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Abstract. Dijkstra's language of guarded commands is extended with recursion 

and transformed into algebra. The semantics is expressed in terms of weakest 
preconditions and weakest liberal preconditions. Extreme fixed points are used 

to deal with recursion. Unbounded nondeterminacy is allowed. The algebraic 
setting enables us to develop efficient transformation rules for recursive pro- 
cedures. The main result is an algebraic version of the rule of computational 

induction. In this version, certain parts of the programs are restricted to finite 

nondeterminacy. It is shown that without this restriction the rule would not be 

valid. Some applications of the rule are presented. In particular, we prove the 
correctness of an iterative stack implementation of a class of simple recursive 

procedures. 

O. Introduction 

0.0. In this paper we investigate the laws that govern manipulation of commands 
in an imperative language with recursion and (possibly unbounded) nondeter- 

minacy. We concentrate on the control structure and do not consider data 

structures or data refinement. 
The paper is organised as follows. This introduction contains brief sketches 

of the main ideas and of some of the results. Command algebras are introduced 
in Section 1. Section 2 contains auxiliary material on complete lattices. Recursive 
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procedures are treated in Section 3. Section 4 is devoted to upper continuity, a 

concept related to finite nondeterminacy. The technical heart of  the paper is 

Section 5, where transformation rules for recursion are obtained. The final rules 

are stated in Section 6. This section also contains some general applications. In 

Section 7 we treat the example that motivated our investigation. 

In every section, the formulae are numbered consecutively. For reference to 

formulae of  other sections we use the convention that i ( j )  denotes formula ( j)  

of  section i. 

0.1. Semantics, Equivalence and Program Transformation 

The elements of  our imperative programming language are called commands.  The  

semantics of  commands is expressed by weakest  preconditions (wp)  and weakest  

liberalpreconditions (wlp).  For a command s and a condition x on the state space, 

wp.s.x is the weakest precondition such that execution of  s terminates in a state 

where x holds; wlp.s.x is the weakest precondition such that execution of  s does 

not terminate or terminates in a state where x holds. We do not exclude miracles: 

it is possible to specify commands that can terminate "in a state where fa lse  

holds".  We come back to the question of  miracles in Sections 0.4 and 1.3. 

Commands can be connected by means of  the operators for sequential compo- 

sition " ; "  and nondeterministic choice "B". These operators are characterised by 
the rules 

w.(s; t) .x = w.s.(w.t.x) (0) 

w.( sUt ) . x=  w.s.x ^ w.t.x 

for both w = wp and w = wlp. Notice that we use the infix operator " ."  for function 
application. This operator binds t'rom left to right, to allow currying. It has a 

higher binding power than all other operators. We also provide a mechanism for 

procedure abstraction and (possibly mutual) recursion. 

We use X to denote the set of  the conditions on the state space. For a 

command s the expressions wp.s and wlp.s are functions X - * X .  We define 

semantic equivalence " ~ "  to be the relation on commands given by 

s -- t --- (wp.s = wp.t) ^ (wlp.s = wlp.t) (1) 

where " = "  stands for equality of  functions X--> X. Knowledge of  " - "  is the 

essence of  program transformation. For, if s - t then command s may be replaced 

by t without changing the semantics, but the executing mechanism may have 

different efficieneies for s and t. In formula (1), neither of  the two conjuncts of  

the right-hand side can be omitted. In fact, if skip is the command that leaves 

the state unchanged and abort is the command that never terminates, then the 
command 

skip a abort 

has the same wp as abort and the same wlp as skip, but it is not semantically 
equivalent to either command. 

It often happens that two commands s and t are only known to be equivalent 
under a certain precondition c. This can be expressed by 

?c; s ~ ?c; t 

where command ?c is defined by 

wp.( ?c) .x  = wlp.( ?c).x = -ac v x (3) 
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see Section 1.3 below. It may also happen that command s can be replaced by 
t because every possible outcome of t is a possible outcome of s. This situation 
can be expressed by 

s~s~t  (4) 

Formulae (2) and (4) are further evidence that knowledge of "-=" is the essence 
of program transformation. 

0.2. Command Algebras and Procedures 

At the basis of program transformation are algebraic rules like 

(s; t); u ~ s ; ( t ;  u), and 

i f c t h e n s e l s e t f i ; u  = i f c t h e n s ; u e l s e t ; u f i  

For calculational purposes it is convenient to postulate some equalities that imply 
these equivalences. Thus, we arrive at the notion of command algebra. A command 
algebra is a set (of commands) with two binary operators ";" and "fl", that satisfy 
a list of axioms; see Section 1.1 below. The next step is to introduce homomorph- 
isms of command algebras, ef. formula 1(10). For example, it turns out that 
formula (0) reflects the fact that wp and wIp are homomorphisms to the algebra 
C.X of the conjunctive predicate transformers, cf. Section 1.2. 

In order to introduce recursion we fix a basis to build upon. This basis consists 
of a command algebra B together with homomorphisms wp and wlp from B. 
Algebra B may be thought of as generated from simple commands by means of 
the operators ";" and "~". Therefore, the commands in B may be regarded as 

the straight-line commands, cf. [DIS90] Chapter 7. 
We let H denote the set of  the procedure names. The command algebra B[ H]  

is the set of all command algebra expressions in elements of B and H. Such 
expressions are regarded as equal if and only if that is implied by the equalities 

of B and H together with the axioms. 
Every procedure name h ~ H is supposed to be equipped with a body d.h 

B[H]. So, we have a function d:H-->B[H], which is called the declaration 
function. Since the bodies d.h may contain procedure names, recursion (both 
simple and mutual) is possible. The semantics of the commands in B[H] is 
determined by extending the homomorphisms wp and wlp as given on B to the 
bigger algebra B[H]. The precise definition is given in Section 3.3. For the 
moment, it suffices to mention consequence 3(10), which says that every procedure 

is equivalent to its body: 

h ~ d.h (5) 

0.3. Quantifications and Predicates 

We write (Vx E X : P: Q) to denote the predicate that Q holds for all x ~ X such 
that P. Similarly, (3x ~ X : P:  Q) denotes that Q holds for some x e  X such that 
P. The indication " e  X "  is often omitted. If the range condition P is omitted, a 
default condition is meant, which is either true or specified in the context. We 
use the operators "-=" and " ~ "  and "r for logical equivalence and implication. 
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For x a predicate on a state space, Ix] denotes the proposition that x holds 
everywhere on the state space. This is used in particular in the notation [ x ~ y ] ,  
which means that predicate x is stronger than y. 

In the theory, it is convenient to apply an abstraction at this point. The set 
of programming predicates is treated as a distributive lattice with the order 
relation given by 

x < _ y  - [x~y]  (6) 

Therefore, a universal quantification (Vy e Y:: y) of a set Y of programming 
predicates is treated as the greatest lower bound (A Y ~ Y::y) .  Similarly, the 
existential quantification (3y ~ Y :: y) is treated as the least upper bound (V y 
Y::y) .  

0.4. Healthiness Conditions 

In [Dij76], Dijkstra postulated some conditions on the predicate transformer 
wp.s of a given command s. The term "healthiness condition" seems to be due 
to Hoare [Hoa78]. We consider the following versions ([Dij90] Chapter 7): 

Law of the excluded miracle: wp.s.false =false (7) 

Termination rule: for any predicate x, (8) 

wp.s.x = wp.s.true a wIp.s.x 

Universal conjunctivity: for any set Y of predicates, (9) 

wlp.s.(A y e  Y: :  y ) = ( A  y ~  Y:: wlp.s.y) 

Or-continuity: for any weakening sequence (i: i - 0: z.i) 
of predicates z.i, (10) 

wp.s.(V i: i >- 0: z.i) = (V i: i -> 0: wp.s.(z.i)) 

In recent papers [Ne187] and [Mot87], it has been argued that the law of the 
excluded miracle (7) is an obstacle on the road to effective calculational rules 
for program development. We claim that it also hinders program transformation. 
Therefore, we abolish law (7). Actually, in our command algebras it is often 
convenient to have an element magic with 

wp. magic.false = true. 

We do not claim that magic can be implemented. 
As indicated in [Dij76], condition (10) cannot be combined with unbounded 

nondeterminacy. Reasons for allowing unbounded nondeterminacy are given in 
[Bac87]. Therefore, we do not postulate (10). Our transformation rules for 
recursion will need a condition that some commands s are upper continuous (cf. 
Section 4.1). For general lattices, this concept is slightly stronger than or-continuity 
(10). In 4(15), we prove that or-continuity, upper continuity and finite nondeter- 
minacy are equivalent in the model of  relational calculus. 

For us, the remaining healthiness conditions (8) and (9) have the status of 
axioms for commands s in command algebra B. In Sections 3.4 and 3.5, we prove 
that the validity of (8) and (9) extends to procedures h ~ H. Actually, finite 
conjunctivity of wp and wlp is forced into the theory by the distributivity axiom 
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1(5). We need condition (9), since it is used in the proof of the transformation 
rule for recursion. It may be mentioned, however, that law (9) has been abolished 
in [MoG88]. 

0.5. The Transformation Rule for Recursion 

The main result of this paper is an extension of the rule of computational induction 
to the case of unbounded nondeterminaey. In a first approximation, computa- 

tional induction is the rule that a command expression s can be replaced by t if 

there is a congruence relation on command expressions that contains the pair 

(s, t) and that is stable under the operation of replacing every procedure name 
h by its body d.h. The induction starts with the case that all procedure names 

are replaced by abort. We allow unbounded nondeterminacy, but our commands 

must satisfy a certain technical condition expressed by s, t ~ Lia. 

Formally, the result is as follows. Let d*:B[H]  ~ B[H] be the function such 
that d*.s is obtained from s by substituting the body d.h for every procedure 
name h in expression s. Similarly, let d a * : B [ H ] ~  B[H] be the function such 
that da*.s is obtained from s by substituting abort for every h in s. Then we have 

Theorem. Let "--." be a binary relation on B[H] such that 

(Vs, t ~ B [ H ] : s , . . . t : d * . s  *.*-,d*.tAda*.s~da*.tAS, t e L i a )  

Then it follows that (Vs, t ~ B[H] : s ~ t : s ---- t). 

Here, relation "~*" is the congruence generated by relation "---" and Lia is 

a certain subset of B[H]. For more details we refer to the introduction of Section 

5. 
In Section 6.1, the final version of the transformation rule is obtained, in a 

form that allows accumulation of knowledge of congruences. The remainder of 

Section 6 contains some applications, commutation theorems that are used in 

Section 7. In Section 7, we use the transformation rule to prove the correctness 

of a stack implementation of a simple recursive procedure. As a special case, we 
get a relation between the euclidean algorithm and Dijkstra's function fusc. 

0.6. Related Work and New Features 

Our transformation rule for recursion is an unboundedly nondeterministic version 

of computational induction [Bak80, BaW81, Man74]. The semantic framework 
with wp and wlp is due to Dijkstra([Dij76]). Our command algebras are basic 
process algebras in the sense of [BBK87]. The observation that the law of the 
excluded miracle is an obstacle for efficient calculations and therefore should be 

abolished is due to Nelson [Ne187]. 
The theory of this paper is a complete reworking of the theory of [Hes89a]. 

The main change in the theory is that important algebraic properties as studied 

in [Hes88b] are here encapsulated in the concept of command algebra. We needed 

the shift from syntax to algebra for the development of program transformation. 
New features in this paper are the treatment of wp and wlp as homomorphisms 

of algebras and the use of congruences for the study of program transformation. 
New also is the result that computational induction extends partially but not 
completely to programs with unbounded nondeterminacy. Dijkstra found his 
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function fusc while playing with the euclidean algorithm, but as far as we know 
the relationship between fusc and the euclidean algorithm has never been men- 

tioned in the literature. 

0.7. Linear Annotated Proofs 

Whenever convenient, we use Feijen's proof format. For example, a proof of an 
implication A ~  C may be given in the form 

C 

{indication why C follows from B} 
B 

-- {indication why A and B are equivalent} 
A 

If A is identical to true, this form may be used as a proof of C; for examples 
see Section 1.2. The proof format is also used for other relations than the 

implication; see the proofs of 2(5), 4(9) and 5(36). Occasionally, the justification 

of a step is postponed as a remaining proof obligation. In that case, we indicate 
the occurrence of a forward reference by means of a marginal ('~). See the proofs 
of 5(29) and 5(36). 

We do not doubt that the proofs can bc polished further, but we leave the 
pleasure of doing so to the reader. In our view, proofs should not be regarded 
as a burden but as a challenge or pleasure. 

1. Algebras and Lattices 

l.O. This section contains the fundamental constructions and the algebraic and 

order-theoretic preliminaries. In Section 1.1, we introduce process algebras and 

command algebras, the order of determinacy on such algebras, and their 

homomorphisms and subalgebras. In Section 1.2, we show that every inf-lattice 

X has an associated process algebra E X  and an associated command algebra 
C.X, which is a subalgebra of F.X, and we determine the order of determinacy 
of E X  and C.X. In 1.3, we descend to the level of predicates (boolean functions 
on a state space) and languages that manipulate states and predicates. 

1.1. Process Algebras and Command Algebras 

The main algebraic concept in this paper is the concept of command algebra. It 
is a specialisation of the concept of (basic) process algebra, as introduced by 
Baeten, Bergstra and Klop [BBK87]. Therefore, it is convenient to define process 
algebras first, and then add the extra distributivity axiom that converts a process 
algebra into a command algebra. 

