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Abstract

Motivation: Although genome-wide association studies (GWAS) have deepened
our understanding of the genetic architecture of complex traits, the mechanistic links
that underlie how genetic variants cause complex traits remains elusive. To advance our
understanding of the underlying mechanistic links, various consortia have collected a
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vast volume of genomic data that enable us to investigate the role that genetic variants
play in gene expression regulation. Recently, a collaborative mixed model (CoMM) [42]
was proposed to jointly interrogate genome on complex traits by integrating both the
GWAS dataset and the expression quantitative trait loci (eQTL) dataset. Although
CoMM is a powerful approach that leverages regulatory information while accounting
for the uncertainty in using an eQTL dataset, it requires individual-level GWAS data
and cannot fully make use of widely available GWAS summary statistics. Therefore,
statistically efficient methods that leverages transcriptome information using only sum-
mary statistics information from GWAS data are required.
Results: In this study, we propose a novel probabilistic model, CoMM-S2, to examine
the mechanistic role that genetic variants play, by using only GWAS summary statistics
instead of individual-level GWAS data. Similar to CoMM which uses individual-level
GWAS data, CoMM-S2 combines two models: the first model examines the relationship
between gene expression and genotype, while the second model examines the relation-
ship between the phenotype and the predicted gene expression from the first model.
Distinct from CoMM, CoMM-S2 requires only GWAS summary statistics. Using both
simulation studies and real data analysis, we demonstrate that even though CoMM-S2

utilizes GWAS summary statistics, it has comparable performance as CoMM, which
uses individual-level GWAS data.
Contact: jin.liu@duke-nus.edu.sg
Availability and implementation: The implement of CoMM-S2 is included in the
CoMM package that can be downloaded from https://github.com/gordonliu810822/CoMM.
Supplementary information: Supplementary data are available at Bioinformatics

online.

1 Introduction

Over the last decade, genome-wide association studies (GWAS) have achieved remarkable

success in identifying genetic susceptibility variants for a variety of complex traits/diseases [39].

However, the biology of how genetic variants affect complex traits remains unclear. Recent

expression quantitative trait loci (eQTL) studies indicate that regulatory information play

an important role in mediating the complex traits/diseases [26]. Measured comprehensive

cellular traits can serve as reference data and provide investigators with an avenue to ex-

amine the role that genetic variants play in gene expression regulation. For example, the

Genotype-Tissue Expression (GTEx) Project [23] has provided DNA sequencing data (about

2
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12.5 million variants) from 449 individuals and collected gene-expression measurements of

44 tissues from these individuals; the number of subjects increases to 620 in over 48 tissues

in the recent V7 release. Although the sample sizes of these reference datasets are limited,

they provide an important avenue for one to study how genetic variants regulate human gene

expression in different tissues.

In the absence of identical cohorts in eQTL and GWAS datasets, various authors have

proposed statistical methods that allow one to leverage regulatory information on the cellular

mechanisms in a GWAS analysis. These methods can be broadly grouped into two categories.

The first group consists of methods that require the use of individual-level GWAS data,

and include methods such as PrediXcan [10] and CoMM [42]. Because methods in this

category require the availability of all individual-level genotype and phenotype data, their

application can be complicated by restrictions on data sharing and storage. In contrast to

the first group of methods that utilize individual-level data, the second group of methods

uses GWAS summary statistics; for example one could apply the second group of methods to

GWAS results that are publicly available from GWAS repositories, such as the NHGRI-EBI

GWAS Catalog [4]. Examples of these methods include TWAS [13], S-PrediXcan [1], and

UTMOST [17]. Among these methods, TWAS and S-PrediXcan use transcriptome data from

a single tissue while UTMOST can be applied to cross-tissue analysis. Generally, TWAS-

type methods (PrediXcan, S-PrediXcan, TWAS and UTMOST) proceed with three steps.

First, the expression reference panel is used to fit predictive models for each gene using

genetic variants in the vicinity of a gene. Next, levels of gene expression for the individuals

in the GWAS data are predicted using these models. Finally, associations between the

predicted expression levels and the complex trait are examined by simple linear regressions.

Consequently, TWAS-type methods do no account for the uncertainty associated with the

first step. In contrast, CoMM accounts for the uncertainty by combining the three steps in
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a unified probabilistic framework.

Compared with methods using individual-level GWAS data, methods using GWAS sum-

mary statistics face an additional difficulty: the summary statistics do not contain any

information of linkage disequilibrium (LD), which plays an important role in prioritizing

variants in GWAS. TWAS used an imputation method to impute the expression-trait as-

sociation statistics directly from GWAS summary statistics [13] while S-PrediXcan derived

a test statistic using pre-calculated weights to expression and a reference panel to estimate

correlation (LD) among cis-variants. To make use of summary statistics rigorously, it is

important to develop a probabilistic model. [16] first proposed an approximated distribution

for z-scores in CAVIAR. Later, [45] formalized this distribution by introducing a regression

with summary statistics (RSS) likelihood in a Bayesian framework and they further showed

that the difference between the RSS log-likelihood and the one from individual-level data was

constant. Although the approximated RSS-type distribution has been extended in several

works including RSS-E [46] and REMI [18], both of these works including RSS are designed

for one-sample studies. In the analysis using two different samples, such as PrediXcan,

TWAS and CoMM, the questions become how to combine a RSS distribution for GWAS

summary statistics with that for eQTL data.

