
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

Command Execution in a Heterogeneous Environment Command Execution in a Heterogeneous Environment

John T. Korb
Purdue University, jtk@cs.purdue.edu

Craig E. Wills

Report Number:
86-593

Korb, John T. and Wills, Craig E., "Command Execution in a Heterogeneous Environment" (1986).
Department of Computer Science Technical Reports. Paper 512.
https://docs.lib.purdue.edu/cstech/512

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

'.'

Command Execution in a Heterogeneous Environment*

John T. Korb
Craig E. Wills

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD-TR-S9a

April 14, 1986

Abstract

As a user's computing environment grows from a single time-shared host to a
network of specialized and general-pwpose machines, the capability for the user
to access all of these resources in a consistent and transparent manner becomes
desirable. Instead of viewing commands as binary files, we expect the user to view
commands as services provided by servers in the network. The user interacts with a
personal workstation that locates and executes services on his behaH.

Executing a single service provided by any server in the network is useful, but the
user would also like to combine services from different machines to perform complex
computations. To provide this facility we expand on the UNIX notion of pipes to
a generalized pipeline mechanism containing services from a variety of servers. In
this paper we explain the merits of a multi-machine pipeline for solving problems
of accessing services in a he~erogeneous environment. We also give a design and
performance evalua~ion of a general mechanism for mul~i-machine pipes using ~he

DARPA UDP and TCP protocols.

·This work was supported in pa.rt by gra.nts from the Na.tional Science Foundation (MCS-8219178),
SUN Microsystems Incorporated, and Digital Equipment Corporation.

1 Introduction

The Tilde project is concerned with computing problems in a distributed environment

composed of heterogeneous machines [CKTM84]. The computing environment is het

erogeneous with respect to processor type and operating system. As a user's computing

environment grows from a single time-shared machine to a. network of general purpose

machines and dedicated processors, the need for the user to access aU of these resources

in a consistent and transparent manner becomes desirable. The user would like to have

easy access to new resources as they become available without learning any new syntax

or protocols to do so. AJJ.y changes to the "computing engine" should be reflected to

the user in only two ways: (1) as aD increase in the number of available services; or (2)

faster response for old services that are now available on more machines. Our DASH

(Distributed Access to Shared Hosts) project is looking at how the user should perceive

his Tilde computing environment and the tools he has to access it [Kor84].

In a time-shared computing environment, the user logs into a machine a.nd interacts

with a command interpreter, we use the term executive, to perform commands. In the

UNIX operating system [RT74], each command is in fact a binary file that is loaded

into memory and executed. In our model of a distributed environment the user interacts

with an executive on a personal workstation connected to a local network, and views

commands not as binary files, but as services provided by servers in the network. The

user no longer is logged in at a particular host in the network, but accesses the computing

1

engine using the workstation to locate and execute services on his behalf. Breaking the

corrunand-binary file link has three principal advantages: (1) A user does not need to

be concerned if a particular binary file runs on a particular machine. If a service is

advertised by a particular server then that server knows how to provide the service. (2)

Each server can decide what services it offers. This concept fits nicely with the idea

of dedicated machines offering specialized services. (3) Service names are independent

of file names and a different naming convention, taking into consideration the naming

requirements for each resource, can be used.

In our client-sertler model, the user only needs to be concerned with what services

he wants and not how they are provided by a particular server. If a service is offered

by more than one server then the workstation can intelligently decide the "best" server

to use. A simple heuristic, for example, is to choose the server with the lowest "load to

computing power" ratio. Each server may provide its services as it wishes, perhaps by

executing a binary file, or using a special attached processor to implement the service.

The workstation may also provide services, and act as both a client and a server. In all

cases the implementation details of a service are hidden from the user and he views his

world as a set of services that his executive will locate and invoke on his behalf.

The user can access resources from a wide variety of machines in a uniform manner

by viewing all corrunands as services. Executing a single service provided by any server

in the network is useful, but the user would also like to combine services from different

machines to perform complex computations. An example might be a numerical analyst

2

who generates some set of data on one machine, sends it to a specialized processor for

solution, sends the results to a plot service on another machine, and finally gets the

results as a plot on his own workstation. The user does not want to perform each of

these operations separately, but instead would like to combine them into a single pipeline

of actions.

Many systems allow remote execution of commands on other machines in the network

[WPE*83,UNI83]. Others automatically schedule cpu inl;ensive tasks, such as compiling

or text processing, on lightly loaded hosts or idle workstal;ions [Ber86,Hag86
J
TLC85].