A process algebra is a triple (A, 0, ;), where A is a set and "~'" and ";"  are 

binary operators on A. The elements of A are called processes or commands. The 
operators "B" and ";" are associated with nondeterminate choice and sequential 
composition, respectively. The following axioms are postulated: 

aOa=a (0) 
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aOb=bOa (1) 

(aOb)Oc= aO(bOc) (2) 

(a; b); c =  a; (b; c) (3) 

(a0b); c =  a; cob; c (4) 

In (4) and henceforth, we give the operator " ; "  a higher priority than "0". In 

fact, " ; "  is regarded as a multiplication and " r '  is regarded as an addition 
operator. I f  no ambiguity can arise, we speak of  the process algebra A instead 
of  (A, 0, ;). 

A process algebra A is called a command algebra if and only if it also satisfies 

the other distributive law 

a; (bOc)=a; boa; c (5) 

On a process algebra A we define the binary relation - b y  

a<-b =- a = a i b  (6) 

As is well known (and easily verified), axioms (0), (1), (2) imply that - is an 
order on A. Notice that we use the term order with the meaning of "partial 
order". Relation -< is called the order of determinacy. In fact, a -< b means a = a 0 b, 

so that b is a possible choice for a; in other words, a is less determinate than b. 
One can easily verify that a 0 b is the greatest lower bound of  a and b in the 

ordered set (A, "<), and that 

a<-b^c<-d ~ aOc<-bOd (7) 

We also have the rule 

a<-b ~ a; c<-b; c (8) 

This is proved in 

a; c<-b; c 

{(6)} a; c=a;  cOb; c 

-- {(4)} a;c=(aOb);c  

{(6)} a-<b 

In the same way, if A is a command algebra, axiom (5) is used to prove 

a<_b ~ c; a<_c; b (9) 

A function w : A ~ B between process algebras A and B is called a homomorph- 

ism if and only if it satisfies 

w.(pO q) = w.pO w.q (10) 

w.(p; q) = w.p; w.q 

Every homomorphism of process algebras is monotone, i.e. 

a<_b ~ w.a<_w.b (11) 

This is proved in 

w.a <_ w.b 

- { ( 6 ) }  w.a=w.aOw.b 
{(10)} a=aOb 

---- {(6)} a--< b 

A subset U of  a process algebra A is called a subalgebra if and only if 

(Vp, qe  U::pOqe U Ap; qe  U) (12) 
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A subalgebra U of A is a process algebra in its own right and the identity function 

U + A is a homomorphism. 

1.2. The Algebras of an lnf-Lattiee 

An inf-lattice is defined to be an ordered set (X, -<) with a biggest element tt ~ X 
and, for every two elements x and y, a greatest lower bound x ^ y. If no ambiguity 
can arise we write X instead of (X, - ) .  A lattice is defined to be an inf-lattice 

X with a smallest element f f  and, for every two elements x and y, a least upper 
bound x v y. 

Let X be an inf-lattice. We write E X  to denote the set of functions f :  X + X. 

It is equipped with the structure of a process algebra by defining 

(fO g) .x  = f . x  ^ g.x (13) 
(f;  g).x =f.(g.x) 

The verification of the axioms (0) up to (3) is immediate. Axiom (4) is verified in 

(fag);  h = f ;  hgg; h 
--- {equality of functions} 

(Vx: : ((fg g); h).x = (f;  h 0 g; h).x) 
-= {(13)} 

(Vx:: (fOg).(h.x) = (f;  h).x A (g; h).x) 
- {(13)} 

true. 

A function f :  X + X is called conjunctive if and only if 

f.(x A y) =f.x af.y (14) 

We write C.X to denote the set of conjunctive functions f :  X + X. One verifies that 

(Vf, g ~ C.X ::fOg ~ C.X ^ f ;  g ~ C.) 

so that C.X is a subalgebra of F..X. Actually, we have 

C X  is a command algebra. (15) 

This is proved by observing that (5) holds, since for any f, g, h ~ C.X we have 

f ;  (gUh)=f; gnf; h 
{equality of functions, (13)} 

(Vx:: f.(g.x A h.x) =f.(g.x) A f.(h.x)) 
--= {f  is conjunctive, (14)} 

true 

By a variation of this calculation one can show that, i f X  ha^ an element different 
from if, process algebra F.X is not a command algebra. 

The order of determinacy of the algebras F.X and C.X satisfies 

f<-g  "~ (Vx:: fx<-g.x)  (16) 

This proved in 
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f < g  
= {(6) and equality of  functions} 

(Vx : :f.x = ( fOg).x)  
-- {(13)} 

(Vx ::f.x = f . x  A g . x  ) 

-- {A gives greatest lower bound} 

(u ::f.x- g.x) 

W. H. Hesselink 

1.3. Predicate Calculus and Programming 

For us, the main example of  an inf-lattice is the set of  the programming predicates. 

This is the set X of  the boolean functions on a state space St. The set X is 

ordered by formula 0(6), or more explicitly 

x<-y  =- ( V r ~ S t : : x . r ~ y . r )  (17) 

With this order, X is a lattice (actually, a complete lattice, cf. 2.1 below). In fact, 
an arbitrary subset Y of  X has a greatest lower bound A (Y) and a least upper 

bound V (Y),  given by 

A ( Y ) . r = ( V y E  Y: :y . r )  (18) 

V ( Y ) . r = ( 3 y ~  Y: :y . r )  

In particular, we have 

(x ^ y ) . r=  x.r A y.r 
(x v y ) . r=  x.r v y.r 

where A and v on the right-hand side are boolean conjunction and disjunction. 

The smallest and the biggest element of  X are the functions f f  and tt, respectively, 
which are given by 

ff.r =false, tt.r = true 

The algebra of  straight-line commands is constructed as follows. Let S be a 

set of simple commands. The semantics of  the simple commands is supposed to 

be given by functions wp, wlp:S-~ C.X that satisfy healthiness conditions 0(8) 
and 0(9). For s ~ S and x ~ X, function wp.s.x is the weakest precondition such 

that execution of  command s terminates in a state that satisfies condition x. 

Function wlp.s.x is the weakest precondition such that execution of  s does not 

terminate or terminates in a state that satisfies x. Note that we use the standard 

postulate that wp.s and wlp.s are conjunctive predicate transformers for every 

command s. 

Let S #  be the language that is generated by S and the rules summarised in 

(Vp, q e S #  : : (p, q )~  S #  A (pOq)~ S # )  

We extend functions wp and wlp to functions S #  --> C.X by the condition that 

(10) holds with w replaced by wp and wtp. Let semantic equivalence (---) in S #  

be defined as in 0(1), so that 

p-~q  =- (wp.p= wp.q) A (wlp.p= wlp.q) (19) 

It is clear that -~ is an equivalence relation on S # .  Let B be the quotient set 

(S#)/--~, i.e. the set of  equivalence classes for - .  In S # ,  it holds that 

( a ~ a l ) A ( b ~ b l )  ~ ( a ; b ~ a l ; b l ) ^ ( a a b - - m a l a b l )  
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Therefore, the operators "0" and ";" induce corresponding operators on the set 
B. Since C.X  is a command algebra, it is easy to verify that the relation ~ on 

S #  satisfies the formulae obtained from axioms (0) through (5) after replacing 
"='" by " ~ " :  

a ~ a ~ a ,  agb~bUa,  etc. 

It follows that the quotient set B with the induced operators "g" and ";" is a 
command algebra, and that wp and wlp are well-defined homomorphisms B-> 
C.X. The algebra B is called the algebra o f  straight-line commands. 

It is useful to note that conditional statements can be implemented on this 
level. In fact, let simple commands of the form ?b be defined by 

wp.( ?b ).x = -ab v x (20) 
wlp.( ?b ).x = ~ b  v x 

Now the construction 

if b then sO else s l fi 

is equivalent to (?b; s0)'Q(?~b; sl) .  Compare [Bak80] p. 271. Commands of the 
form ?b are called guards. Although, in general, they do not satisfy the law of 
the excluded miracle, cf. 0(7), they are very useful, see e.g. formula 0(2) and 
Section 7. 

Let us also introduce a command lb that skips if b holds and does not 
terminate if ~ b  holds. It is given by 

wp.(!b).x = b ^ x (21) 
wlp.( lb ).x = -3b v x 

Now one can verify that Dijkstra's conditional construct 

if bO--> sOObl-> sl  fi 

is equivalent to 

!(b0v bl);  (?b0; s00 ?bl; s l)  

For proofs and for more results on ?b and !b, we refer to [Hesg8b]. 

2. Completeness 

2.0. This section contains technical preparations and reference material. There- 
fore, some readers may prefer to skip the section and come back when references 
to the section appear. In Section 2.1, we give some results on complete lattices 
of  functions. Section 2.2 contains an extended version of the theorem of Knaster 
and Tarski. 

2.1. Completeness of  Lattices and Algebras 

An inf-lattice X is called complete if and only if every subset Y or X has a 
greatest lower bound/~ (Y). As is well known, a complete inf-lattice is a complete 
lattice. For, if Y is a subset of X, the greatest lower bound of the set of the upper 
bounds of Y is the least upper bound of Y. This proves that every subset of  X 
has a least upper bound. 
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Let X be a complete lattice. For a set V, let the set of functions V ~  X be 
equipped with the order <- defined by 

f - g  ---- (Vv~V: : f .v<-g .v)  (0) 

Then we have 

(1) Theorem (extrema of functions). The set of  functions V--> X is complete. If  

F is some subset of  V--> X, the greatest lower bound A (F) is the function f 0  
given by 

f O . v = ( A f  ~ F :: f.v) (2) 

The least upper bound V (F) is the function f l  given by 

f l . v  = ( V f e  F : : f . v )  (3) 

Proof. Since X is complete, function f0  is well defined. For any function g : V-~ X, 

it holds 

g<-fO 
- {(0)} (VveV::g.v<-fO.v)  
------ {(2)} (VveV,  f e F : : g . v ~ - f v )  
- {(0)} ( V f ~ F : : g < - f )  

This proves that f0  = ]~ (F).  In the same way, one proves that f l  = V (F). [] 

Remark. The formulae 1(18) are the cases of this result where V= St and where 

X is the set of  the two booleans values with false < true. 
A subset L of an ordered set X is defined to be linear if and only if 

(Vx, y e  L : : x<-yv  y~-x)  (4) 

The importance of linearity (for us) stems from the following result: 

(5) Theorem (diagonalisation). Let X be a complete lattice. Let L be a linear 

subset of some ordered set. Let p:L-~ L ~  X be a monotone function in both 

arguments, i.e. 

(Vx, y, z~  L:x<_y:p.x.z<_p.y.z ^p.z.x<_p.;t.y) 

Then we have 

(a) (V x, y e  L : :p . x . y )=(Vxe  L::p.x.x) 

(b) (A x, y e L :: p.x.y) = (A x ~ L :: p.x.x) 

Proof. (a) is proved in the following calculation 

(V x, y e  L:: p.x.y) 
= {range union with (4)} 

(V x,y:x>-y:p.x.y)  v (V x.y:y>_x:p.x.y) 
= {quantifications} 

(V x : :  (V y:x>-y  :p.x.y)) v (V y :: (V x:y>-x:p.x.y)) 
= {p is monotone in both arguments} 

(V x :: p.x.x) v (V y :: p.y.y) 
= {calculus} 

(V x : :  p.x.x) 

(b) follows by symmetry. [] 
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Let X be a complete lattice. Let Q stand for one of the two quantifiers V or A, 
which are used to denote least upper bounds and greatest lower bounds, respec- 
tively. A subset V of X is defined to be Q-closed if and only if 

( V F : F c  V :Q(F)~  V) (6) 

It is defined to be Q-decked if and only if 

(VL: L c  V^ L is linear: Q(L) ~ V) (7) 

Clearly, every Q-closed set is Q-decked. The empty set O is linear, so that a 
Q-decked set V contains Q(~) .  If Q = V, then Q(O) is the smallest element of 
X. If Q = A, then Q(O) is the greatest element of X. 

We now consider the ordered set F.X and its subalgebra C.X, el. Section 1.2. 
By 1(16), the order of determinacy of F.X is equal to the order given by (0). 
Therefore, F.X is complete by Theorem (1). 

(8) Theorem. C.X is A-closed in F.X. Therefore, command algebra C.X is a 
complete lattice. 

Proof. Let F be a subset of C.X. Putf0=A (F), of. (2). We show that f 0 e  C.X, 
i.e. that f 0  is conjunctive, of. 1(14). This is proved in 

fO.(x ^ y) = fO.x ^ fO.y 
--- {(2), let f range in the set F} 

(A f :  :f.(x A y)) = (A f :  :f.x) A (A f :  :f.x) 
-- {all f are conjunctive: 1(14)} 

( A f :  :f.x Af.y) = (A f :  :f.x) ^ (A f :  :f.x) 
-= {calculus with greatest lower bounds} 

true 

This proves that C.X is A-closed in F.X. Therefore, it is a complete inf-lattice 
and hence a complete lattice. [] 

(9) Theorem. Assume that the complete lattice X is such that every subset y 
satisfies the distributive law 

X A ( V y ~  Y : : Y ) = ( V  Y~ Y : : x A  y). 

Then C.X is V-decked in F.X. Therefore, least upper bounds of linear subsets 
of C.X can be calculated in F.X. 