To overcome the limitation of not accounting for uncertainty and further extend CoMM

using GWAS summary statistics, we propose a probabilistic model, a Collaborative Mixed

Models for GWAS summary statistics – CoMM-S2. Unlike TWAS and S-PrediXcan, our

method accounts for the uncertainty in the ‘imputed’ gene expression. The key idea is to

build a joint probabilistic model for GWAS summary statistics and individual-level eQTL

data, and use the 1KG data as a reference panel to estimate LD. We has also developed an

efficient variational Bayesian expectation-maximization accelerated using parameter expan-

sion (PX-VBEM), where the calibrated evidence lower bound is used to conduct likelihood
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ratio tests for genome-wide gene associations with complex traits/diseases. We illustrate the

performance of CoMM-S2 with extensive simulation studies and real data applications of

10 traits in NFBC1966 dataset and summary statistics from 14 traits/diseases. The results

demonstrate that CoMM-S2 performs better than competing methods.

2 Methods

2.1 Notation

Suppose that we have an individual-level eQTL dataset D1 = {Y,W1} that consists of n1

samples, g genes and m genetic variants, and where Y ∈ R
n1×g is a matrix of gene expression

and W1 ∈ R
n1×m is a genotype matrix. In addition, we have the GWAS summary statistics

D2 = {γ̂, ŝ}, where γ̂ ∈ R
m and ŝ ∈ R

m are the effect sizes and standard errors from the

single-variant analysis for all genetic variants. We further assume that the individual-level

GWAS data corresponding to D2 has the phenotype vector z ∈ R
n2×1 and the centered

genotype matrix W2 ∈ R
n2×m. The sample sizes of D1 and D2 are generally distinct, with

D1 having a smaller sample size (≈ 102) compared to the sample size of D2 (≈ 104 ∼ 5×105).

We will examine gene expression levels for each gene individually. Let yj, the j-th column

of Y, be the gene expression level of the j-th gene and let W1j be a genotype matrix

containing its nearby genetic variants (within either 50 kb upstream of the transcription

start site or 50 kb downstream of the transcription end site, in this study), respectively.

We standardize the genotype data W1j = [w1j1, . . . ,w1jmj
] ∈ R

n1×mj to mean zero and

unit variance. Correspondingly, summary statistics for genetic variants using the centered

genotype (W2j) within the j-th gene is {γ̂j, ŝj}, where γ̂j ∈ R
mj , ŝj ∈ R

mj , and mj is the

number of variants corresponding to the j-th gene. Denote Ŝj = diag(ŝj) a diagonal matrix

for the j-th gene and R̂j ∈ R
mj×mj the estimated correlation among genetic variants within

the j-th gene.
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2.2 Model

We first model the relationship in the eQTL data using linear regression

yj = Xβ +W1jγj + e, (1)

where γj = [γj1, . . . , γjmj
]T is an mj × 1 vector of genetic effects on the gene expression,

e ∼ N (0, σ2
eI) is an n1 × 1 vector of independent random noises for the gene expression

levels, X ∈ R
n1×q are the design matrix for covariates including intercept, and β is a q × 1

vector of the corresponding effect sizes for covariates. Similar to CoMM [42], the relationship

between the phenotype z and genotype W2j nearby the j-th gene can be modeled as

z = αjW2jγj + e2, (2)

where e2 ∼ N (0, σ2
e2I) is an n2×1 vector of independent error associated with the phenotype.

Here, αj represents the effects of gene expression of gene j on the phenotype, due to genotype.

Assume that individual-level data {z,W2} is inaccessible, but the summary statistics {γ̂, ŝ}
from the univariate linear regression are available. It can be shown that the distribution of

γ̂j can be approximated by [45]

γ̂j|γj, R̂j, Ŝj ∼ N (αjŜjR̂jŜ
−1
j γj, ŜjR̂jŜj), (3)

provided that sample size n2 to generate these summary statistics is large and the trait is

highly polygenic (i.e., the squared correlation coefficient between the trait and each genetic

variant is close to zero). We further assume the prior distribution for γj is a Gaussian,

γj ∼ N (0, σ2
γj
Imj

), (4)

which is widely used in genetics [44]. Taking γj as the latent variable, the complete data

likelihood can be written as

Pr(yj, γ̂j,γj|X,W1j, Ŝj, R̂j;θ)