But what these syst.ems ofj;en lack is an efficient and simple mechanism for feeding the

results of one command to the input of the next. In the worsl; case the user is forced to

store intermediate results in a file and invoke each command in the sequence separately.

This method is clearly not satisfadory. In the case of a pipeline mechanism on the user's

local machine, the user can combine remote commands using local pipes. This solution is

acceptable if the local machine has comparable computing power to the other machines

executing the commands, but may become a bottleneck if the machine is a worksl;ation

in a pipeline of heavy data flow between powerful server machines.

We want a mechanism to provide pipes, but want them implemented in a general

manner so pipelined services communical;e data directly and these services can be used

in a heterogeneous environment. This requirement leads to a multi-machine pipeline

facility, similar to the pipe facility introduced by UNIX, but buill; on standard transporl;

level protocols. Each service in the pipeline is a filter thaI; reads from an (unnamed)

3

input stream and writes to an (unnamed) output stream. Extending this simple concept

allows the user to compose computations of services from many machines as easily as

he composes commands in the UNIX world. The use of multi-machine pipes also allows

services from many machines to communicate data without the need for a common file

system, which is an important concern in a heterogeneous environment.

In this paper, we look at a design for implementing an efficient mechanism for multi

machine execution of services, and compare an implementation of our mechanism with

pipe facilities available in the Stanford V-System [CZ83,BBC*83], and the UNIX oper

ating system.

2 Motivation

In [Zwa85], Zwaenepoel identifies two types of implementations for pipes in a client-server

based system:

• Introduce a pipe server process between two clients that want to communicate over

a pipe.

• Abandon the client-server paradigm for this mode of communication and have the

operating system kernel implement pipes.

The advantage of the first mechanism is that it does not require any special kernel support

thus making it easier to implement and modify. This solution also retains the client

server model, and if transparent interprocess conununication facilities are available, then

4

no additional protocol is needed to support pipes. The disadvantage of this approach

is the performance penalty that must be paid by not having a kernel implementation.

The kernel approach has better perfonnance, but abandons the client-server model. a.nd

requires a protocol for communication between kernels in the case of clients on different

machines. In the paper, Zwaenepoel shows measured performance for the pipe server

implementation to be 8-25% worse than the calculated value for kernel pipes in the V

System. He concludes that the implementation of a pipe server using message passing,

the principal means of interprocess communication in V, is quite practical compared to

the additional kernel and protocol complexity needed for a kernel implementation.

We are interested in these results because our initial prototype implementation for

service location and execution ra.n on a SUN workstation using the V operating system.

From our prototype we gained experience in using the V pipe server to provide pipes for

combining services from different machines. Since the pipe server ran on the worksta~

tion, all data traffic between pipelined services was routed through the workstation, as

illUBtrated in Figure 1. Each bi-directional connection is implemented with V message

passing. with each outgoing line from the workstation carrying input data for the remote

server, and each incoming line carrying both output and error data for the workstation.

When the amount of data was large, the pipe server became a bottleneck. Our design

of a new protocol for handling multi-machine pipes was motivated by the desire to remove

the workstation from the data Bow path.

5

A B

tl.....-. ----+- •••

il rr
ws

z

Figure 1: V Pipe Server Pipeline Execution

Our design is based OD standard DARPA protocols and standardizes all interprocess

communication at the tra.nsport level. Our mechanism is different from both described

above in three respects:

• Like the V pipe server, our design follows the client-server model, but unlike the

pipe server all data passed between services does not How through the workstation.

Instead, the workstation, acting as the client, communicates with each host in the

pipeline to Bet up TCP [PosSI] protocol connections between services. When the

services are executed, the data travels directly between service invocations using

TCP connections, with the workstation supplying data to the first service, and

receiving data from the last.

• The workstation sets up separate TCP connections with each server so that all

error output from executing services is sent directly to the workstation. In the V

system, all error messages and output are passed through the same pipeline.

6

• We do not use V interprocess communication for setting up the pipes, but instead

use UDP !Pos80] packets.

The remaining portion of this paper looks at specifics of our mechanism including design.

implementation, performance measurements, discussion, and conclusions.

3 Design

To remove the workstation from the data Bow path, we have designed a general mecha

nism for creating a pipe directly between two executing services using DARPA protocols.

We assume that each filter-style service in the pipeline follows the UNIX paradigm of

reading from a standard input stream and writing to standard output and error streams.

