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Introduction

In both humans and mice, the intestinal microbiota are 
essential for development of a mature immune system, and for 
maintaining immunological homeostasis in the intestinal tract.1-4 
Although many hundreds of bacterial species colonize the mam-
malian gut, the balance between these species varies widely 
between individuals in a population.5 Importantly, the presence 
or absence of specific species of bacteria within the microbiota 
can be instrumental in driving immunological differentiation 
in the intestinal tract. For example, segmented filamentous bac-
teria stimulate naïve T cells toward an inflammatory T helper 
(Th)17 phenotype,6-8 while a number of bacterial species promote 

immunosuppressive T regulatory cell (Treg) differentiation.9-13 
More broadly, germ-free (GF) mice raised in the absence of com-
mensal microbes show impaired immunological development,14 
and a systemic skewing toward Th2 responses.15,16

While GF mice are generally more susceptible to infections 
with bacterial or viral agents,14 persistence of the gastrointestinal 
helminth parasite Heligmosomoides polygyrus is markedly reduced 
in these animals compared with conventionally raised mice.17-19 
H. polygyrus establishes in the anterior small intestine of mice, 
alongside a substantial microbial community. As the outcome of 
H. polygyrus infection is likely dependent on the immediate cyto-
kine environment,20-22 we postulated that the composition of the 
microbiota may alter the priming of the murine immune system 
to alter susceptibility to helminth infection.
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Commensal-pathogen interactions  
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Lactobacilli promote infection with, and are promoted  
by, helminth parasites
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The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the 

mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth para-

sites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the 

host immune system to reside in the intestinal environment, yet whether they influence each other’s persistence in the 

host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with 

the mouse intestinal nematode parasite, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) 

and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, 

which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing 

of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously char-

acterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell 

frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bac-

teria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mecha-

nism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite 

has important implications for both antibiotic and anthelmintic use in endemic human populations.
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Whether the composition of the intestinal microbiota is suf-
ficient to drive differential susceptibility to infectious pathogens 
is an area which remains poorly understood. Here, we show that 
it is the composition of the gastrointestinal microbiota, rather 
than the total load of bacteria, which impacts the survival of H. 
polygyrus within the murine host. Specifically, Lactobacillaceae 
species abundance in the duodenum positively correlates with 
susceptibility to H. polygyrus. Furthermore, administration of a 
single species of this bacterial family, Lactobacillus taiwanensis, is 
sufficient to render a naturally H. polygyrus-resistant mouse stain 
more susceptible to helminth infection. To our knowledge, this 
is the first demonstration of a causal link between commensal 
bacteria and susceptibility to helminth infection.

Results

Intestinal microbiota composition alters H. polygyrus 
persistence

The role of the intestinal microbiota in susceptibility to 
pathogen infection can be studied in GF mice; however it is then 
difficult to ascertain whether differences in the ability to clear 
infections are due to an abnormally-developed immune system, 
differences in intestinal physiology, or to the absence of bacteria 
that may alter the immune response or physiology of the host at 
the time of infection. We therefore chose to examine helminth-
microbiota interactions in mice maintained in a conventional, but 
specific pathogen-free (SPF) BALB/c colony. We hypothesized 
that that composition of the microbiota, rather than the overall 
level of colonization may be important in controlling helminth 
infection. Treating BALB/c mice with a low level of the anti-
biotic vancomycin prior to H. polygyrus infection (Fig. 1A) did 
not significantly reduce total fecal bacteria numbers (Fig. 1B), 
yet resulted in increased H. polygyrus persistence in the host 
(Fig. 1C). Examining the composition of the fecal microbiota 
following vancomycin treatment revealed an elevated abundance 
of members of the Lactobacillaceae and Enterobacteriaceae fami-
lies and reduced abundance of Eubacterium/Clostridium species 
(Fig. 1D–F), leading us to hypothesize that altered levels of these 
bacterial groups affected H. polygyrus survival.

Lactobacillaceae species abundance in the duodenum posi-
tively correlates with susceptibility to H polygyrus

We next investigated whether the composition of the intestinal 
microbiota in the duodenum—the primary site of H. polygyrus 
colonization—was a factor contributing to the marked differ-
ences between mouse strains in susceptibility to H. polygyrus 
infection.23 We first used quantitative PCR (qPCR) to compare 
the relative levels of broad phyletic groups in duodenal samples 
from naïve and infected animals of two major mouse strains, 
BALB/c and C57BL/6. Whereas the majority of BALB/c mice 
had begun to expel H. polygyrus by 28 d post-infection, C57BL/6 
mice maintained high worm burdens at this time point (Fig. 2A). 
Additionally, infected C57BL/6 mice showed elevated levels both 
of duodenal Lactobacillaceae (Fig. 2B) and Enterobacteriaceae 
(Fig. 2C) family members compared with naïve mice. This result, 
extending from earlier reports,24,25 indicates that the presence of 

helminths positively promotes establishment of certain bacterial 
groups. A previous report suggests that the increase in abun-
dance of these bacterial groups following H. polygyrus infection 
in C57BL/6 mice is not limited to the site of H. polygyrus colo-
nization alone, but extends to the large intestine.25 In contrast to 
C57BL/6 mice in the more H. polygyrus-resistant BALB/c mice, 
the abundance of these bacterial groups is reduced, rather than 
elevated, following H. polygyrus infection (Fig. 2D and E).