=Pr(yj|γj,X,W1j;θ)Pr(γ̂j|γj, R̂j, Ŝj)Pr(γj)
(5)
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where θ = {σ2
γj
, σ2

e , αj,β} is the collection of model parameters. By integrating out latent

variable γj, the marginal likelihood is

Pr(yj, γ̂j, |X,W1j, Ŝj, R̂j;θ)

=

∫

γj

Pr(yj, γ̂j,γj|X,W1j, Ŝj, R̂j;θ)dγj

(6)

2.3 Algorithm

We require a computationally efficient algorithm that is capable of fitting model (5) when

the signal-noise-ratio is low. A standard expectation-maximization (EM) algorithm in not

ideal for this purpose due to the slow convergence; a Newton-Raphson algorithm is also

not ideal because it can be unstable because of the non-negative constraint on variance

components. Additionally, a standard EM algorithm involves the inversion of R̂j, which may

cause numerical failure as R̂j is estimated from a small reference panel. Therefore, we develop

a variational Bayesian (VB) EM algorithm [3] accelerated by parameter expansion [22],

namely, PX-VBEM. First, the original model (1) can be expanded as follows

yj = Xβ + τW1jγj + e, (7)

where τ ∈ R is the expanded parameter, the likelihood for summary statistics (3) and

the prior remain the same, and model parameters become θ = {σ2
γj
, σ2

e , αj,β, τ}. Next,

we sketch the variational Bayesian EM algorithm for the expanded model (7). Given a

variational posterior distribution q(γj), it is easy to verify that the marginal likelihood

can be decomposed into two components, the evidence lower bound (ELBO) and the KL

divergence,

Pr(yj, γ̂j|X,W1j, Ŝj, R̂j;θ) = L(q) +KL(q||p) (8)
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where

L(q) =
∫

γj

q(γj) log
Pr(yj, γ̂j,γj|X,W1j, Ŝj, R̂j;θ)

q(γj)
dγj

KL(q||p) =
∫

γj

q(γj) log
q(γj)

p(γj|X,W1j,yj, γ̂j, Ŝj, R̂j;θ)
dγj.

(9)

Note that L(q) is the ELBO of the marginal likelihood, andKL(q||p) is Kullback-Leibler (KL)

divergence between two distributions and satisfies KL(q||p) ≥ 0, with the equality holding if,

and only if, the variational posterior probability (q) and the true posterior probability (p) are

equal. Similar to the EM algorithm, we can maximize the ELBO L(q) by optimizing with

respect to q that is equivalent to minimizing the KL divergence [2]. To make the evaluation

of the lower bound computationally efficient, we use the mean-field theory [27] and assume

that q(γj) can be factorized as

q(γj) =

mj∏

k=1

q(γjk) (10)

This is the only assumption that we make using variational inference. This factorization (10)

is used as an approximation for the posterior distribution p(γj|X,W1j,yj, γ̂j, Ŝj, R̂j;θ). In

the VB E-step, given the hidden variables γji, i 6= k, the terms with γjk have a quadratic

form, where i and k are indices for the i-th and the k-th genetic variants, respectively. Thus,

the variational posterior distribution of γjk is a Gaussian distribution N (ujk, v
2
jk). The

details of derivation for the updating formula of mean uj = [uj1, . . . , ujmj
]T and standard

deviation vj = [vj1, . . . , vjmj
]T , and the ELBO L(q) of the marginal likelihood (9) at the

old parameters θold can be found in the supplementary document. In the VB M-step, we

obtain the new updates for all parameters θ by setting the derivative of ELBO to zero. The
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resulting updating equations for parameters are

σ2
e =

||y∗

j − τW1juj||2 + τ 2
∑mj

k=1 w
T
1jkw1jkv

2
k

n1

,

σ2
γj

=
||uj||2 + ||vj||2

mj

,

αj =
uT
j Ŝ

−2
j γ̂j

uT
j Ŝ

−1
j R̂Ŝ−1

j uj + (vj ⊙ vj)Tdiag(Ŝ
−1
j R̂jŜ

−1
j )

,

β = (XTX)−1XT (yj − τW1juj),

τ =
uT
j W

T
1jy

∗

j

uT
j W

T
1jW1juj +

∑mj

k=1 w
T
1jkw1jkv

2
k

,

(11)

where y∗

j = yj − Xβ is the vector of residuals after removing the fixed effects, ⊙ denotes

the element-wise multiplication of two vectors, and diag(A) denotes a vector whose elements

are the diagonal entries of the square matrix A. The corresponding PX-VBEM algorithm is

summarized as Algorithm 1 in the supplementary document.