Proof. Let F be a linear subset of C.X. Let the function f l  ~ C.X, i.e. that f l  is 
conjunctive, of. 1(14). This is proved by the following calculation: 

f l . ( x  A y) 

f l . x  A f l . y  
{(3), let f and g range over F} 

( V f :  :f.x) A (V g::  g.Y) 
{the distributivity, twice} 

(Vf,  g::f .x  ^ g.y) 
{diagonalization (5)(a) with x :=f, y := g and p.f.g :=f.x ^ g.y} 

(V f :  :f.x A y) 
{all f are conjunctive 1(14), and (3)} 

[] 
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2.2. A Version of  the Theorem of  Knaster and Tarski 

In this subsection, we prove a convenient version of the theorem of Knaster and 
Tarski. This version can be proved by transfinite induction, but it was a rewarding 
exercise to try and avoid that powerful theory. 

(10) Theorem. Let f :  X ~ X be a monotone function. Then f has a smallest fixed 
point xa and a biggest fixed point xb in X. Let V be a subset of X that is 
f-invariant, i.e. (Vx ~ V: : f . x  ~ V). 

(a) If V is V-decked, then xa ~ V 

(b) If V is A-decked, then xb ~ V 

Remark. This version is stronger than the version in [Hes89a] Section 1.3, for 
there we proved xa ~ V (xb ~ V) under the stronger condition that V is V-closed 

(A-closed). 

Proof. By symmetry, it suffices to prove t h a t f  has a smallest fixed point xa, which 
satisfies (a). This is done in four parts. In part A, we construct a subset Y of X 
(and of V) that is V-decked and f-invariant. In part B, we prove a formula that 
implies that all elements of Y are below all fixed points off .  In part C, we prove 
that set Y is linear. In part D, we prove that the least upper bound of Y is an 

element xa that satisfies all claims of the theorem. 
Part A. Let Y be defined as the intersection of all subsets U of X that are 

V-decked and f-invariant. Thus, for any x ~ X, we have 

x~  Y ~ (VU: U is V-decked ^ U isf-invariant: x~  U) (11) 

As the given set V is V-decked and f-invariant, we have 

Y c  V (12) 

We prove that Y is V-decked and f-invariant. In order to prove that Y is 
V-decked, cf. (7), let a linear subset L of Y be given. We observe 

V (L)~ Y 
-- {(11)} 

(VU: U is V-decked ^ U isfiinvariant:V (L)e  U) 
{ Y ~  U by (11); and L ~  Y} 

(VU: U is V-decked ^ L c  U : V  (L)e  U) 
-- {(7) and L is linear} 

t rue  

The fiinvadance of Y is proved in 

f . y~  Y 
- { ( 1 1 ) }  

(V U: U is V-decked ^ U is f-invafiant :fly E U) 

{ U is f-invariant} 
(VU: U is V-decked ^ U isf-invariant:y~ U) 

{(11)} 

y ~ Y  

This proves 

Y is V-decked ^ Y is f-invariant (13) 

Part B. In the next stages, formula (11) is used as an induction principle: we 
prove properties of the elements of Y by showing that the set where the property 
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holds is V-decked and f-invariant, and therefore contains Y. As an easy case, 
we first establish 

(Vy~ Y : : (Vx~X: f x~x :y<-x ) )  (14) 

Let the set Z0 be defined by 

y~ ZO~ (Vx~ X :fx-<x:y-<x) (15) 

We prove that Z0 is V-decked and f-invariant. For any linear subset L of Z0, 
we have 

V (L) e Z0 
- { ( 1 5 ) }  

( V x e X : f x ~ x : V  (L)-<X) 
{definition V (L)} 

(Vx c X :fx<-x:(Vy~ L: :y-< x)) 
{interchange of quantifications} 

(Vy~ L:: (Vx~ X : fx-<x: y<-x)) 
{Lc  Z0 and (15)} 

true 

Therefore Z0 is V-decked, el. (7). The f-invariance of Z0 is proved in 

f z  ~ ZO 
= {(15)} 

(Vx :f.x-< x : f z  -< x)  

r {transitivity} 
(Vx : f .x  <- x : f z  -< f x )  

{monotonicity o f f }  
( V x : f x < - x : z < _ x )  

--  { (15 ) }  

z~ Z0 

By (11) with U : = Z 0 ,  this proves that Y is contained in Z0. By (15), this 
establishes formula (14). 

Part C We turn to the iinearity of 16. In view of (4), we consider the set Z1 
given by 

z~Z1 ~- (Vy~ Y::y<_zvz-<y) (16) 

For any linear subset L of Z1, we observe that 

V (L)~Z1  
{ (16)}  

(Vy~ Y::Y<-V (L)v V (L)-<y) 
{definition of ~/(L)} 

(Vyc Y::(3vcL::y-<v)v(Vw~L::w<_y)) 
-= {distribution of v over V} 

(Vy~ Y: : (Vw~ L : : ( 3 v e  L::y-<v)v w~_y)) 
{one point rule} 

(Vy~ V::(VwcL::y-<wv w-<y)) 
=- {Lc Z1 and (16)} 

true 

By (7), this proves 

Z1 is V-decked (17) 

In order to prove that Z1 is f-invariant, we consider a given z~ Z1. We want to 
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prove t h a t f z ~ Z 1 .  By (16), we have 

f z E Z 1  ~ (Vy~ Y : : y < - f z v f z < - y )  (18) 

Therefore, we introduce Z2 given by 

y ~ Z 2  ~ y~  Y ^ ( y < - f z v f z < - y )  (19) 

We verify that Z2 is V-decked and f-invariant. For any linear subset L of Z2, 
we have 

V (L) ~ Z2 
{(13) and (19)} 

V (r)<-f.z v fz<--V (L) 
{definition of V (L)} 

(Vv ~ L::  v <-fz) v (3w ~ L:: f z  <- w) 

{distribution of v over V} 
(Vv6 L::  v ~ f z v ( 3 w r L : : f z < - w ) )  

{one point rule} 
(Vv~ L::  v < . f z v f z < ~ v )  

=- {L= Z2  and (19)} 
true 

The f-invariance of Z2 is proved in 

f y e Z 2  

-- {(19)} 

f y ~  Y ^ ( f y < - f z v f z < - f y )  
{(13) and f monotone} 

y e  Y ^ ( y ~ z v z < - y )  
{first conjunct of (19), then (16) and z ~ Z l }  

y e Z 2  

By (11) with U:= Z2, this proves that Y is contained in Z2. By (18) and (19), 
this proves that f z  ~ Z1. Here, z was an arbitrary element of Z1. Therefore, Z1 
is f-invariant. By (17), and (11) with U:= Z1, it follows that Y is contained in 
Z1. By (16) and (4), this proves that the set Y is linear. 

Part D. We define xa = V (Y) .  Since Y is V-decked, of. (13), and a linear 
subset of itself, it contains its own least upper bound xa, by (7). By (12) and 
(14), it follows that 

x a ~ V  A ( V x e X : f x < - x : x a < - x )  (20) 

The element xa is a fixed point of function f because of 

x a  = f x d  

-- {antisymmetry} 
xa <-fxa ^ f x a  <- xa 

{(20) with x := f x a }  

f ( f x a ) < - f x a  ^ fxa<--xa 
---- {f  is monotone} 

f x a  <- xa 

{xa=V(Y)} 
f.xa ~ Y 

{xa ~ Y and (I3)} 
true 

For any fixed point x o f f  we have f x  <- x, and hence xa <- x by (20). Therefore, 
xa is the smallest fixed point o f f  [] 
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Remark. Definitions (16) and (19) are due to Erik Saaman, who simplified an 

earlier proof. 

3. The Semantics of Recursion 

3.0. Let X be a complete lattice that satisfies the distributive law (cf. Theorem 
2(9)) 

x ^ ( V  y~  Y : : y ) = ( V  y~ Y : : x A  y) (0) 

The biggest element of X is denoted by tt, the smallest element by ft. 
Let B be a command algebra. The semantics of commands in B is supposed 

to be given by homomorphisms wp and wlp: B ~  C X  that satisfy for any s e B, 

any x e X, and any subset Y of X the healthiness conditions (analogous to 0(8) 
and 0(9)) 

wp.s.x = wp.s.tt ̂  wlp.s.x (I) 

wlp.s.(A y ~ Y :: y) = (Ay ~ Y:: wlp.s.y) (2) 

Now procedures are introduced. One declares a set H of procedure names 
h, with associated procedure bodies d.h. Because of recursion, the bodies d.h 

may contain procedure names. Therefore, the bodies d.h are command algebra 

expressions in elements of B and H. The semantics of recursion is supposed to 
be such that procedure h is semantically equivalent to its body d.h. 

In program transformation, we need algebraic manipulation of procedure 

bodies before the identification of semantically equivalent commands. In fact, 
an arbitrary declaration d.h = E would lead to h --- E, but we are not allowed to 

replace the declaration d.h = E by the declaration d.h = h, since the latter 
declaration is expected to give a non-terminating procedure. On the other hand, 
we want to be able to argue that e.g. declaration 

d.h =(a ;  h~b); c 

is the same as declaration 

d.h = a ;  h; cob; c 

Therefore, we introduce a command algebra B[H] that contains the elements of 
H and that has B as a subalgebra. A declaration is a function d : H-* B[H]. The 

semantics of such a declaration is defined by extending the homomorphisms wp 

and wlp to homomorphisms B[H]-~ CX.  We use the theorem of Knaster and 
Tarski to construct these extensions. The formal development is as follows. 

3.1. Polynomial Command Algebras and Recursive Procedures 

Let H a set of symbols disjoint from B. The polynomial command algebra B[H] 

is defined as the set of all command algebra expressions in elements of B and 
H, modulo the equalities induced by the axioms I(0)-1(5). 

(3) Theorem. B[H] contains the set H. It contains B as a subatgebra. For every 
homomorphism of command algebras w: B-~ A and every function d : H-* A, 
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there is precisely one homomorphism of command algebras d*: B [ H ] ~ A  that 
extends the functions d and w. The only subalgebra of B [ H ]  that contains B 

and H is B [ H ]  itself. 

Sketch ofproofi On the set of command expressions there is precisely one function 
to A that satisfies formula 1(10) and that extends the functions w and d. This is 

proved by structural induction over the expressions. Since the axioms 1(0)-1(5) 
hold in A, the extended function respects the equalities induced by the six axioms. 

Therefore, the function is well defined on B[H].  Clearly, it is a homomorphism. 
Uniqueness is obvious. It is clear that B [ H ]  is generated by B and H. [] 

A declaration is defined to be a function d : H ~  B[H] .  The intention is that 

the elements of H are procedure names of a particular program and that d.h is 

the body of procedure h, for every h e H. In this way, mutually recursive pro- 
cedures are possible. By Theorem (3), a declaration d has a unique extension to 

a homomorphism d * : B [ H ] - ~  B[H]  that extends function d and the identity 

function of B. 
Henceforth, we let d : H  ~ B[H]  be a declaration. Let a homomorphism of 

command algebras wg: B ~ C . X  be given. Function wg is introduced in order to 

avoid a case distinction between wp and wlp. 

An interpretation of declaration d over wg is defined to be a homomorphism 

w : B [ H ]  ~ C .X  that satisfies 

(Va e B :: w.a = wg.a) (4) 
^ (Vh c H :: w .h=w. (d .h ) )  

The problem of the interpretation of recursion is to guarantee the existence of 

an interpretation and to choose a convenient candidate. Actually, the theoretician 

has less freedom than suggested here. For the intention of our calculus is that 
command algebra B models some imperative programming language and that 

the interpretation of recursion coincides with a convenient operational semantics. 

3.2. The Extension Theorem 

Let WG be the set &functions w: H ~ C.X. By Theorem (3), every such function 
w has a unique extension w* : B [ H ]  ~ C .X  that satisfies w*.a = wg.a for all a c B. 
If  w E WG, the composition w* o d is also an element of WG. Therefore, we can 

define D: WG-~ W G  by 

D.w = w* o d (5) 

For w ~ WG, the homomorphism w* is an interpretation if and only if D.w = w, 

i.e. if and only if w is a fixed point of/9. This is proved in 

D . w = w  

{(5)} 
w*od=w:H~C.X 

{(4); w* extends w and wg} 

w* is an interpretation 

Therefore, the standard way to define interpretation w would be to apply the 
theorem of Knaster and Tarski 2(10) to the monotone function/9. So, we have 
to define an order -< on WG, and to verify that ( WG, <-) is complete and that 

function D:  W G  ~ W G  is monotone. 
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We use the order of determinacy of C X  to make WG into a complete lattice 

with the order given by 

v<-w ~ (VhEH::v .h<-w.h )  (6) 

This order is a special case of 2(0) with v := H and X := C.X. Therefore, by 
Theorem 2(1), we have that (WG, <-) is complete. 

In order to prove monotonicity of D, we claim 

v--- w ~ (VrE B[H] : :  v*. r<_ w*.r) (7) 

This formula is proved by structural induction on r. If r E B then v*.r = wg.r = w*.r. 

The ease r E H follows from (6). The induction step is proved by observing that 

for p, q E B[ H] and elements v, w e  WG we have 

v*.p <- w*.p ^ v*.q <- w*.q 

{1(7), 1(8), 1(9)} 

v*.pDv*.q<_ w*.pUw*.q ^ v*.p; v*.q < - w*.p; w*.q 

---- {v*, w* are homomorphisms} 
v*.(pBq) <. w*.(pBq) ^ v*.(p; q)--- w*.(p; q) 

This concludes the proof of (7). 