This mechanism requires the workstation command interpreter, the executive, to de

termine what server executes each service, and make connections to the first and last

component of the pipeline to handle input and output, as well as a connection with each

component to handle any errors that the service may produce. The pipeline configuration

at execution time is shown in Figure 2. The thick lines indicate the Bow of data through

the pipeline, and the thinner lines indicate the path of errors from each component to

the workstation.

The mechanism uses UDP datagrams for setting up the pipeline and TCP streams

for the pipes between services. Each server machine in the network is required to execute

a pipe server that listens at a well-known port for UDP requests. Once the executive

determines what server will execute each service in the pipeline. it sets up the pipeline

7

A B Z. . .
~

J
) [

WB

Figure 2: TCP Pipeline Execution

as follows:

1. Determine a local TCP port for the workstation to listen to for the output of the

last service (server Z). Also determine a port to listen for errors from the last

service.

2. For each service in the pipeline, beginning with the last one, and moving in reverse

order, perform the following actions:

(a) Send a UDP datagram to the well-known port on the server host providing

the service. This datagram contains two TCP address (host, port)! pairs for

the output and error streams. The datagram also contains the service name

and command line arguments.

(b) Wait for the server to return a datagram. Meanwhile, the server, listening on

this well-known port, receives the incoming datagram, determines a port to

1A host'81nternet addreBB a.nd port number determine a unique endpoint for communication called a
locket.

8

listen to for input and sends the port number back to the workstation. The

server then must create a process to wait for a TCP connection on the input

port. When this connection is made, the process must connect to the output

and error ports given in the UDP setup datagram, and execute the service.

(c) Upon receiving a return datagram, use the port number given in this message

as the output port for the preceding service in the pipeline and determine a

new local port for receiving errors.

If a reply is not received from the server, then the executive times out and retrans

mits the UDP datagram. If a valid reply is not received from the server after a

defined number of retransmissions, then the executive connects to the last success

ful (host, port) pair and closes the connections. This action causes all succeeding

connections to close as well and "cleans up" the pipeline. An error is reported to

the user.

3. Mter successfully setting up the firat service in the pipeline, the executive starts a

process that connects to the first server's (server A) listening port and directs all

input from the workstation to this port. Then it starts a process to listen on the

output port for data from the last conunand in the pipeline. The executive also

starts a process to listen on each error port and collect any errors from the servers.

We based our design on the UDP and TCP protocols because we wanted a general

mechanism that could be used by any clients and servers that understand these protocols

9

rather than limiting ourselves to just those that understand the V protocol. Our design

requires each server to listen on a well-known port and be able to perform the services

it advertises by connecting the service's input, output, and error to the given TCP

connections. Otherwise, each server implements its services as it wishes.

This mechanism is very general and can be used by any clients and servers imple

menting the DARPA TCP and UDP protocols. We find this generality very appealing for

work in a heterogeneous environment. We also feel that the design is an efficient mech

anism for direct data flow between two services rather than using the client machine as

an intermediary.

4 Implementation

The server portion of our design has been implemented on VAX, SUN UNIX, and RIDGE

machines. The client portion has been implemented as a user program on our VAXes

and incorporated into the command interpreter of the V operating system2 running on

SUN workstations. All machines are interconnected by a IOMbps Ethernet.

V is a message-based operating system using a distributed kernel. A special purpose

Inter-Kernel Protocol (IKP) is used for sending messages between processes on the same

or different machines. Following the client-server model, the V environment has a server

to manage the workstation display, an internet server (providing the IP and TCP proto

cols), a pipe server, and an executive server among others. Each of these servers usually

'JWe are currently using version 5.0 of V.

10

resides on the user's workstation. In addition, another server (the V UNIX server) ex

ecutes on back end hosts to provide file access and remote command services.S Client

programs can access any service by passing messages to the appropriate server.

Within this environment we have implemented a prototype that perforirui the follow-

ing service location and execution functions:

• The service location mechanism caches a list of available services from all servers in

the network. For VAXes, running the V UNIX server, the workstation communi

cates with the server using the V protocol, otherwise it uses a TCP-based protocol

for communicating with servers on other machines.

• The executive periodically checks the load average on each of the server machines

and stores this information locally.

• For each command, the executive chooses the "best" server [or execution by check-

ing its local cache for service availability and server load. To execute the service

on the user's behalf, the executive communicates with the appropriate server using

V or UDP protocols.