2.4 Reference panel

The CoMM-S2 uses marginal effect sizes and their standard errors to construct probabilistic

modeling for summary statistics from GWAS. Using summary-level data, we do not have

any information for correlations among SNPs (i.e., LD, denoted as Rj). Here, we choose to

use 1KG samples as a reference panel. We first calculate the empirical correlation matrix

R̂emp
j = [rik] ∈ R

mj×mj with rik =
w

T
jiwjk√

(wT
jiwji)(wT

jk
wjk)

, where wjk is the genotype vector for the

k-th genetic variant within the j-th gene. To make the estimated correlation matrix positive

definite, we applied a simple shrinkage estimator [32] to obtain R̂j as R̂j = λR̂emp
j +(1−λ)Imj

,

where λ ∈ [0, 1] is the shrinkage intensity. Note that the shrinkage correlation matrix is the

combination of the two extremes, the empirical correlation matrix R̂emp
j and the identity

matrix I. It is easy to recognize that the shrinkage correlation matrix can recover the

original empirical correlation matrix R̂emp
j when λ = 1 or identity matrix I when λ = 0. In
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addition, we have tested with different λ ∈ [0.8, 0.95] for CoMM-S2 and its results are quite

robust.

3 Statistical Inference

3.1 Evaluate association between a a complex trait/disease and a

gene

We propose the following statistical test to formally examine the association between a a

complex trait/disease and a gene:

H0 : αj = 0 Ha : αj 6= 0 (12)

A likelihood ratio test (LRT) statistic for the j-th gene is given by

Λj =2(log Pr(yj, γ̂
ML
j |X,W1j, Ŝj, R̂j; θ̂

ML)

− log Pr(yj, γ̂
ML
j |X,W1j, Ŝj, R̂j; θ̂

ML
0 )),

(13)

where θ̂ML
0 and θ̂ML are vectors of parameter estimates that are obtained by maximizing the

marginal likelihood, under the null hypothesis H0 and under the alternative hypothesis HA,

respectively. Using standard asymptotic theory [38], the test statistics Λj asymptotically

follows the χ2
df=1 under the null.

As discussed in Section 2.3, to overcome the intractability of maximizing the marginal

likelihood, we utilize a (PX)-VBEM algorithm where we maximize the ELBO, instead of

the marginal likelihood, to obtain parameter estimates θ̂0 and θ̂. Earlier applications

demonstrate that (PX)-VBEM produces practically useful and accurate posterior mean es-

timates [3, 8, 43, 34] (i.e. θ̂0 and θ̂). While it might seem reasonable to use the estimated

posterior distribution from maximizing the ELBO to directly approximate the marginal like-

lihood in Equation 13, it is well-known that the (PX)-VBEM typically identifies posterior

distributions that underestimate the marginal variances [40, 36]. Consequently, this is not
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a feasible approach. Instead of using the estimated posterior distribution as a proxy for

the marginal likelihood in Equation 13, under the assumption that the posterior means of

interest are well-estimated by (PX)-VBEM for all the parameters of interest (i.e. θ̂0 and θ̂

estimated using (PX)-VBEM are well-estimated), we plug-in our estimates from the (PX)-

VBEM algorithm into the marginal likelihood in Equation 13 to construct the test statistic.

We term the resulting likelihood with plug-in estimates from the (PX)-VBEM algorithm a

calibrated ELBO and provide more details in the next section. Briefly, the calibrated ELBO

is used as a proxy to the marginal likelihood in the test statistics. Our numerical studies

show that a test constructed using the calibrated ELBO works well.

3.2 Calibrated ELBO

We postulate that the ELBO can be calibrated using the form from the (PX)-EM algorithm

by plugging the posterior mean estimates and parameter estimates from (PX)-VBEM, which

can be used as a proxy to marginal log-likelihood. Here we describe the procedures to

calibrate the ELBO in detail. The marginal log-likelihood from the PX-EM algorithm for

model (8) can be written as follows

L̃(θ,uj)

=− n1

2
log(2πσ2

e)−
||y∗ − τW1juj||2 + τ 2tr(W1jΣjW

T
1j)

2σ2
e

+ αju
T
j Ŝ

−2
j γ̂j −

1

2
α2
ju

T
j Ŝ

−1
j R̂jŜ

−1
j uj −

α2
j

2
tr(ΣjŜ

−1
j R̂jŜ

−1
j )

− mj

2
log(2πσ2

γj
)− ||uj||2 + tr(Σj)

2σ2
γj

+
1

2
log |2πeΣj|

(14)

where uj and Σj are the joint posterior mean and posterior variance for latent variable γj,

and Σj is expressed as

Σj =

(
τ 2

WT
1jW1j

σ2
e

+ α2
j Ŝ

−1
j R̂jŜ

−1
j +

1

σ2
γj

Imj

)
−1

(15)
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Note that we explicitly express the marginal log-likelihood (14) from the PX-EM algorithm

that depends on the posterior mean, uj, and parameter estimates, θ, as the posterior variance

Σj is fully characterized by model parameters θ. Thus, we first fit the data using the PX-

VBEM (Algorithm 1 in the supplementary document). Then, we re-evaluate the marginal

log-likelihood from the (PX)-EM algorithm by plugging the posterior mean estimates and

parameter estimates θ = {σ2
γj
, σ2

e , αg,β, τ} from the PX-VBEM algorithm as equation (14).