Now we can prove that the function D: WG ~ WG is monotoae, i.e. 

v < - w ~ D . v < - D . w  (8) 

This is proved in 

D.v<_.D.w 

-= {(6)} (VhEH::D.v .h<-D.w.h)  

-~ {(5)} (VhEH::v*. (d .h)<-w*.(d .h) )  
{(7)} v<-- w 

Since WG is complete, it follows from the theorem of Knaster and Tarski 2(10), 

that the monotone function D: WG--, WG has a smallest fixed point (say wa) 

and a greatest fixed point (say wb). This proves 

(9) Theorem. Let wg: B ~ C.X be a homomorphism of command algebras. Every 
declaration d : H ~  B[H] has a smallest interpretation wa*: B [ H ] ~  C.X and a 
greatest interpretation wb* : B[ H] ~ C.X over wg. 

3.3. The Application to Programming 

We extend the given homomorphisms wp and wlp to B[H] by defining 

wp:B[H]--,  C.X to be the smallest interpretation of declaration d over wp:B 

C.X, and wlp: B[H] --) C .X to be the greatest interpretation of declaration d over 
wIp: B ~ C.X, el. theorem (9). For an operational justification of this definition 
we refer to [Hes88a], Theorems 4.3 and 4.4. For h E H, we observe 

h -~ d.h 
- { o ( 1 ) }  

wp.h = wp.( d.h ) ^ wlp.h = wlp.( d.h ) (10) 
-'= {wp and wlp are interpretations (4)} 

true 

For proving properties of wp and wlp, we need some definitions. Since we now 

have two homomorphisms wp, wlp : B ~ C.X, every element w E WG induces two 
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homomorphisms w', w s : B[H] -* C.X, characterised by 

(Va~B: :w~ .a=wp.aAwl .a=wlp .a )  A ( V h ~ H : : w ' . h = w t h = w . h )  (11) 

Accordingly, function D given by (5) specialises to two functions Dp, Dlp: WG- ,  
WG given by 

Dp.w = w ~ o d, DIp.w = w I o d (12) 

The extended homomorphisms wp and wlp are given by wp = wa ~ and wlp = wb t, 
where wa is the smallest fixpoint of Dp and wb is the biggest fixpoint of Dip. 

3.4. The Universal Conjunctivity of wlp for B[H] 

We extend healthiness condition (2) to the commands in B[H]. The results of 
this subsection will be used again in Section 5. 

Let Wun be the subset of WG given by 

w ~ Wun - (13) 

(Vh, Y : h e  H A Y ~  X :  w.h.(Ay~ Y::  y ) = ( A y E  Y:: w.h.y)) 

The term Wun can be associated with "universal conjectivity". We claim that 

formula (13) can be extended to 

(Vw ~ Wun~ p ~ B[H], Y:  Y =  X :  (14) 

wl.p.(V y e  Y::  y ) = ( A  y e  Y:: w~.p.y)) 

In order to prove (14), we consider w ~ Wun and define the subset K of B[H] by 

p ~ K  =-- 
(VY: Y ~  X : w l . p . ( A y e  Y::  y ) = ( A  y~  Y:: w~.p.y)) 

As the triple (B, wp, wlp) satisfies formula (2), it follows from (11) that B c  K. 
From (13) we get H c K. By a straightforward calculation, which is based on 

Definition 1(13), one can prove that 

(Vp, q~ K :: pUqe K Ap; q e  K) 

Therefore, structural induction shows that K = B[H]. This proves (14). 
Now in order to extend (2) to the algebra B[H],  it suffices by (14) to show 

that wb e Wun, where wb is the biggest fixed point of Dip in WG. By the extended 
theorem of Knaster and Tarski, 2(10)(b), it suffices to prove that Wun is Dlp- 
invariant and A-decked in WG. Let us first consider Dlp-invariance. For any 
w ~ Wun, any h ~ H, and any y c  X, with y ranging over Y, we observe 

Dlp.w.h.(A y :: y) = (A y :: Dlp.w.h.y) 
-- {definition of  Dlp in (12)} 

w~.(d.h).(A y: :  y) = (A y: :  w~.(d.h).Y) 
=- {(I4) and w e  Wun} 

true 

By (13), this proves that Dip.we Wun. Therefore, Wun is Dlp-invariant. 
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We investigate A (U) for an arbitrary subset U of WG. For any h e H and 

x e X we have 

A (U).h. 
= {theorem 2(1)} 

(A we U::w.h).x 
= {C.X  is A-closed: 2(8)} 

(A w~ U::w.h .x)  

This proves that 

A ( U ) . h . x = ( A  w e  U:: w.h.x) (15) 

Now we can prove that Wun is A-decked, of. 2(7). Let L be a linear subset 
of Wun. For any h ~ H and any Y c. X, with y ranging over Y and w over L, we 
have 

A (L).h.(A y : :  y) = (A y : :  A (L).h.y) 

{(15)} 
(A w :: w.h.( A y :: y)) = (A Y :: w.h.y)) 

{(13) and interchange of quantifications} 
true 

By (!3), this proves that A (L) e Wun. Therefore, Wun is A-decked in WG. So, 
by 2(10)(b), we have wb ~ Wun. Since wlp = wb ~, this proves that for any p e B[ H]  

and any Y c X, we have the healthiness rule 

wlp.p.(A y e  Y::y)  = ( A y e  Y:: wlp.p.y) (16) 

3.5. The Termination Rule 

In this subsection we prove that the triple (B[H],  wp, wlp) satisfies termination 
rule (I). This result will not be needed elsewhere. 

Recall that, by Section 3.3, the interpretation wp:B[H]-~  C X  is wa r where 

wa is the smallest fixed point in WG of the monotone function Dp: WG--) WG. 

In view of (1) we define the subset Wt of WG by 

w e Wt ~- (Vh e H, x e X :: w.h.x = w.h.tt A wlp.h.x) (17) 

Just as in the previous proof, we claim that (17) can be extended to 

(Vw e Wt, p e B[ H], x e X :: w~.p.x = w*.p.tt ^ wlp.p.x) (18) 

To prove (18), let w e  Wt be given. Define the subset K of B[H]  by 

p~ K - ('r X :: wLp.x = wLp.tt A wlp.p.x) (19) 

Since B satisfies the termination rule (1), it follows from (11) that B is contained 
in K. As w e  Wt, it follows from (17) that H is contained in K. For elements p, 
q e K and x e X, we observe 

w~.(pOq).x = W~.(pOq).tt A wlp.(pBq).x 

-- {W ~ and wlp are homomorphisms} 

w~.p.x ^ wLq.x = w~.p.tt ^ wLq.tt ^ wlp.p.x ^ wlp.q.x 

{p and q are in K, (19)} 
true 
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and 

w~.(p; q).x = w~.(p; q).tt ^ wlp.(p; q).x 

--- {w* and wlp are homomorphisms} 
w~.p.(w~.q.x) = wT.p.(w~.q.tt) A wlp.p.(wlp.q.x) 

- {p e K, (19), twice} 
w*.p.tt A wlp.p.( w ~.q.x ) 

= w'.p.tt ^ wlp.p.(w~.q.tt) A wip.p.(wlp.q.x) 

<== {calculus and wlp.p is conjunctive} 
w'.q.x = w~.q.tt A wlp.q.x 

=--- { q e K }  

true 

This shows that p g q e  K and p; q c K. Therefore, K is a subalgebra of B[H]  

that contains B and H, so that K = B[ HI  by Theorem (3). By (19), this proves (18). 

We proceed to prove that wa e Wt where wa is the smallest fixpoint of Dp 

in WG. By the extended theorem of Knaster and Tarski 2(10)(a), it is sufficient 

to prove that Wt is Dp-invariant and V-decked in WG. The Dp-invariance of 
Wt is proved by observing that any w e WG satisfies 

Dp.w e Wt 

---- {(17)} 
(Vh e H, x e X :: Dp.w.h.x = Dp.w.h.tt ^ wlp.h.x) 

- {definition of Dp: (12), and wlp is an interpretation: (4)} 

(Vh e H, x e X :: w%(d.h).x = w~.(d.h).tt ^ wlp.(d.h).x) 

{(18)} 
w e  Wt 

It remains to prove that Wt is V-decked in WG. Let L be a linear subset of Wt. 

We have to prove that V (L) e Wt. For h e X we observe 

V (L).h.x 

= {(Theorem 2(1)} 

(V w e L : : w . h ) . x  

= {L linear, C.X  is V-decked: 2(9)} 

(V w e L :: w.h.x) 

= {L is contained in Wt, (17)} 
(Vw e L: :  w.h.tt A wlp.h.x) 

= {distributivity (0)} 
(V we L: :  w.h.tt) ^ wlp.h.x 

= {by the same steps, backward} 

V (L).h.tt ^ wlp.h.x 

By (17), this proves that V (L) is an element of  Wt. Therefore, Wt is V-decked 

in WG, cf. 2(7). By 2(10)(a), this proves that wa e Wt. Since wp = wa ~, formula 

(18) implies that 

(Vp e B[ H],  x e X :: wp.p.x = wp.p.tt ^ wlp.p.x) (20) 

i.e. B[H]  satisfies termination rule (1). 

4. Upper Continuity and Finite Nondeterminacy 

4.0. In this section we introduce upper continuity. We do so because it plays an 
important role in the induction theorem of program transformation for the 
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semantic function wp, cf. rule 5(8). The relevant theory is developed in Sections 

4.1 and 4.2. 

In Section 4.3, we compare upper continuity with the concept of or-continuity 
of 0(10). Section 4.4 is a presentation of the model of relational calculus. In 

Section 4.5, we show that in that model upper continuity is equivalent to finite 
nondeterminacy, and also to or-continuity. 

4.1. Upper Continuity 

A function f :  X ~ X is called upper continuous if and only if it commutes with 
least upper bounds of nonempty linear subsets of X. The reason for this definition 

is purely technical. In fact, in Theorem 5(15) we prove a specific property of wp. 
The proof is based on the definition of wp as a smallest fixed point of the function 

D: WG~ WG and it uses Theorem 2(10)(a), in which least upper bounds of 

linear sets play a crucial role. Therefore, we need a condition that certain functions 

commute with least upper bounds of nonempty linear sets. 

The set of the upper continuous elements of C.X is denoted by Cup. So, 
f ~  Cup if and only i f f E  C.X and for every nonempty linear subset L of X 

f V  (L) = (V x ~ L : : f x )  (0) 

One easily verifies that Cup is closed under composition. On the other hand, for 

any f g ~ Cup, and any nonempty linear subset L of X, we have 

(fu g).V (L) 
= {1(13)} 

f V  (L) A g-V(L) 
= {(0), let x and y range over L} 

(Vx : : fx )  A (Vy :: g.y) 
= {distributive law 3(0) twice} 

(V x, y : : fx  ^ g.y) 
= {L linear, diagonalisation: 2(5)} 

(Vx : : f x  ^ g . x )  

= { 1 ( 1 3 ) }  

(V x :: (fg g).x) 

This proves that 

Cup is a subalgebra of C.X (1) 

In Section 4.2, we shall need the result that 

Cup is V-decked in C.X (2) 

i.e. closed under least upper bounds of linear subsets, ef. Section 2.1. The proof 
of (2) is an easy calculation and uses Theorem 2(9). 

4.2. Upper Continuous Commands 

We now shift attention to command algebra B. We define the subset Bup of B by 

a~Bup =- a ~ B  A wp.a~Cup (3) 

As Cup is a subalgebra of C.X, cf. (1), it is easy to see that 

Bup is a subalgebra of B. (4) 

We choose a subset Hup of H such that 

(Vh ~ Hup :: d.h e Bup[Hup]) (5) 
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Here, Bup[Hup] is the subalgebra of B[H] generated by Bup and Hup. We could 
choose Hup to be empty. A more useful choice is the biggest subset Hup of H 
that satisfies (5). In fact, that extreme solution exists by the theorem of Knaster 
and Tarski. For our purposes, however, any solution of (5) will do. 

We define the subset Wup of WG by 

w e Wup =- (Vh e Hup :: w.h e Cup) (6) 

As is usual (by now), we first have to prove an extension of (6), viz. 

(Vw e Wup, p e Bup[Hup] :: w~.p e Cup) (7) 

This is proved by structural induction on p. For w ~ Wup and p ~ Bup, we have 

w'.p = wp.p ~ Cup 

by (3) and 3(11). For p~Hup,  definition (6) gives w~.p~ Cup. Since Cup is a 
subalgebra of C.X by (1), the elements p ~ B[H] with w'.p ~ Cup form a subal- 
gebra of B[H]. This subalgebra contains Bup and Hup, and therefore also 
Bup[Hup]. This proves (7). 

We use the theorem of Knaster and Tarski, cf. 2(10)(a), to prove that the 
smallest fixpoint wa of Dp in WG satisfies 

wa ~ Wup (8) 

In fact, Wup is Dp-invariant in Wg, since for any w e WG we have 

Dp.w ~ Wup 
- {(6) and 3(12)} 

(Vh ~ Hup :: w ".( d.h ) ~ Cup) 

{(5)} 
(Vp e Bup[Hup] :: w~.p e Cup) 

r {(7)} 
w e  Wup 

Wup is V-decked in WG, since for any linear subset U of Wup and any h e Hup 

we have 

V (U).h 
= {2(1)} 

(V we u : :  w.h) 
e {(6), all w.h ~ Cup, U linear, (2)} 

Cup 

Thus we have proved that 

Wup is Dp-invariant and V-decked in WG (9) 

By 2(10)(a), this proves (8). Since wp = wa "~, it follows from (7) and (8) that 

(Vp e Bup[Hup] :: wp.p ~ Cup) (10) 

4.3. Upper Continuity and Or-Continuity 

Upper continuity as considered in 4.1 can be compared with or-continuity used 
by Dijkstra and Scholten in [DIS90] chapter 6. A function f :  X--> X is said to 



Command Algebras, Recursion and Program Transformation 83 

be or.continuous if and only if in lattice X every ascending (i.e. weakening) 

sequence (x.i: i - 0) satisfies 

f . (V  i : : x . i )=  ( V  i:: f . (x. i))  (11) 

Since every ascending sequence in X forms a nonempty linear subset of  X, every 
upper continuous function f is or-continuous. Without additional assumptions, 
the converse implication cannot be proved, as is shown at the end of  Section 4.5 
below. For practical purposes, however, or-continuity and upper continuity are 
equivalent. This claim is also justified in Section 4.5. 