• For a pipeline of commands. the executive performs the same service location

algorithm for each command, and uses either V or TCP pipes for passing the

data between services. The type of pipe used is currently controlled by the user to

facilitate taking measurements of pipe performance.

3The V UNIX server only executes on our VAX machines.

11

• The services provide by the V UNIX. servers are executed in an environment that is

maintained at the workstation and passed to these execution servers. The current

implementation does not pass the environment to the TCP protocol servers. A

default environment is used for services provided by these servers.

5 Performance Measurements

In this section we look at the performance of executing pipelined services using V pipes

versus an implementation of the UDP/TCP mechanism we have described. The measure

ments were made by repeating each pipeline of commands and computing the average

elapsed time. The time includes two parts: (1) the setup time to locate where the com

mands were to execute and create the necessary connections; and (2) the actual time

spent waiting [or the pipeline of conunands to complete. For this experiment, the server

to use for each service was specified to minimize differences in the comparison.

The setup for a V pipeline involves downloading a local (to the workstation) helper

program for each remote service to handle input and output for that service. Also}

for each pipe, the V pipe server is contacted to create a pipe and the appropriate I/O

redirections are made. The executive waits until the last helper program in the pipeline

exits.

Setting up a UDP/TCP pipeline requires determination of a local TCP port for the

output of the last service in the pipeline} and a local TCP port for the error output of

each service. For each component in the pipeline, beginning with the last, the executive

12

contacts the appropriate server and communicates as described. Mter creation of all

connections, the executive downloads a local V program to connect to the input port of

the first service, and to listen on all the local TCP ports. The executive waits until this

program exits.

The results of setting up and executing services in each of these environments are

given in Tables 1 and 2. The services chosen require little processing, so that time

differences can be accounted for by the particular pipe implementation. The cat service

reads the file given in the command line and writes the contents to standard output. If

a file is not given then it simply copies its input to its output. The wc service counts the

number of characters, words, and lines in its input and writes the result.

Each service pipeline was executed on files ranging in size from 10 bytes to 1 megabyte.

All measurements were taken twenty times (ten or fewer times for the 1 megabyte

pipelines) on lightly loaded VAX 11(780 machines. The bracket notation indicates the

machine each service was performed on.

AB a further comparison, we measured the performance of pipes on a UNIX system.

The commands were executed on host A (a VAX 11(780) with remote execution of

commands on host B performed using the rsh command. Commands were also executed

on a SUN workstation running UNIX that used rsh to perform commands on hosts

A and B. The rsh command logs the user into the remote machine and sets up the

user's execution environment by reading from a standard startup file, then executes the

13

"The V pipe mechanism did not complete.

setup time in sees (stddsv)

file size in bytes
Pipeline Oommands 10 1,000 100,000 1,000,000

[TA]eat file I [A]we
V pipes 1.71 1.30 2.01 2.01

(1.04) (0.64) (1.10) (0.50)
UDP/TCP pipes 1.40 1.76 1.81 1.77

(0.61) (0.99) (0.6S) (0.72)
[A]eat file I [B]we

V pipes 1.52 1.38 1.90 1.28
(1.07) (0.87) (1.01) (0.32)

UDP/TCP pipes 1.21 1.28 1.22 1.49
(0.27) (0.66) (0.32) (0.66)

[A]eat file I [B]eat I [A]we
V pipes 2.50 2.71 -" -

(0.90) (1.11)
UDP/TCP pipes 1.61 1.81 1.48 1.46

(0.75) (0.81) (0.26) (0.05)

.

Table 1: Pipeline Setup Times

14

execution time in sees (atddev)
file size in bytes

Pipeline Commands 10 1,000 100,000 1,000,000
I [A]ca' file I [A]wc .

3.24V pipes 3.06 23.71 196.69
(0.74) (0.56) (1.08) (2.36)

UDPjTCP pipes 2.72 3.34 7.86 48.58
(0.80) (0.24) (0.38) (1.04)

[A]cat file I [B]wc
V pipes 2.99 3.74 18.28 168.75

(0.87) (1.05) (0.91) (16.80)
UDPjTCP pipes 2.32 2.42 6.26 31.39

(0.41) (0.50) (1.82) (2.05)
[A]ca' file I [B]cat I [A]wc

V pipes 4.46 4.03 - • -
(1.08) (1.24)

UDPjTCP pipes 3.16 3.35 8.75 60.21
(0.42) (0.47) (0.79) (4.45)

"The V pipe mechanism did not complete.