Given the fact that the posterior means from (PX)-VBEM are accurate enough, the cali-

brated ELBO is close to the marginal log-likelihood. In Section 4, we conducted simulation

studies to show that the marginal log-likelihood evaluated under the proposed calibrated

procedure approximates well to that from (PX)-EM algorithms.

4 Simulations

4.1 Simulation settings

We conducted simulation studies to demonstrate that (a) CoMM-S2 has comparable perfor-

mance as CoMM (Section 4.2.1) and that (b) CoMM-S2 generally performs as well or better

than competing methods that also utilize summary statistics (Section 4.2.2). For (b), we

compared the performance of CoMM-S2 with S-PrediXcan, with both ridge regression and

Enet [47], denoted as S-PrediXcan:Ridge and S-PrediXcan:Enet, respectively.

We considered the following simulation settings to evaluate the performance of CoMM-S2.

We assumed sample sizes of n1 = 400, n2 = 5, 000, and n3 = 400, which are the sample sizes

for the transcriptome dataset, GWAS dataset and the reference panel dataset, respectively.

To generate genotype data, we first generated a data matrix using a multivariate normal

distribution N (0,Σ(ρ)), where Σ(ρ) is an auto-regressive correlation structure with ρ = 0.2,

0.5 and 0.8, representing weak, moderate and strong LD, respectively. We then generated

minor allele frequencies from a uniform distribution U(0.05, 0.5) and categorized the data
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matrix into trinary variables taking values 0, 1, 2 using these minor allele frequencies and

assuming Hardy-Weinberg equilibrium. All three genotype matrices, W1j, W2j and Wref
j

(where W1j, W2j are as defined in Section 2.1, and Wref
j is a genotype data from a reference

panel as described in Section 2.4) are generated in this manner.

To generate eQTL data from genotype data, we considered different cellular-level heri-

tability levels (h2
C) and sparsity levels, which are parameters that describe the genetic archi-

tecture of gene expression [41]. The cellular-level heritability (h2
C) represents the proportion

of variance of the eQTL that can be explained by genotype, while sparsity represents the

proportion of genetic variants that are associated with the gene expression. For a given

cellular-level heritability h2
C , a larger number of genetic variants that are associated with

gene expression levels implies a smaller genetic influence on gene expression, per genetic

variant. We generated eQTL data assuming yj = W1jγj + e1, where e1 ∼ N (0, σ2
e1
In1

),

and the non-zero γj were generated assuming γjk ∼ πN (0, σ2
γj
) + (1 − π)δ0, π is the eQTL

sparsity level, δ0 denotes a Dirac delta mass function at 0, and k is the index for genetic

variants within gene j. σ2
e1

and σ2
γj

were chosen to correspond to cellular-level heritability

levels h2
C of 0.01, 0.05, or 0.09, which are close to the median gene expression heritability

estimates computed across all genes [29]. We considered different eQTL sparsity levels of

0.1, 0.2 ,0.3, 0.4 and 0.5, where a sparsity level of 0.2 indicates that only 20% of the SNPs

have non zero effects (i.e. 20% of the γj’s are non-zero).

We generated a complex trait assuming z = αjW2jγj + e2. We assumed 100 local

genetic variants (cis-SNPs). e2 was chosen such that the organismal-level heritability level,

defined as h2
T =

α2

jVar(W2jγj)

Var(z)
is controlled at h2

T ∈ {0, 0.001, 0.002, 0.003}. A organismal-level

heritability h2
T = 0 corresponds to the null hypothesis that the gene has no association with

the organismal-level trait.

Summary statistics were generated by applying a single-variant analysis to the GWAS
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dataset.

Figure 1: The scatter plot of test statistics from LRT for CoMM-S2 vs CoMM with the setting
n1 = 400, n2 = 5,000, n3 = 400, mj = 100, ρ = 0.8, π = 1. The number of replication is
2000. The reference panel is subsampled from GWAS dataset.

Figure 2: The qq-plot of p-values for each method (CoMM, PrediXcan:Ridge, PrediX-
can:Enet, CoMM-S2, S-PrediXcan:Ridge and S-PrediXcan:Enet) with the setting n1 = 400,
n2 = 5,000, n3 = 400, ρ = 0.8. The number of replication is 1000. The sparsity varies
π ∈ {0.1, 1} and the cellular-level heritability varies from 0.01 , 0.05, to 0.09.
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Figure 3: The comparison of power for CoMM, CoMM-S2, PrediXcan:Ridge, PrediX-
can:Enet, S-PrediXcan:Ridge and S-PrediXcan:Enet with the setting n1 = 400, n2 = 5,000,
n3 = 400, ρ = 0.8. The number of replication is 500. For each subplot, the x-axis stands for
the sparsity of SNP and the y-axis stands for the proportion of significant genes within 500
replications.