4.4. Relational Calculus 

The main example of the whole theory is the model of relational calculus. We 
present this model as an illustration for its conceptual simplicity. In programming 
practice, however, the paradigm of relational calculus seems to be less useful, 
since it tends to encourage operational reasoning. 

Let St be a set, to be called the state space. The elements of St are called 
states. Let co be a symbol not in St, and let S t t=  St u{co}. An operation is 
represented by a subset of  the cartesian product St x Stt. Conczptually, the 
operation represented by subset b is such that 

(r, t) ~ b ~- the operation may transform state r into t 
(r, co) ~ b ~ the operation starting r need not terminate 

Let B be the set of subsets b of St x Stt. B is converted into a command algebra 
by defining for any b, c ~ B and any (r, t) E St x Stt 

b n c = b u c  (12) 
(1, t ) e b ;  c =- (t=OOA(r, t ) ~ b ) v ( 3 s ~ S t : : ( r , s ) ~ b ^ ( s ,  t ) ~ c )  

The verification that B is a command algebra is left to the reader. 

We take the lattice X to be the set of the boolean functions on St, cf. Section 
1.3, ordered by formula 1(17). So, X is a complete lattice, cf. 1(18), and Section 
2.1. We define functions wp, w l p : B - * E X  by 

wp.b.x.r = (Vt: (r, t) ~ b: t ~ ~ ^ x.t) (13) 
wlp.b.x.r = (Vt:  (r, t) ~ b A t # co: X.t) 

Thus, wp.b.x is the weakest precondition such that the operation of  b is guaranteed 
to terminate in a state that satisfies x, and wlp.b.x is the weakest condition such 
that execution of  b does not terminate or terminates in a state that satisfies x. It 
is well-known and easy to prove that functions wp.b and wlp.b are conjunctive. 
Therefore, wp and wlp are functions 

wp, wlp : B ~ C .X  

Actually, they are homomorphisms of command algebras. The verifications are 
standard, though nontrivial; see [Hes89b]. Similarly, we leave it to the reader to 
verify that wp and wlp satisfy the healthiness conditions 3(1) and 3(2). 

4.5. Finite Nondeterminacy 

In the model of relational calculus, both or-continuity and upper continuity are 
equal to finite nondeterminacy. In fact, an element b ~ B is said to be of  finite 
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nondeterminacy if  and only if 

('dr e St :: (r, oo) ~ b v (FIN t :: (r, t) ~ b)) (14) 

where (FIN t : :  x.t) says that the number of  elements t where x.t holds, is finite. 

In this situation we have 

(15) Theorem. The following conditions are equivalent: 

(a) b is of  finite nondeterminacy. 

(b) wp.b is upper  continuous. 

(c) wp.b is or-continuous. 

Proof. ( a ) ~ ( b ) .  Let L be a nonempty linear subset of  X. For any state r with 
(r, oo) ~ b, we have 

wp.b.V (L).r 
= {(13) and (r, oo) e b} 

false 
= {calculus, (r, oo) ~ b and (13)} 

(3x  e L : :  wp.b.x.r) 
= {1(18)} 

(V x e L : :  wp.b.x).r 

For any state r with (FIN t :: (r, t) ~ b), we observe 

wp.b.V (L).r 
= { ( 1 3 ) }  

( V t : ( r , t ) ~ b : t ~ O O A  V (L).t) 
-- {1(18)} 

(Vt : (r, t ) ~ b : t ~ O O A ( 3 x ~ L : : x . t ) )  
= {distributive law} 

(Vt : (r, t ) e  b : ( 3 x e  L:: t ~ o o ^ x . t ) )  
= {(FIN t :: (r, t) e b) and L is linear and nonempty} 

( 3 x ~ L : : ( V t : ( r ,  t )~b: t#OOAX. t ) )  
= { ( 1 3 ) }  

(3x  e L : :  wp.b.x.r) 
= {1(18)} 

(V x ~ L :: wp.b.x).r 

This proves that wp.b.V (L) = (V x e L: :  wp.b.x), so that wp.b is upper  continuous 

by (0). The implication ( b ) ~ ( c )  has been mentioned in Section 4.3. 

The implication ( c ) ~ ( a )  is proved by contraposition. Let b be not of finite 

nondeterminacy. So, there is a state r with (r, co)~ b, and an infinite sequence of 

states (u.i : i>_O) in St such that u.i ~ u.j whenever i ~ j, and that ( r, u.i) ~ b for 

all i. Let the predicates x.k be defined by 

x.k.t = (Vi: i > k : t ~ u.i) (16) 

One verifies that the sequence of  predicates x.k is weakening. The least upper 

bound of the sequence is the predicate tt, since for any state t it holds that 

(V k :: x.k).t  
= {1(18),(16)} 

( 3 k : : ( V i : i >  k: t # u.i)) 
= {all u.i are different} 

t rue  
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Since (r, oo) ~ b, this implies wp.b.(V k :: x.k).r = true. On the other hand, we have 

(V k :: wp.b.(x.k)).r 
= { 1 ( 1 8 ) }  

(3k :: wp.b.(x.k).r) 
{(13)} 

(3k: :  (Vt :(r, t )e  b:x.k.t)) 
{all (r, ud) e b} 

(3k :: (Vj:: x.k.(u.j))) 
= { ( 1 6 ) }  

(3k :: (Vj :: (Vi: i > k: u.j # u.i))) 
{calculus} 

(3k::  (Vj::(Vi:  i> k : j  ~ i))) 
= {calculus} 

false 

This shows that wp.b is not or-continuous, of. (11). [] 

Example. In this example, we show that or-continuous functions X--> X need 
not be upper continuous. Let the set St be uncountable. As above, X is the set 

of boolean functions on St. For x ~ X, let Ixl be the subset of St where x holds. 
Let the function f :  X--> X be given by 

f . x . s  = (txl is uncountable) 

for all x ~ X and all s ~ St. One can verify that function f is or-continuous. On 
the other hand, if set St can be equipped with a well-ordering, then f is not 
upper continuous, since the first uncountable ordinal is the union of the countable 
ordinals, of. [TaZ71]. The details of that statement are left to the interested reader. 
Greg Nelson informed me that this is problem B of Chapter 2 of [Ke155]. 

5. Transformation Rules for Recursion 

5.0. Program transformation is the act of replacing one command by another 
command that is semantically equivalent to the first command. So, for the purpose 

of program transformation, we have to investigate the relation --- of semantic 
equivalence on B[H], cf. 0(1). We need not know relation --- completely. It 

suffices to provide methods for proving semantic equivalence between specific 
commands. 

In the remainder of this section, we give an overview of the arguments that 

could have lead us in the investigation. The formal development in the Sections 
5.1 up to 5.6 is independent and much slower. 

Rule 1. I f  you have a conjecture, set out to prove it and to refute it. Inspect 
the proof carefully to prepare a list of  non-trivial lemmas (proof-analysis); 
find counterexamples both to the conjecture (global counterexamples) and to 
suspect iemmas (local counterexamples) (Lambda, in [Lak76], p. 50). 

The starting point is Hoare's recursion rule, cf. [Hoa71] and [Apt81] p. 444. This 

rule states that in order to prove conditional correctness of a procedure h with 

respect to a specification S, it suffices to prove that its body d.h satisfies S under 



86 W.H. Hesselink 

assumption that h satisfies S. More precisely, if we write x{s}y to denote [x:=> 
wlp.s.y], of. 0(6), the proof rule is summarised in 

x{h}y ~- x{d.h}y 

x{h}y (0) 

The horizontal line separates the premiss of the rule from the conclusion. Notice 
that if the symbol "~-" were replaced by a classical implication, the rule would 
always imply x{h}y by a reductio ad absurdum. This would be absurd. In fact, 
the symbol "~--" stands for constructive derivability. For other versions of (0), 
we refer to [Man74] p. 394 and [Hes89a] Section 4.3. 

Rule (0) may suggest the following conjectural rule for procedures h and k: 

h-~k ~- d.h-~d.k 
? (1) 

h ~ k  

Notice that rule (1) includes the termination behaviour, whereas rule (0) is 
postulated for conditional correctness only. 

For practical purposes, rule (1), if valid, is too limited. It only allows com- 
parison of  one pair of procedure names without context. We often need com- 
parison of many pairs of composite commands. Recall that function d has been 
extended to a homomorphism d*: B[H] .* B[H]. So, for any binary relation ",.,," 
on B[H],  we would like to have 

(Vs, t : s v t : s - ~ t )  t-- (Vs, t : s , - , t :d* .s~d*. t )  
? (2) 

(Vs, t :s . - . t :s-~ t) 

In order to eliminate the symbol "'~" in (1) and (2), we introduee congruences. 
A congruence on a command algebra A is defined to be an equivalence relation 
"'-~" on A such that for all p, q, s, t ~ A it holds 

p " . q A s ~ t  =} ( p ; s ~ q ;  t)A(pGs~qDt) (3) 

For example, it is easy to prove that "~'" is a congruence on B. 
In the rest of  this section, we let "~-..." denote an arbitrary binary relation on 

B[H] as in (2). We define " ~ "  to be the smallest congruence on B[H] that 
contains ".--" (this congruence is easily shown to exist and to be unique). Notice 
that, as " ~ "  is a congruence on B[H] and " * "  is the smallest congruence that 

contains ",--", we have 

(Vs, t : s , - , t : s ~ t )  =- (Vs, t : s*~ t : s~- t ) .  (4) 

Inspired by (2), we might conjecture 

(Vs ,  t : s ~ t : d*.s ~* d*. t) ? (5) 

(Vs, t :s  *~,t:s-~t) 

This conjecture is obviously false. For, if relation "--.-" is identically true, then 
" * "  is identically true, but "-~" need not be identically true. 

Conjecture (5) is an induction principle without a base case. We add a base 
case by substituting abort for all procedure names, where abort ~ B is a command 
that never terminates. So, let da*: B[H] ~ B be the homomorphism of command 
algebras such that da*.s is obtained from s by substituting abort for every 
procedure name h in expression s. Now conjecture (5) is replaced by 

(Vs, t : s v t :  d*.s*~d*.t A da*.s~da*.t) ? (6) 

(Vs, t :s  * t:s-=-t) 
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The rule is still false (see Section 5.6 below). Yet it is "'almost" true. In the 

deterministic case, and in the case of finite nondeterminacy, rule (6) is valid and 

known as the rule of computational induction or the induction rule of De Bakker 

and Scott (see [Bak80] 7.16 and [Man74] p. 397). For conditional correctness, 

we prove in Section 5.4 the rule 

(Vs, t : s~ . . t :  d*.s *,~ d*.t  ^ wlp.(da*.s)= wlp.(da*.t)) 
(7) 

(Vs, t : s *,.~ t : wlp.s = wlp.t ) 

The rule for total correctness is also proved in Section 5.4. It is the rule obtained 
from (6) by adding a third conjunct in the premiss: 

(Vs, t : s , - , t :  d*.s *,~d*.t ^ da*.s~-da*. t  A s , t ~ L i a )  

(Vs, t : s  *,Lt:s = - t) (8) 

Here Lia is a certain subset of B[H] ,  the definition of which is given in Section 

5.4. In order to show that Lia has sufficiently many elements, we proceed as 

follows. Let Bup be the set of the commands b ~ B that are of finite nondeter- 
minacy, cf. 4(3). We chose a subset Hup of H such that d.h. ~ Bup[Hup] for all 

h ~ Hup, cf. 4(5). In Section 5.5, it is proved that 

B u H u Bup[Hup] c Lia (9) 

^ (Vp, q~  Lia ::pOq~ Lia) 

A (Vp, q ~ Lia :p ~ Bup[Hup] v q ~ B :p; q ~ Lia) 

In particular, if all elements of B are of finite nondeterminacy, then Bup = B and 
we can take Hup = H, so that Lia = B[H] .  

One might be tempted to simplify rules (7) and (8) by imposing the condition 
that relation ",--" is a congruence, so that ( * ) =  (,-,). This simplification is 
undesirable, however, since it would lead to much heavier proof obligations in 
the applications of the rules. 

In Section 6.1, we present the final version of the result, in a form convenient 
for the applications and slightly stronger than rule (8). 

During the search from conjecture (1) to rule (8), I was not hindered by 

awareness of computational induction. The two extra conjuncts that appear in 
the premiss between (5) and (8) are both proof-generated, in the sense that I did 
not expect them before the proof without them failed, cf. [Lak76]. 