Table 2; Service Pipeline Execution Times

15

total execution time in sees
file size in bytes

Pipeline Commands 10 1,000 100,000 1,000,000
[A] cat file I [A]we

VAX A 1.21 1.27 5.35 42.46
UDP/TCP pipes 4.12 5.10 9.67 50.35

[A]eat fils I [B]we
VAX A 4.64 4.32 8.80 38.86

SUN UNIX 7.17 6.90 11.34 36.79
UDP/TCP pipes 3.53 3.70 7.48 32.88

IIA)eat file I [B]eat IIA)we
VAX A 4.86 4.78 11.10 70.50

UDP/TCP pipes 4.77 5.16 10.23 61.67

Table 3: Pipeline Mechanism VB. UNIX

remote command. The remote command reads input, and writes output and errors to

the originating host using a TCP protocol connection. To minimize the overhead of the

rsh comrnand, we removed the startup file for this experiment. The results are given in

Table 3 as the average amount of time taken per pipeline.

One other performance consideration in comparing our mechanism with UNIX pipelines

is the implementation of the UDP and TCP protocols in the V system. Just as the V

system implements pipes with a pipe server executing outside of the kernel, the UDP

and TCP protocols are implemented by servers executing outside of the kernel. Conse-

quently, there is some performance penalty in not implementing other network protocols

besides IKP in the kernel.

16

6 Discussion

Table 1 shows the amount of time to set up a two conunand pipeline is roughly the

same for the two mechanisms, but for three or more cormnands the V pipeline takes

longer to set up. This difference results from the executive downloading a V helper

program to handle the input and output of each service in the pipeline. In contrast,

the implementation of our design only needs to download one helper program rega.rdless

of the length of the pipeline, even though more UDP packets must be sent. Obviously.

the cost of exchanging UDP packets with the servers is less expensive than downloading

programs to the workstation.

The most obvious observation from the results is the performance penalty incurred in

using the V pipe server on the workstation to pass data. between services as shown in Table

2. For small amounts of data, the performance difference between our mechanism and V

pipes is insignificant, but as the amount of data is increased the difference becomes large.

For more data (>100,000 bytes) using just a single pipe, the execution time difference is

between 3 and 4 times worse for V pipes than for TCP pipes.

The difference can be explained by looking at the path of the data in each imple

mentation. For V pipes, each byte of data must travel from a server to the workstation

and on to the next server in the pipeline. For our mechanism, each byte of data travels

directly between the two servers. Not only does the V pipe implementation cause more

data. transmission, but it also introduces the workstation into the data flow path. When

17

the server machines are more powerful hosts, the workstation can become a bottleneck.

These factors make our mechanism much better suited for data intensive pipelines.

Not surprisingly, Table 3 shows the performance of pipes on a single VAY:.. machine

is much better than for our mechanism because there is no overhead in setting up the

pipe and all data is local to the machine. As the amount of data increases the relative

difference between the two methods decreases. An interesting anomaly is the performance

of our mechanism on a single pipeline of 1 megabyte of data between two VAY:..es. This

pipeline outperforms even a single pipeline on a VAX. The difference might be explained

by having two very lightly loaded VAXes instead of just one to handle this la.rge amount

of data. In fact, for our mechanism, a pipeline of two corrunands on different machines

almost always outperforms a pipeline on a single machine.

The experiment to execute a pipeline between two VAXes from a SUN workstation

running UNIX was made to test our conjecture that the pipeline would be slower because

the workstation would be a bottleneck. For smaller amounts of data the pipeline through

the workstation was slower, but for 1 megabyte of data, the workstation performs about

the same as VAXes when we thought it would perform much worse. We concluded that

the lightly loaded workstation is not a bottleneck because it still haa the processing

power to keep up with the incoming data. As the load on the worksta.tion increases, or

the pipeline becomes longer, we would expect the performance to deteriorate.

Using the rsh corrunand to perform remote execution of UNIX commands causes

the performance of low data pipelines to be slightly worse than our mechanism. This

18

difference is a result of the overhead to perform a login on the remote machine, even

though the startup file had been removed for this experiment. In contrast our mechanism

executed conunands in a default environment. In previous experiments we used the rsh

conunand without removing the user's startup file and measured 50% higher times for

low data pipelines.