4.2 Simulation results

4.2.1 CoMM-S2 and CoMM have comparable performance

We first compared the LRT test statistics from both CoMM-S2 and ComMM. We used 1,000

simulation replicates to compare the LRT test statistics of the two methods As shown in

Figures 1 and S2 - S7, the LRT test statistics of CoMM and CoMM-S2 are close to each

other with a R2 around 0.98.

Next, we compared the calibrated ELBO as described in Section 3.2 with the marginal

log-likelihood evaluated the using EM algorithm. Here, we consider the reference panel to be

the GWAS data itself, which enables the evaluation of the marginal log-likelihood from EM

algorithm. As shown in Figure S1 demonstrates that the calibrated ELBO is very similar to

the marginal log-likelihood.

In the real data analysis of the NFBC1966 dataset (Section 5.2), we observed that a

small proportion of test statistics from CoMM are degenerate zero. To better understand
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this phenomenon, we conducted additional simulations described in Supplementary Section

4.3. As shown in Figures S8 (a) and (b), while test statistics from CoMM degenerate to zero

when h2
C= 0, CoMM-S2 performs adequately under this setting.

4.2.2 CoMM-S2 generally has better or comparable performance compared with
alternative methods that use summary statistics

We evaluated the performance of CoMM-S2, S-PrediXcan:Ridge and S-PrediXcan:Enet under

the null hypothesis h2
T = 0, using 1,000 simulation replicates. The corresponding qq-plots

are shown in Figures 2 and S9 - S11. The results show that CoMM-S2 can effectively control

the type-I error, while S-PrediXcan shows a deflation when cellular heritability is low (e.g.,

h2
C = 0.01). We also compared the power of the three methods. As shown in Figures 3

and S12, the power of all three methods increases as the cellular heritability (h2
C) increases.

CoMM-S2 generally outperforms S-PrediXcan (both Enet and Ridge) at low or moderate

levels of cellular heritability (h2
C = 0.01 or 0.05). CoMM-S2 and S-PrediXcan:Ridge have

comparable performance for larger values of h2
C . S-PrediXcan:Enet generally performs well

at high levels of cellular heritability and when sparsity is low. The results also indicate that

while the performance of CoMM-S2 and S-PrediXcan:Ridge do not vary very much with the

sparsity, the performance of S-PrediXcan:Enet depends on the sparsity levels.

5 Real Data Analysis

We applied CoMM-S2 to two data sets, individual-level data NFBC1966 [30] and summary

statistics from 14 traits (see Tables S1 and S2), with the transcriptome data from GEU-

VADIS Project [21] and Genotype-Tissue Expression (GTEx) Project [23], respectively. The

NFBC dataset consists of information on ten quantitative traits. The ten quantitative traits

include body mass index (BMI), systolic blood pressure (SysBP), diastolic blood pressure

(DiaBP), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol
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(LDL-C), triglycerides (TG), total cholesterol (TC), insulin levels, glucose levels and C-

reactive protein (CRP). We also collected fourteen traits/diseases from multiple GWAS

consortia including six diseases traits and eight BMI-related traits. Diseases traits are

Alzheimer’s disease (AD), coronary artery disease (CAD), autism spectrum disorder (ASD),

schizophrenia (SCZ), type 2 diabetes (T2D), myocardial infarction (MI). There are eight sum-

mary statistics for BMI-related traits from 2017 GIANT Gene-Physical Activity Interaction

Meta-analysis [12] including two sex-combined traits, BMI for physically active individuals

(BMIPA), BMI for physically inactive individuals (BMIPI), and other six sex-specific traits,

BMI for physically active individuals in men(BMIPAM), BMI for physically active individ-

uals in women(BMIPAW), BMI for physically inactive individuals in men(BMIPIM), BMI

for physically inactive individuals in women(BMIPIW), BMI adjusted for physical activity

for individuals in men(BMIadjPAM) and BMI adjusted for physical activity for individuals

in women(BMIadjPAW). For transcriptome data, GEUVADIS study contains 15,810 genes

and GTEx project has gene expressions for 48 tissues, where the number of genes in each

tissue ranges from 16,333 to 27,378.