5.1. Congruences 

Recall from Section 5.0 that a binary relation - on a command algebra A is 
called a congruence if and only if it is an equivalence relation and for all p, q, r, 
s e A  

p ~ q ^ r ~ s  ~ ( p ; r ~ q ; s ) ^ ( p B r ~ q a s )  (10) 

We often need binary relations denoted by variable symbols or expressions. 
Therefore, it is convenient to identify a binary relation ~ on A with a subset 
(,-Q of the cartesian product A x A via the rule 

p,-, q -- (p, q) ~ (.,-.) 

Conversely, a subset of A x A may be treated as a binary relation. If w :A-> A' 

is a homomorphism of command algebras, the equaliser Eq.w of w is defined to 



88 w.H. Hesselink 

be the binary relation on A given by 

(p ,q )~Eq .w  ~- w.p=w.q (11) 

An easy verification shows that Eq.w is a congruence on A. 
It is easy to see that the intersection of a set of congruences is a congruence. 

Therefore, semantic equivalence (cf. 0(1)) is a congruence, since it is equal to 
the intersection Eq.wp c~ Eq.wIp. 

If E is a binary relation on a command algebra ,4, there is one smallest 
congruence eg.E on E that contains E. The easiest proof is to define cg.E as the 
intersection of all congruences that contain E, and to verify that cg.E is a 
congruence that contains E. As it is contained in all congruences that contain E, 
it is the smallest one. The congruence cg. E is called the congruence generated 
by E. If E is given as the infix operator "---", we use the infix operator "*~" to 

denote cg.E. 

5.2. Relations Strong for wlp and wp 

We define a binary relation E on B[H] to be d-invariant if and only if 

(V(p, q)e  E :: (d*.p, d*.q)~ cg.E). (12) 

For a binary relation E on B[H ] we want results like E c Eq.wp and E c Eq.wlp. 
Now, wlp = wb and wp = wa where wb is the biggest fixed point of  Dip in Wun 
and wa is the smallest fixed point of  Dp in Wup, cf. Sections 3.4 and 4.2. Therefore, 
we introduce the subsets Wp.E and WIp.E of WG by 

w c  Wp.E ~ w e  Wup ^ E = E q . ( w  ~) (13) 

w~ Wlp.E ~ w e  Wun A E c E q . ( w  l) (I4) 

Relation E is defined to be wp-strong if and only if E is d-invariant and Wp.E 

is V-decked in WG. Similarly, E is defined to be wlp-strong if and only if E is 
d-invariant and WIp.E is A-decked in WG. Relation E is called strong if and 
only if it is both wlp.strong and wp-strong. 

(15) Theorem. (a) If E is wp-strong then E c Eq.wp. 

(b) If E is wlp.strong then E ~ Eq.wlp. 

(c) If E is strong then p ~ q for all pairs (p, q)e  E. 

Proof. (a) Since wp = wa r, it suffices to prove that wa ~ Wp.E, of. (13). By the 
extended theorem of Knaster and Tarski, cf. 2(10)(a), it suffices to prove that 
Wp.E is Dp.invariant and V-decked in WG. Therefore, it remains to prove that 
Wp.E is Dp-invariant. This is proved by observing that for any w e Wup 

Dp.w ~ Wp.E 
{(13); Wup is Dp-invariant, of. 4(9); (I1)} 

(V(p, q)e  E :: (Dp.w)~.p = (Dp.w)~.q) 
--- {formula (16) below} (*) 

(V(p, q)c E :: w~.(d*.p) = w~.(d*.q)) 

{(12); E is d-invariant; (11)} 
cg.E c Eq.w ~ 

{Eq.w ~ is a congruence; definition cg.E} 
E c Eq.w ~ 
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{(13)} 
w e  Wp.E 

It remains to verify the step with (*): 
( Dp.w) ~ = w" o d* ~ B[ H] ~ C.X 

- {theorem 3(3) and definition d* in 3.1} 
�9 " w ~ ( V h ~ H : : ( D p . w ) : h = w ~ . ( d . h ) )  (Va E B . .  (Dp. ) .a = wLa) A 

-- {definitions of w" and Dp in 3.3} 
true. 

(16) 

The proof of (b) is completely analogous. Part (c) follows from (a) and (b) 
together with the definition of "~-" in 0(1). D 

In Section 6, it will turn out to be very useful that there is a biggest strong 
relation: 

(17) Theorem. Let Es be defined as the union of all strong relations on B[H]. 

(a) Relation Es is strong and, therefore, the biggest strong relation on B[H]. 

(b) Relation Es is a congruence. 

Proof. (a) Relation Es is d-invariant, since, for any pair (p, q)~ Es, there is a 
strong relation E with ( p , q ) E E  and hence (d*.p,d*.q)ecg.E,  and hence 
(d*.p, d*.q)~ cg.Es. If L is a linear subset of Wp.Es, then L c  Wp.E for every 
strong relation E, and hence V (L) e Wp.E for every strong relation E, so that 
V (L) ~ Wp.Es. This proves that Wp.Es is V-decked in WG. The proof that WIp.Es 

is A-decked is analogous. This proves that Es is strong. 
(b) Since d* is a homomorphism, one can easily verify that cg.Es is d- 

invariant. On the other hand, it follows from definitions (13) and (14) that 
Wp.( cg.Es) = Wp.Es and Wlp.( cg.Es) = Wlp.Es. Therefore, cg.Es is a strong con- 
gruence. By part (a), it follows that cg.Es c Es. Therefore, cg.Es = Es. D 

5.3. The Abortive Congruence  

The complete set WG has the smallest element wff and the biggest element wtt 
given by 

wff.h~x =if, wtt.h.x-- tt (18) 

Let wpa, wlpa : B[ H] ~, C.X be the homomorphisms given by 

wpa = wf f ;  wlpa =wt t  t (19) 

Then we have 

(Va ~ B:: wpa.a = wp.a ^ wlpa.a = wlp.a ) (20) 
^ (Vh ~ H, x ~ X : : wpa.h.x = i f ^  wipa.h.x = tt) 

The intersection of the equalisers of wpa and wlpa is called the abortive con- 
gruence. The term abortive is justified as follows. Let us assume that command 
algebra B contains an element abort with for all x ~ X 

wp.abort.x -- if, wlp.abort.x = tt 

The abortive declaration da:H-~  B[H] is defined by 

(Vh ~ H : : da.h = abort) 
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As usual, this declaration is extended to a homomorphism da*:B[H]-* B[H] 
that is the identity on B. Notice that by structural induction 

(Vpe B[ H] :: da*.p~ B) 

It is not difficult to verify that wp o da* = wpa and wlp o da* = wlpa. It follows 

that, for any p, q ~ B[H], we have 

(p, q)e Eq.wpa n Eq. Wlpa =-- da*.p-~ da*.q (21) 

5.4. Towards More Concrete Conditions 

In this section, we analyse the strength conditions of theorem (15) in order to 

get more concrete conditions. In the case of  wlp.strength, we obtain a necessary 

and sufficient condition in terms of  function wlpa. In the ease of  wp-strength, we 

get a sufficient condition that requires further investigation. We start with wlp. 
Here, the crucial point is the following seemingly innocent result. 

(22) I.emma. For p ~ B[H] and a nonempty linear subset L of Wun, we have 

A (L)'.p = (A  we L:: w:p)  (23) 

Proof. We use structural induction on p. We fix L and let dummies w (and v) 

range over the set L. For p E B we have 

(A w::  w'.p) 
= {peB} (Aw::wlp.p) 
= {L is nonempty} wlp.p 

= {p~B}  A(L)'.p 

This proves (23) for all p ~ B. It follows from Theorem 2(1) that formula (23) 

holds for all p ~ H. The settles the base cases of  the induction. 
The induction step is taken as follows. Let p, q ~ B[H] satisfy formula (23). 

The command p~q satisfies (23), since 

A (L)'.(pOq)=(A w::  w'.(pSq)) 
--- {A (L)'  and all w / are homomorpthisms} 

A (L):p ^ A (L)~.q = (A w :: w:p ̂  w .q) 
" {calculus} i 

A (L)t.P A A (L) .q = (A w :: wl.p) A (A w :: w~.q) 
- {induction hypothesis (23) for both p and q} 

true. 

The command p; q satisfies (23), since for any x ~ X  it holds 

A (L)'.(p~ q).x 
= {A (L) is a homomorphism and 1(13)} 

A (t)'.p.(A(L)'.q.x) 
= {induction hypothesis (23) for p and q} 

(A v::  vl.p).((A w::  wl.q).x) 
= {C.X is A-closed: 2(8), twice} 

(A v :: vf.p.(A w :: w~.q.x)) 
= {all ve  Wun and formula 3(14)} 

(A v, w::  vl.p.(wt.q.x)) 
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= {diagonalisation: 2(5) and linearity of L} 
(A w:: w~.p.(.,:q.x)) 

= {all w are homomorphisms and 1(13)} 
(A w :: w~.(p; q).x) 

= {C.X is A-closed: 2(8)} 
(A w:: w~.(~; q)).x 

This concludes the induction step. D 

Now we can prove the following result, which together with Theorem (15) proves 
rule (7). 

(24) Theorem. Let E be a binary relation on B[H], 

(a) WIp.E is A-decked in WG if and only if E c Eq.wlpa~ 

(b) E is wlp.strong if and only if E be d-invariant and E c Eq.wlpa. 

Proof (a) We first observe that for any nonempty linear subset L of Wun 

V (L) e Wip.E 
--= {(14); Wun is A-closed in WG} 

(V(p, q)e E : :A (L)I.P = A  (Z)l.q) 
--= {lemma (22), L nonempty linear} 

(V(p, q)e  E :: (A we L:: wt.p) = (A we  L:: wl.q)) 
<== {calculus} 

(Vwe L (p, q>e E :: w{p = w{q) 
(14)} 

L c Wlp.E 

Wlp.E is A-decked if and only if A (L) e Wlp.E for every linear subset L. By the 
above calculation, it remains to consider the empty linear subset O. Since A (0)  
is the biggest element wtt of WG, we get the condition wtt e Wlp.E. Using 
definitions (18) and 3(13), one can prove that wtt e Wun, so that, by definitions 
(14) and (19), we have that Wlp.E is A-decked if and only if E ~ Eq.wlpa. 

Part (b) follows from (a) and the definition of wlp-strong. V1 
In the case of wp, the analogue of lemma (22) fails. Therefore, we impose 

the analogue of (22) as a condition on the commands in relation E. 
We define a command p e B[H] to be linearly approximated if and only if 

for every nonempty linear subset L of Wup 

V (Ly.p = (V w e L::  w'.p)) (25) 

We write Lia to denote the set of the linearly approximated elements of B[H]. 
In a way that is completely analogous to the proof of Theorem (24), one can prove 

(26) Theorem. Let E be a binary relation on B[H] such that p, q e Lie for all 
pairs (p, q)e  E 

(a) Wp.E is V-decked in WG if and only if E c Eq.wpa. 

(b) E is wp-strong if and only if E is d-invariant and E = Eq.wpa. 

5.5. Linear Approximation 

For Theorem (26) to be useful, we have to ensure that the subset Lia of B[H] 
is sufficiently big. By arguments completely analogous to those used to start the 
structural induction in the proof of Lemma (22), one can easily prove 

B ~ H c Lia (27) 
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We proceed as if we are using structural induction to prove that Lia = B[H]. 

So, we consider p, q ~ Lia. For any nonempty linear subset L of  Wup and any 
x e X, we observe 

V (L)~.(PBq). x 
= {V (L)" is a homomorphism and 1(13)} 

V (L)'.p.x A V (L)~.q.x 
= {p, q ~ Lia, (25), let v and w range over L} 

(V v :: v:p.x) ^ (V w :: w:q.x) 
= {X satisfies the distributive taw 3(0)} 

(V v, w :: v~.p.x A wLq.x) 

= {diagonalisation: 2(5), L linear} 

(V w :: w~.p.x A w'.q.x) 

= {w" homomorphism, 1(13)} 

(V  w:: w'.(pBq).x) 

By (25), this proves 

(Vp, q ~ Lia :: pn q c Lia) (28) 

The composition of  two elements of  Lia need not be element of  Lia. In the 

comment of  the next calculation we show which condition we need, to prove 

that the composition of  two elements is an element of Lia. Let p, q ~ B[H], and 
let L be a nonempty linear subset of  Wup, and let x ~ X. We observe 

V (Ly.(p;  q).x 
= {V (L)" is a homomorphism and 1(13)} 

V (L):p.(V (L)'.q.x) 
= {p, q ~ Lia, (25), let v and w range over L} 

(V v :: v~.p.(V w :: wLq.x)) 
= {we need: v~.p e Cup and 4(0), or w~.q constant} (*) 

(V v, w:: v'.p.(w'.q.x)) 
= {L linear, diagonalization: 2(5)} 

(Vw :: w~.p.(w~.q.x)) 
= {w ~ homomorphism, 1(13)} 

(V w :: w~.(p; q).x) 
So the gap in the argument is the step in the middle, indicated by (*). Since 

v ~ L c Wup, it follows from 4(7), that the first alternative is implied by p 

Bup[Hup]. The second alternative is implied by q ~ B. This proves 

(Vp, q ~ Lia :p ~ Bup[Hup] v q ~ B :p; q ~ Lia) (29) 

By structural induction with (27), (28), (29), we get 

Bup[ Hup] = Lia (30) 

It follows from the formulae (27) up to (30) that 

(Vp, q, r :p~  Bup[Hup] A qE B u  HA re  B:p; q; r e  Lia) (31) 

5.6. An Example with Unbounded Nondeterminacy 

In this section, we give a global counterexample, cf. [Lak76], to conjecture (6) 
of Section 5.0. The example shows that the condition p, q ~ Lia in theorem (26) 
cannot be left out. It also exhibits elements p a B and h ~ Hup such that p; h ~ Lia. 

