, along with diminishing steric
bulk and electronegativity on phenanthrene nucleus, might
be favorable for better antitubercular agents. It can be noted
that a diaryloxy-methano-phenanthrene with the requisite
groups could serve as a privileged structure for exploring
antitubercular agents.

Fig. 7 Contour plot using CoMSIA electrostatic field

Fig. 8 Contour plot using CoMSIA hydrophobic fieldFig. 6 Contour plot using CoMSIA steric field

Fig. 5 Contour plot using CoMFA steric and electrostatic field
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