5.1 Analysis of NFBC1966 datatset

As we have individual-level data for NFBC1966 dataset, we then applied both CoMM and

CoMM-S2 using individual-level data and summary statistics, respectively. We first analyzed

the individual-level data from NFBC1966 with the transcriptome data from GEUVADIS

using CoMM. The results from CoMM can be taken as a benchmark as it uses individual-

level data. We then conducted single-variant analysis for NFBC1966 dataset to generate

summary statistics. Finally, we applied CoMM-S2 using summary statistics from NFBC1966

dataset. As CoMM-S2 uses a reference panel to give estimates for LD, R̂j, we applied two

different choices of reference panel, namely, 400 subsamples from NFBC1966 and European
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samples from 1KG [7]. The scatter plots of LRT test statistics for CoMM against CoMM-S2

using 400 subsamples from NFBC1966 are given in Figure 4 and the one using 1KG samples

as reference data is shown in Figure S24 in the supplementary document. When we used

the subsamples as the reference panel (in Figure 4), we notice that the test statistics from

CoMM-S2 are close to their counterpart with slope around 1 and R2 ranging from 0.91 to

0.99. When the reference panel becomes 1KG as shown in Figure S13, one can observe

that the test statistics in the null region (Λg < 20.84 ≡ p-value ¿ 5 × 10−6) from both

CoMM and CoMM-S2 are roughly around the line with slope equals to 1. The test statistics

in the non-null region (Λg ≥ 20.84 ≡ p-value ≤ 5 × 10−6) are inflated. This is primarily

due to the reference panel we used to estimate correlations. When we applied sub-samples

from NFBC1966 as reference panel data, this difference essentially disappeared. The reason

for this phenomenon could be that despite that NFBC1966 dataset is a Finn’s study from

Europe, Finnish samples was shown its genetic distinctness in previous studies [31].Although

this genetic discrepancy for Finnish population, we found that the inflation only appears in

the non-null regions, which makes the use of 1KG as reference panel practically useful. Note

that in these comparisons, we removed genes with cellular heritability less than 0.01 as the

test statistics for tiny cellular heritability using CoMM is not reliable. The use of cutoff

here is to make fair comparisons between CoMM and CoMM-S2 as test statistics of CoMM

degenerates to zero when cellular heritability is small (see Figure S8). In practice, we do not

require this limit as CoMM-S2 also works in tiny cellular heritability regions. To verify the

phenomenon of degeneration, we compared CoMM-S2 and CoMM with RL-SKAT [33] for

genes with cellular heritability less than 0.01 as shown in Figure S14. The result is consistent

with the simulation results from both Section 4.2 and our previous work [42].
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Figure 4: The scatter plot of LRT statistics for CoMM-IS vs CoMM, with transcriptiome
data from GTEx tissue Adipose Subcutaneous, GWAS data from NFBC1966 dataset, and
reference panel data from 400 subsamples of NFBC1966 dataset. We remove the points with
cellular heritability less than 0.001.

5.2 Analysis of 14 traits

We performed the analysis for 14 GWAS summary statistics with transcriptome data from

GTEx and the detailed information of these 14 traits are shown in Tables S1 and S2. Specif-

ically, we applied CoMM-S2 together with S-PrediXcan (both Enet and Ridge) to examine

the associations between each pair of a gene and the complex trait. We display qq-plots

for each trait across all tissues in Figure S15. After completing the analysis using three

approaches, we conducted genomic control for each trait-tissue pair. The genome-wide sig-

nificant threshold is set to be 5× 10−6 based on Bonferroni correction.

The results indicate that CoMM-S2 identified more significant associations than S-PrediXcan.The

analysis for each individual summary statistics together with the transcriptome data for a

tissue can be done around 20 min on a Linux platform with 2.6 GHz intel Xeon CPU E5-2690

with 30 720 KB cache and 96 GB RAM (0nly 6∼7 GB RAM used) on 24 cores.

CoMM-S2 is primarily developed to identify the associations between genes and complex

traits using summary statistics. It is not only power in the region that cellular heritability

is relatively large, but can also identify associations in the weak cellular heritability region.
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We show both the number of unique genes passing genome-significance level across different

tissues and the number of genes reported in the previous studies in Table 1 while the total

number of genes identified across 48 tissues using CoMM-S2 and S-PrediXcan (both Enet

and Ridge) is shown in Table S3. For example, as shown in Table 1, CoMM-S2 identified

199 unique genes across all tissues and 37 of them were previously reported in NHGRI-

EBI GWAS Catalog [4] for AD while S-PrediXcan (both Enet and Ridge) identified 95

and 108 genes with 24 and 28 genes reported before, respectively. However, CoMM-S2

identified 4,614 genes in total across 48 tissues while S-PrediXcan (both Enet and Ridge)

identified only 398 and 664 genes in total, respectively, which indicates that there are more

overlapped genes identified by CoMM-S2 but the genes identified by S-PrediXcan (both Enet

and Ridge) are more or less unique across tissues. Specifically, in GTEx adipose subcutaneous

tissue, CoMM-S2 identified seven genes in band 2q14.3, 12 genes in band 8p21.2, 14 genes

in bands 11q12.1 and 11q12.2, 13 genes in bands 11q14.1 and 11q14.2, and 51 genes in

band 19q13.32. Among them, 24 genes were reported to be associated with AD in previous

studies [5, 6, 24, 9, 28, 19]. However, S-PrediXcan can only identify six of these 24 genes.