Thus the delicate arguments in Section 5.5 are shown to be essential. 
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We assume that command algebra B contains all commands that we need. 
Moreover, we assume that B is separated in the sense that semantically equivalent 
commands in B are equal. We work with a state space consisting of one integer 
variable i. A typical element of B that is not in Bup, is the unboundedly 
nondeterminate command 

p = "choose i >- 0 arbitrarily" 

It is characterised by 

wp.p.x = (Vi : i >- 0: x) (32) 
wlp.p.x = (Vi: i >- 0: x)  

Since wp.p.tt = tt, command p is guaranteed to terminate. Let procedure h be 
declared by 

d.h =i f  i <- O -> skip 

0 i>0  --> i : = i - 1 ; h ; i : = i + l  

ft. 

In the present calculus, we use the translation 

d.h = ? ( i - < 0 ) n ? ( i > 0 ) ; i : = i - 1 ; h ; i : = i + l  (33) 

Recall that operator ";" has higher priority than "a". As is shown in EHes88b] 
Section 9, procedure h is semantically equivalent to skip. The proof only uses 
formula 3(10). 

Since p is guaranteed to terminate and h is equivalent to skip, we have 

wp.(p; h) ~ wp.(p; hOabort) (34) 

We consider the binary relation ~ that only contains the pair 

p; h ~.. p; hnabort (35) 

By (34) and Theorem (15)(a), relation ,-- is not wp-strong. 
We verify that relation ,..- is d-invariant: 

d*.(p; h) * d*.(p; hOabort) (36) 

This is proved in 

d*.(p; h) 

= {(33), distributive law in B[H]} 
p; ?(i<-O)gp; ? ( i>0) ;  i:= i - 1 ;  h; i:= i+1 

= (formula (37) below} (*) 
p; ?(i-<O)Bp; h; i:= i+1  

�9 ,~ (,~* is a congruence that contains the pair of (35)} 
p; ?(i-<0)B(p; h~abort); i:= i+1 

= ~distribution, and (abort; i ~ - i +  1)= abort in B} 
p; ?(i-<0)Sp; h; i:= i+lgabort  

= {equality derived above: d*.(p; h)=p;  ?(i<_0)0p; h; i:= i+1} 
d*.(p; h) 0 abort 

= {d*.abort = abort} 

d*.(p; h 8 abort) 

It remains to verify step (*). For any predicate x, we observe that 
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~%(p; ?( i>0) ;  i:= i - 1 ) . x  

= {assignment, and guard, 1(20)} 
wp.p.(-n( i > O) v xl-z) 

= {(32)} 
(Vi: i >- 0: ~ ( i  > 0) v x[-i) 

= {trading; renaming j := i -  1} 
(Vj:j>--O:xj) 

= {renaming i := j ;  (32)} 
wp.p.x 

The same calculation goes through if wp is replaced by wlp. This shows that 

p; ? ( i > O ) ; i : = i - 1  = p 

Since semantically equivalent commands in B are equal, this implies that 

p ; ? ( i > 0 ) ; i : = i - 1  = p (37) 

This concludes the proof of (36). [] 
Relation (---) is contained in Eq.wpa. For, if h replaced by abort, both 

commands in (35) are semantically equivalent to abort. A formal verification is 
left to the reader. Since ,-- is d-invariant, contained in Eq.wpa, and not wp-strong, 
it follows that the premiss of Theorem (26) is not satisfied and that this premiss 
cannot be omitted. This implies 

p; h ~ L i a  v p; hDabort~ Lia. 

Since abort c B, we have abort e Lia. By formula (28), this proves that p; h ~ Lia. 

6. Program Transformation Methods 

6,0. In this section we reformulate the results of Section 5 in order to get a useful 
tool for program transformation. Results (1), (2) and (3) form our version of the 
rule of computational induction. Theorems (8) and (13) are applications of the 

theory and are used in the proofs of 7(16) and 7(24). 

6.1. The Accumulative Transformation Rule 

Let Es be the biggest strong congruence, cf. theorem 5(17), We define relation 
on B[H] to be congruence Es used as an infix operator, so that 

p ~ q  -- ( p , q ) ~ E s  (0) 

By Theorem 5(15), we have 

(Vp, q~ B [ H ] : p ~ q : p = q )  (1) 

The definition of ~- allows us to derive the following rule, which enables 
accumulation of knowledge of congruences. We use homomorphism da* intro- 
duced in Section 5.3, and set Lia as analysed in Section 5.5. 

(2) Theorem. Let (~)  be the congruence generated (of. 5.1) by the union of the 
strong congruence (=)  and an arbitrary binary relation (.--). Assume that 

(a) (Vp, q e B[ H] : p~..q : da*.p-~ da*.q A p, q ~ Lia ) 

(b) (Vp, q ~ B[ H] : p,-.q : d*.p ~ d*.q) 
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Then it holds that 

(c) (Vp, q~B[H]:p . . . .q :p~ .q)  

Proof. Let E be the union of (,-.) and Es. By condition (b), relation E is 
d-invariant. Theorem 5(17) implies that Wp.Es is V-decked and that Wlp.Es is 
A-decked in WG. By condition (a), formula 5(21) and Theorems 5(24) and 5(26), 
we have that Wp.(,-.) is V-decked and W/p.(.-.) is A-decked. It follows that Wp.E 
is V-decked and that Wlp.E is A-decked. Therefore, E is strong and hence 
contained in Es. [3 

Some important properties of " ~ "  can be proved without linear approximation. 
We assume that command algebra B contains elements abort (of. Section 5.3), 
and skip and magic with 

wp.skip.x = wtp.skip.x = x, 
wp.magic.x = wlp.magic.x = tt. 

(3) Theorem. (a) If p, q ~ B satisfy p - q, then p ~ q. 

(b) For all p e B[H] we have 

magic; p ~ magic, abort; p ~ abort 
sk ip ;p~p ,  p ; sk ip~p ,  pUmagic~p 

Proof. Let E0 be the set of pairs (p, q) with p, q~ B and p ~ q .  Let E1 be the 
set of pairs 

(magic; p, magic), (abort; p, abort) 
(skip;p,p), (p;skip, p), (pnmagic, p) 

with p e B [ H ] .  It suffices to prove that the union E = E O u E 1  is strong, cf. 
Section 5.2. Since d* is a homomorphism and restricts to the identity on B, we have 

(V(p, q) ~ E :: (d*.p,d*.q) ~ E) 

so that E is d-invariant, cf. Section 5.2. Using the definitions of Wp.E and Wlp.E 
in Section 5.2, and the definitions of - ,  magic, abort, skip, it is easy to verify that 

Wp.E = Wup, Wlp.E = Wun 

Since Wup is V-decked in WG and Wun is A-decked in WG, this proves that 
relation E is strong and, hence, contained in (~).  [] 

6.2. Change of Declaration 

(4) Corollary. Let h, k ~ H  and p ~ B [ H ]  be such that d . h ~ p  and that d.k is 
obtained from p by substituting k for h, i.e.d.k = (h := k).p. Then h ~-- k. 

Proof. We use Theorem (2) with relation ( ~ )  consisting of the pair h.-.k. Since 
/1, k~ H, condition (2)(a) follows from 5(20), 5(21), 5(27). Condition (2)(b) is 
proved in 

d.h 
{(-~) contains (~)} 

P 
{(~) is a congruence; h---k and d.k = (h := k).p} 

d.k [] 

Remark. This result shows that a declaration d with d.h ~ p  may be replaced by 
one with d.h =p without changing the semantics. 
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6.3. Generated Subalgebras 

In the applications below we need the following definition. For any subset U o f  

B [ H ] ,  we define the subset generated by U (denoted by gen. U) to be the smallest 

subalgebra (cf. 1(12)) o f  B[H]  that contains U. Since any intersection o f  subalge- 

bras is a subalgebra, gen. U can be characterised by 

p e g e n . U  - (VV: U c  V A V suba lgebra :pe  V) (5) 

6.4. lnvariants 

In programming, we say that a predicate x is an invariant of  command p if and 

only if [ x ~  wlp.p.x]. In [Hes88b], Section 7, we proved that for predicates x and 

Y 

?x; p ~ ?x; p; ?y - [x~wlp.p .y] .  

Therefore,  x is an invariant of  p if and only if ?x; p ~ ?x; p; ?x. 
In our general context, let a command s be called an invariant of  p if and 

only if s; p --- s; p; s. Let Bs be the subset of  B given by 

p e B s  -- s ; p ~ - s ; p ; s  (6) 

Let Hs be a subset of  H such that 

(Vh ~ Hs :: d.h ~ gen.( Bs w Hs) ) (7) 

In the next result, we need the subalgebra Bup of  B, as defined in Section 4.2. 

(8) Theorem. If  s~  Bup, then s; h ~ s ;  h; s for all h ~ Hs. 

Proof We apply theorem (2) to the congruence ~ generated by the strong 

congruence ~ and the pairs 

s; h~..s; h; s with h e Hs (9) 

A straightforward calculation shows that the pairs (9) belong to the abortive 

congruence, i.e. da*.(s; h) ~- da*.(s; h; s) for all h ~ Hs. Since s ~ Bup, it follows 

from 5(31) that the pairs (9) are contained in Lia. This proves condition (2)(a). 
As for condition (2)(b), it follows from (9) and the definitions of  Bs and ~ ;  that 

(Vp~ B s w  Hs::  s; p ~ s ;  p; s) 

Using structural induction, one can obtain 

(Vp ~ gen.(Bs u Hs) :: s; p ~ s; p; s) 

Now it follows with (7) that s; d.h ~ s; d.h; s for all h ~ Hs. Since s ~ B, this implies 

(Vh ~ Hs :: d*.(s; h) - d*.(s; h; s)) 

By (2), this proves that the pairs (9) satisfy relation ~ .  [] 

6.5. Commuting Commands 

Let s be a fixed command in B. A command p is said to commute with s if and 

only i fp ;  s - s; p. We define Bt to be the set of  the commands p ~ B that commute 

with s. So we have 

p ~ B t  =- p e B  A p ; s ~ s ; p  (10) 
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Let a subset Ht of H be given such that 

(Vh ~ Ht :: d.h ~ gen.(Btu l i t))  (11) 

Recall from [Hes88b] formula (4), that command s is called total if and only if 
it satisfies Dijkstra's law of the excluded miracle, i.e. 

wp.s.ff = f f  (12) 

(13) Theorem, If command s is total and s ~ Bup, then h; s ~ s; h for all h ~ Hr. 

Proof. We use Theorem (2). Let ~ denote the infix operator that denotes the 
congruence on B[H] that is generated by strong congruence and the pairs 

h; s ,- .s;  h with h ~ Ht (14) 

Totality of command s is used to prove that, for all h c Ht, 

da*.(h; s) -~ da*.(s; h) 

Since s e  Bup, it follows from 5(31) that the pairs (18) are contained in Lia. 
Therefore, condition (2)(a) holds. The verification of (2)(b) in this case is 

completely analogous to the case of Theorem (8). The details of the proof are 
left to the reader. 

Remarks. The condition in theorem (13), that command s be total, is necessary. 
For, let s = magic (a non-total command). Let procedure h0 be declared by 
d.hO = hO. Then procedure h0 is semantically equivalent to abort, so that 

h0; magic ~ magic; hO 

but s is element of Bup and the singleton set Ht that consists of h0, satisfies 
condition (11). 

In our proof of (13), condition s ~ Bup is essential. (Added in proof. Recently 
we found an example to show that this condition is essential for the validity of 
(13).) 

7. Programming Examples 

7.0. We come back to the level of a state space, as considered in Sections 1.3 
and 4.4. We assume that command algebra B contains all commands that we 
need. For a predicate x we have a command ?x ~ B, cf. 1 (20). One easily verifies 
that 

? x ; ? y ~ ? ( x ^ y ) ,  ? x B ? y ~ ? ( x v y )  

With Theorem 6(3) it follows that 

? x ; ? y ~ ? ( x A y ) ,  ? x ~ ? y ~ ? ( x v y )  

In the same way, we get from 6(3) that, for commands p, q ~ B[H], 

pu?yf; q p (i) 

It follows from 6(3) and [Hes88b] Section 7, that for predicates x and y and any 
command p ~ B, we have 

[x~wlp.p.y] - ?x; p ~- ?x; p; ?y (2) 

In the programming examples below, this equality will be used to insert or delete 
guards like ?y in sequences of commands. 
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7.1. Localised Relations 

I f f  is a function on the state space and m is a value, we write ( f =  m) to denote 
the predicate on the state space given by 

( f =  m).r =-" ( f i r= m) for re  St (3) 

In this notation, the operator "'=" yields a predicate instead of a boolean value. 
Let us call such an operator a localised relation. 

If  f is an integer valued function and m is an integer, we have predicates 
( f >  m), (f>- m), etc., that are defined in the same way. It is clear that these 

predicates satisfy 

(f-> m) = ( f = m )  v ( f >  m) (4) 

where the symbol " = "  in the middle stands for equality of predicates. 

Remark The introduction of localised relations is the price we pay for choosing 
to avoid mentioning states whenever possible, tn the programming examples 
below, the use of localised relations is very natural. In the theory of the previous 
chapters, however, the global interpretation of equality and inequalities enabled 
us to apply the abstraction of treating predicates as elements of an abstract lattice, 
cf. Section 0.3. Therefore, we did not adopt the choice of Dijkstra and Scholten, 
cf. [DIS90] Chapter 1, of  always using the localised interpretation. 