Future work on our mechanism will include passing information to each server to use

in executing a service. For example, this information might include the client's user id or

information about file access privileges. The server may use this information or use some

default environment. This method is preferable to the rsh approach because a complete

login does not need to be performed to execute a simple service, and some servers may

provide services without requiring each user to have an account on the machine.

7 Conclusion

Coordinating the activities of many tasks in a heterogeneous environment is a difficult

task for the user. The problem can be divided into two parts: (1) locating and invoking a

command; and (2) combining many commands into a larger computation. A13 a solution

to the first question we have modeled the system as a set of servers, each providing a set

of services. The user then accesses the distributed environment through an intelligent

agent, such as a workstation, that can interact with these servers to perform services on

his behalf. The user does not need to be concerned with where services are located, or

how they are accessed, but only needs to know wha.t services he would like to use.

19

[BerB6]

AB a means for combining services in an easy and understandable way we have ex-

tended t;he UNIX pipe facility to coordinat;e the data movement between services on

different machines. This approach provides the user with a simple, yet powerful, mech-

anism for composing services in a distributed world.

To implement multi-machine pipes in an efficient; manner in a heterogeneous envi-

ronment we have designed a mechanism baaed on standard DARPA t;ransport protocols.

Our design specifically addresses the issues of efficiency and use in a. heterogeneous envi-

ronment. It is efficient by removing the client machine from the dat;a flow path. Existing

facilities, such t;he V environment;, allow remol;e execution but require the data to return

to a server before proceeding to the next command in the pipeline. We demonstrated

the weaknesses of this approach by showing performance penalties in using the V pipe

server to handle large amounts of data.

Finally, our design is applicable to a heterogeneous system because it; is not dependent

upon a particular operating system or machine type. Even though much of the initial

implementation has been done on UNIX, t;he design can be implemented on any machines

that support standard DARPA protocols.

References

[BBC*83] E. J. Berglund, K. P. Brooks, D. R. Cheriton, D. R. Kaelbling, K. A. Lantz,
T. P. Mann, R. J. Nagler, W. I. Nowicki, M. M. Theimer, and W. Zwaen
poel. V-System Reference Manual. Distributed Systems Group, St;anford
University, Computer Systems Laboratory, 1983.

Brian Bershad. Load balancing with Maitre d'. jlogin, :32-43, Jan
uaryfFebruary 1986.

20

[CKTM84]

[CZ83]

[Hag86]

[Km84)

[Pos80]

[Pos81]

[RT74]

[TLC85]

[UNI83]

[WPE*83]

[Zwa85]

Douglas Comer, John T. Kerb, Walter TichYl and Thomas Murtagh. The
TILDE Pro;"ect. Technical Report eSD TR 5001 Department of Computer
Science, Purdue University, November 1984.

D. R. Cheriton and W. Zwaenepoel. The distributed V kernel and its perfor
mance for diskless workstations. In Proceedings of the 9th A OM Symposium
on Operating Systems Principles, pages 129-1401 October 1983.

Robert Hagmann. Process Server: sharing processing power in a worksta
tion environment. Ma.y 1986. To be presented at the Sixth International
Conference on Distributed Computing Systems.

John T. Korb. An Overview 01 the DASH Intelligent Terminal Project. Tech
nical Report eSD TR 492) Purdue University, Department of Computer Sci
ence, September 1984.

J. Postel. User Datagram Protocol. August 1980. RFC 768.

J. Postel. Transmission Control Protocol- DARPA Internet program proto
col specification. September 1981. RFC 793.

D. M. Rit;chie and K. Thompson. The UNIX time-sharing system. Commu
nications o/the ACM, 17(7):365-375, July 1974.

Marvin M. Theirner, Keith A. Lantz, and David R. Cheriton. Preemptable
remote execution facilities for the V-system. In Proceedings o/the 10th ACM
Symposium on Operating Systems Principles, pages 2-12, December 1985.

UNIX P"ogrammer's Manual, 4.J! Berkeley Software Distribution, Virtual
VAX-ll Version. Computer Science Division, University of California,
Berkeley, August 1983.

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS
distributed operating system. In Proceedings 01 the 9th A CM Symposium on
Operating Systems Principles, pages 49-70, October 1983.

Willy Zwaenepoel. Implementation and performance of pipes in the V
system. IEEE Transactions on Computers, C-34(12):1174-1178, December
1985.

21

	Command Execution in a Heterogeneous Environment
	Report Number:
	

	tmp.1307986960.pdf.lu9DX