Note that 18 out of these 24 genes have h2
C > 1% and among the six genes having h2

C ≤ 1%,

S-PrediXcan (both Enet and Ridge) only identified one gene and none, respectively. In

addition, gene BIN1 was identified among all 48 tissues and cellular heritability for gene

BIN1 are larger than 10% in eight tissues, e.g., h2
C = 13.5% in brain cerebellum, h2

C = 13.7%

in brain cortex, h2
C = 23.3% in esophagus muscularis mucosa, and highest in pancreas with

h2
C = 30.6%. Hence, the associations between gene BIN1 and AD in tissues with large h2

C

are more likely to be causal, where targeting BIN1 might present novel AD therapy [35].

Gene PTK2B has largest cellular heritability in tissue brain cerebellum (h2
C = 32.4%), which

was one of most significant genes associated with AD in a meta-analysis [20]. In a mouse

model, overexpression of PTK2B improved the behavioral and molecular phenotype of a
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strain of AD-linked mutated mice [11]. Gene CLU has the largest cellular heritability in

the adrenal gland tissue(h2
C = 22.7%), which has been found to be related to cholesterol

synthesis, transport, uptake or metabolism in AD that links between cholesterol and AD

pathogenesis [15].

For CAD, CoMM-S2 identified 117 unique genes across all tissues and 15 of them were

previously reported in NHGRI-EBI GWAS Catalog [4] while S-PrediXcan (both Enet and

Ridge) identified 71 and 73 genes with 11 and 11 genes reported before, respectively. How-

ever, CoMM-S2 identified 2,067 genes in total across all tissues while S-PrediXcan (both

Enet and Ridge) identified only 109 and 184 genes in total, respectively. Specifically, in the

artery aorta tissue, CoMM-S2 identified two genes in band 2q33.2, one gene in band 3q22.3,

three genes in band 6p24.1, two genes in band 6q25.3, eight genes in band 9p21.3, four genes

in bands 12q24.11 and 12q24.12, six genes in band 13q34, seven genes in band 15q25.1, and

five genes in band 19p13.2. Among them, nine genes were reported to be associated with

CAD in previous studies [14, 25, 37]. However, S-PrediXcan can only identify two of these

nine genes. Gene NBEAL1 was identified to be genome-wide significant in eleven tissues.

Among these eleven tissues, h2
C = 13.9% in artery aorta, h2

C = 9.3% in artery tibial, and

h2
C = 10.2% in pituitary are relative large, in which gene NBEAL1 is likely to be causal for

CAD.

The results of the identified genes for all 14 traits across tissues together with their

corresponding test statistics and p-values for CoMM-S2, S-PrediXcan (both Enet and Ridge)

can be found in excel tables in the supplementary files.

6 Conclusion

In this article, we have developed a collaborative mixed model using summary statistics

from GWAS to account for uncertainty in transcriptome imputation. We examined the
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CoMM-S2 S-PrediXcan:Enet S-PrediXcan:Ridge
AD 199(37) 105(28) 111(29)
ASD 2(0) 1(0) 5(0)
CAD 117(15) 71(11) 73(11)
MI 119(6) 81(7) 51(7)
SCZ 61(11) 57(17) 53(10)
T2D 160(27) 109(27) 110(22)
BMIPA 258(54) 137(35) 126(36)
BMIPI 53(11) 22(7) 28(7)
BMIPAM 31(4) 9(1) 17(4)
BMIPAW 123(31) 68(18) 67(21)
BMIPIM 12(2) 8(2) 7(4)
BMIPIW 24(4) 13(3) 11(2)
BMIadjPAM 104(21) 54(16) 76(21)
BMIadjPAW 208(45) 102(31) 107(30)

Table 1: The number of significant genes identified across the tissues at the significant level
(5×10−6) for each method. In this table, the same genes identified across the tissues are only
counted once. The number within the parenthesis denoted the number of genes reported in
NHGRI-EBI GWAS Catalog [4].

relationship between CoMM and CoMM-S2. Our numerical results show that CoMM-S2 has

comparable performance as CoMM. CoMM-S2 has several advantages over CoMM. First,

CoMM-S2 can be computationally more efficient than CoMM when applied to GWAS that

have large sample sizes. This is because CoMM-S2 is applied to summary statistics, which

is faster to compute in large sample sizes, while CoMM is applied to individual-level data.

Second, through empirical studies, we show that CoMM-S2 has better performance when the

cellular heritability is low. However, CoMM-S2 is not without limitations. First, CoMM-S2

cannot be utilized in a cross-tissue analysis, for example as illustrated in [17]. Furthermore,

CoMM-S2 cannot differentiate whether the identified genes are simply associated with the

complex traits or if they are real causal effects. These are avenues for further research.
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