7.2. For-Loops and Unbounded Choice 

A for-loop is a repetitive command in which the number of repetitions is a 
function of the pre-state. If v is the state function and q is the body of the loop, 

the loop can be defined as the guarded but unbounded choice 

k = ( B r : r - 0 : ? ( v = r ) ;  q'). 

In the formal treatment, an unbounded choice (Or:: p.r) is defined as the greatest 
lower bound of the elements p.r. Thus, we postulate that command algebra B 
has greatest lower bounds of arbitrary nonempty families, that the choice of such 
families satisfies both unbounded distributive laws 

(ar:: p.r); s=(Or::  p.r; s) (5) 

s; (Br:: p.r)= (Or::s; p. r) (6) 

and that both w = wp and w = wlp satisfy, for any x E X, 

w.(0 r :: p.r)x = (A r :: w.(p.r).x) (7) 

Remark. If we admit the empty choice in formula (7), the empty choice is 
equivalent to magic, so that formula (6) is not valid for the empty choice and 
s = abort. Therefore, the empty choice cannot be admitted at least in formula (6). 

7.3. A Pusbdown Stack for Recursion 

Let procedure hOE H be declared by 

d.hO= sO( Oj : : p.j; h0; q.j) (8) 
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where s, p.j and q.j are commands in B. The dummy j is supposed to range over 
a nonempty finite set J, so that any family of  commands ( j  ~ J : :  u.j) has a 
well.defined choice (a j : :  u.j). 

In the standard implementation of  a recursive procedure one builds a stack 
of  return addresses, so that the recursion can be replaced by a repetition (i.e. tail 
recursion). In the special ease of  declaration (8), the repetition has three parts. 
It starts with a repetition in which some commands p.j are executed and the stack 
is built. Then follows command s. Finally, the stack is broken down again and 
corresponding commands q.j are executed. 

We want to give a formal proof of the correctness of  this standard implementa- 

tion of  h0 by means of tail recursion and a pushdown stack. This is done in two 
stages. In the first stage we specify the stack and its operations, and we add the 
appropriate stack operations to declaration (8). We introduce convenient names, 
so that the declaration gets the simple form (17). We specify the two repetitions 
in the form of a tail-recursive procedure and a for-loop, and get a relationship 
between h0 and the composition of  the two repetitions, of. (22). The proof is 
based on Theorem 6(2). 

We assume that the state space contains a pushdown stack for elements of  J. 
Let push.j e B be the command that pushes value j onto the stack. Let pop ~ B 
be the command that removes the top element of the stack. Let top be the J-valued 
function on the state space that returns the value of the top of the stack. We 
postulate, accordingly, 

push.j; pop ~- skip (9) 

[true ~ wlp.(push.j).( top =j ) ]  (10) 

It follows from (2) that (10) is equivalent to 

push.j ~ push.j; ?( top=j)  (11) 

We introduce commands pp, qq ~ B by 

pp = (Dj::p.j; push.j) (12) 

qq = (Oj:: ?(top =j) ;  pop; q,j) (13) 

We observe that 

push.j; qq 
~- {(11), (13)} 

push.j; ?(top = j); (~ i :: ?(top = i); pop; q.i) 
{(o)} 

push.j; (g i :: ?(top = j ^ top = i); pop; q.i) 
= {(1)} 

push.j; ?(top =j) ;  pop; qg 
= {(9), (11)} 

q.j 

This proves 

q.j = push.j; qq (14) 

In order to use the stack for an iterative implementation of  declaration (8), 
we need the assumption that commands s, p.j are independent of the stack. 
Therefore, we postulate 
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(Vi, j :: s; push.j  ~ push.j; s 

^ p.i; push.j  ~ push.j; p.i 

^ q.i; push.j  ~- push.j;  q.i) 

(15) 

It follows from (9) that commands push.j  are total. We may assume that they are 
deterministic, so that they are element of Bup, cf. 4(15). Now, we may apply 
theorem 6(13) with s :=push.j.  By (8) and (15), we may assume that hOe Hr. So 
we obtain 

hO; push.j  ~- push.j;  hO (16) 

We observe 

d.hO 

{(8), (14)} 

sn(Bj : : p.j; h0; push4; qq) 
{(16)} 

s g (Oj :: p.j; push.j; hO; qq) 

= {(12)} 
sSpp; h0; qq 

This proves 

d.hO ~ sOpp; h0; qq (17) 

We assume that the depth of the stack is given by an integer-valued state 
function dp, that satisfies for all n and j 

[dp = n ~ wlp.(push.j) . (dp = n +  1)] (18) 
[ dp = n ~ wlp.pop.( dp = n - t ) ]  
[alp = n ~ wlp.s.(dp = n)] 
[alp= n ~ wlp.(p.j) .(dp= n)] 
[dp = n ~ wlp.(q.j) .(dp = n)] 

It follows from (12), (13) and (18) that 

[dp = n ~ wlp.pp.(dp = n + I)] (19) 
[dp = n ~ wlp.qq.(dp = n - 1)] 

In this simple case, the stack implementation of recursion consists of two phases: 
a first phase when the stack is built, and a second one, during which the stack 
is inspected and broken down. In view of formula (17), we declare a tail-recursive 

procedure h 1 by 

d .h l  = s~pp; h l ,  (20) 

and we define for-loops k.n e B, for integer n, by 

k.n = (D r : r > - n : ? ( d p = r ) ;  qq ~- ' )  (21) 

compare Section 7.2. 
Now, procedure h0, if called with a stack of depth n, is equivalent to the 

composition (hi;  k.n).  This is formalised in 

(22) Theorem. ? ( d p = n ) ;  hO ~. ? ( d p = n ) ;  hl; k.n. 
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Proof It follows from (18) and (19) that 

[dp>_n ~ wIp.s.(dp>_n)] 
[dp >- n ~ wlp.pp.(dp >- n)] 

and hence by (2) 

?(dp>-n); s' ~ ?(dp~n); s; ?(dp>-n) (23) 
?(dp>-n);pp ~ 7(dp~n);pp; ?(dp>-n) 

By (20) and Theorem 6(8) with s := ?(dp >-n), it follows from (23) that 

7(dp > n); hl ~ ?(dp >- n); hl; ?(dp >- n) (24) 

Using the unbounded distributivity laws (5) and (6), and calculations with guards 
and the rules (0) and (1), one can verify 

?(dp = n); k.n ~- ?(dp = n) (25) 
?(dp> n); k.n ~ ?(dp> n); k . (n+l) ;  qq 

We are ready for the application of Theorem 6(2). Let - be the congruence 
on B[H] generated by ~ and the pairs 

?(dp= n); hO ,... ?(dp=n); hl; k.n for all integers n (26) 

It is easy to verify that these pairs belong to the abortive congruence. As we have 
seen earlier, guards belong to Bup. By 5(31), it follows that the pairs (26) belong 
to Lia. It remains to verify condition 6(2)(b). We observe that 

d*.(e(dp = n); hl ;  k.n) 
= {(20)} 

?(alp = n); (sgpp; hl); /~n 
- ((2),  (18), (19) and (24)} 

?(alp = n); (s; ?(dp=n)Opp; ?(dp = n + 1); hl;  ?(alp>n)); k.n 
(distribution of kn;  (25)} 

?(dp = n); (s; ?(dp = n)app; ?(dp = n + 1); hl; ?(dp > n); k.(n + 1); qq) 
{(24)} 

?(@ --n); (s; ?(dp=n)npp;  ?(dp-- n + l ) ;  hi;  k.(n + 1); qq) 
{induction hypothesis (26)} 

?(dp = n); (s; ?(dp = n)Bpp; ?(dp = n + 1); h0; qq) 
{(2), (18), (19)} 

?(dp = n); (sOpp; hO; qq) 
{(17)} 

d*.(?(dp = n); h0) 

Therefore, the pairs (26) satisfy condition 6(2)(b). By Theorem 6(2), this proves 
the theorem. [] 

Later on, it is convenient to replace the for-loop k.1 by a procedure. So we declare 
the tail-recursive procedure kk by 

d.kk = ? ( d p =  1)8?(dp> 1); qq; kk (27) 

Using induction on r and the second formula of (19), one can prove that, for r_> 1, 

?(@ = r); kk~- ?(alp = r); qq'- '  
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and, hence, that kk ~ k`l in B[H].  By Theorem (22) and 6(1), it follows that 

?(dp = n); h0---- ?(dp = n); hi; kk (28) 

Remark. In our view, one of the nice aspects of the above development is that 
the stack is characterised by the formulae (9), (10), (15) and (18). So we did not 
need any form of data abstraction. 

7.4. A Strong Version of the Euclidean Algorithm 

In this section, Theorem (22) is applied to a recursive version of  the euclidean 
algorithm. This version is the extension of the standard algorithm, in which the 
greatest common divisor of a given pair of positive integers is expressed as an 
integral linear combination of  that pair. So, we use a state space with integer 
variables i, j, a, b, and the algorithm consists of a procedure h0 specified by 

[ i--  iO ̂  j =j0  ~ wp.hO.(gcd.iO.jO= a * iO-  b *j0)] (29) 

where i0 and j0  are arbitrary positive specification consistants. A standard 
program derivation, which is left to the reader, yields 

d.hO = ?(i = j ) ;  a, b := 1, 0 
?(i < j ) ;  j : = j -  i; h0; a := a + b 

n ? ( j < i ) ;  i : = i - j ;  h0; b : = a + b  

(30) 

In this declaration, we recognise declaration (8) with 

s = ( ? ( i= j ) ;  a ,b :=  1,0) 

p.0 = ( ? ( i< j ) ;  j : = j - i )  

q.O = ( a : = a + b )  

p.1 = ( ? ( j < i ) ;  i : = i - j )  

q.1 = ( b : = a + b )  

(3I) 

where we choose J to be the set of the numbers 0 and 1. We let the stack be 
represented by a positive integer m, which is treated as a sequence of binary 
digits headed by 1. The corresponding operations and functions are given by 

push.O = (m := 2 * m) (32) 

push.1 = ( m : = 2 * m + l )  

pop = ( ! ( m # l ) ;  m : = m  div 2) {see 1(21) for ! ( re#l )}  

top = m mod 2 

dp = "'number of  binary digits of rn'" 

Notice that m = 1 represents the empty stack, of depth 1, and that popping the 
empty stack yields abort. So we may assume that m > 0 holds throughout the 
state space. Now it is easy to verify the formulae (9), (10), (15), (18). Formulae 

(12) and (13) specialise to 
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pp = ?(i < j ) ;  j : = j -  i; m := 2 * m (33) 
a ? ( j < i ) ;  i : = i - j ;  m : = 2 * m + l  

qq= ?(m mod 2=O); ! (m~l ) ;  m:=m div 2; a : = a + b  
g ? ( m m o d 2 = l ) ;  ! ( m # l ) ;  m : = m d i v 2 ;  b : = a + b  

As condition dp= 1 is equivalent to m = 1, formula (28) yields 

(m:= l; hO). = ( m : = l ;  hl;  kk) (34) 

where procedures h 1 and kk are declared, cf. (20) and (27), by 

d.hl = ? ( i= j ) ;  a, b:= 1,0 (35) 
R ? ( i< j ) ;  j : = j - i ;  m : = 2 * m ;  hl 

? ( j < i ) ;  i : = i - j ;  m : = 2 * m + l ;  hl  
d.kk = ?(m = 1) 

I ?(m rood2=0) ;  m:=m div2; a : = a + b ;  kk 

D ? ( m ~ l ^  mad 2=1) ;  m:=m div2; b : = a + b ;  kk 

The bodies d.hl and d.kk have been rewritten according to some equivalences 
in B[H] that are based on Theorem 6(3). In particular, the assertions !(m ~ 1) 
in d.kk were superfluous and have been omitted. 

The procedures h I and kk use tail recursion of a kind that can be translated 
directly into iteration. Thus, formula (34) implies that the composition ~m := 
1; h0] is equivalent to the program in guarded commands 

~m := 1 (36) 
; d o i < j  --> j : = j - i ;  m : = 2 * m  
6 j < i  -> i : = i - j ;  m : = 2 * m + l  
od 

;a, b:= 1,0 

;do m rood 2 = 0  --> m : = m  div 2; a : = a + b  

m ~ l A m m o d 2 = l  ~ m:=m div2; b : = a + b  

od 

Remark. If we compare program (36) with the program in EWD 570, cf. [Dij82], 
we see a striking similarity. Dijkstra's program is 

[ m , a , b : = N , l , 0  

;do m ~ O A m  mad 2 = 0  -> m : = m  div2; a : = a + b  

O m m o d 2 = l  -> m : = m d i v 2 ;  b : = a + b  

od {b=fusc .N}  

where fusc is the function given by 

fusc. 1 = 1 

fusc.(2 * n) = fusc.n 

fusc.(2 * n + 1) =fusc.n + fusc.(n + 1) 

It follows that the final values of a and b of (36) satisfy a + b =fusc .N where N 
is the value of m after the first repetition of (36). 

This is not a coincidence. In fact, Dijkstra found fusc while working on the 
inversion of the euclidean algorithm, cf. [Gri81 ] chapter 21. For more about fusc, 

see EWD 578 in [Dij82]. I found the transformation from (30) into (36) in October 
1987. The problem of its justification was the inspiration for this paper. Jan van 
de Snepscheut recognised fusc. 
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