Notably, BALB/c mice show substantial within-strain varia-
tion in their response ability to clear H. polygyrus infection 
(Fig. 2A). We therefore investigated whether the abundance 
of Lactobacillaceae family members correlated with infection 
intensity within a cohort of BALB/c mice, as well as between 
mouse strains. Revealingly, a positive correlation between these 
parameters was found: those BALB/c mice which maintained the 
highest duodenal levels of Lactobacillus/Lactococcus species fol-
lowing H. polygyrus infection had the highest parasite burdens 28 
d post-infection (Fig. 2F). In contrast, the within-strain variation 
in worm burdens in BALB/c mice did not correlate with levels of 
Enterobacteriaceae, Bacteroides, Eubacterium, or Clostridium spe-
cies, and no changes in the abundance of duodenal Bacteroides, 
Eubacterium, or Clostridium species were seen following infection 
in either inbred strain (data not shown). Segmented filamentous 
bacteria were not detectable in our BALB/c colony, in naïve or 
infected mice (data not shown).

Lactobacillaceae species abundance positively correlates 
with HES-specific IL-17A and Foxp3+ cell levels

We therefore focused on the relationship between duodenal 
Lactobacillus/Lactococcus abundance and H. polygyrus persistence 
in BALB/c mice, and explored how levels of these bacteria were 
related to the cytokine response to H. polygyrus. IL-17A produc-
tion by mesenteric lymph node (MLN) cells in response to H. 
polygyrus excretory-secretory antigen (HES) positively corre-
lated with H. polygyrus burden, and with duodenal Lactobacillus/
Lactococcus abundance at day 28 of infection (Fig. 3A and B). 
Some, but not all, species of this group have previously been 
reported to evoke IL-17A responses in other settings.26 HES-
specific IL-17A was the only cytokine to correlate positively with 
bacterial load; no association with Lactobacillus/Lactococcus levels 
was seen with HES-specific IL-4, IL-5, IL-9, IL-10, IL-13, or 
IFN-γ production (data not shown). No evidence exists to sug-
gest that IL-17 is an effective cytokine in promoting immunity 
toward helminths,27 despite an induction of IL-17A production 
following infection in BALB/c mice (Fig. S1A; ref. 27), thus it 
is possible that IL-17A responses are induced by the microbiota 
rather than the parasite during helminth invasion of the submu-
cosa. Moreover, Lactobacillus/Lactococcus species abundance also 
positively correlated with total numbers of Tregs within the MLN 
at day 28 of H. polygyrus infection (Fig. 3C), as may be expected 
from the known propensity of these bacteria to stimulate regula-
tory properties of T cells.13,28 Treg number also positively cor-
related with H. polygyrus burden at this time point (Fig. 3D), 
although at this late time point considerable worm expulsion had 
already occurred. Importantly, production of HES-specific IL-4, 
a cytokine key to expulsion of this helminth,20,21 did not show a 
positive correlation with H. polygyrus burden (Fig. S1B).
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Figure 1. Intestinal microbiota composition alters H. polygyrus persistence. (A–F) BALB/c mice were administered untreated water, or water containing 

0.5 g/L vancomycin for one week prior to infection with 200 H. polygyrus L3s, and throughout the experiment. Data pooled from two experiments. (A) 

Experimental protocol. (B) qPCR analysis of fecal 16S rRNA gene expression 28 d post-infection. (C) Intestinal H. polygyrus burden 28 d post-infection. 

(D) qPCR analysis of fecal Lactobacillus/Lactococcus-specific 16S rRNA gene expression 28 d post-infection. (E) qPCR analysis of fecal Enterobacteriaceae-

specific 16S rRNA gene expression 28 d post-infection. (F) qPCR analysis of fecal Eubacterium/Clostridium-specific 16S rRNA gene expression 28 d post-

infection. NS denotes no statistical differences; * indicates P =  ≤ 0.05; ** indicates P =  ≤ 0.01; *** indicates P =  ≤ 0.001.
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Figure  2. Lactobacillaceae species abundance positively correlates with susceptibility to H polygyrus. Six-week old female mice were left naïve 

or infected with 200 H. polygyrus L3s. Ten naïve mice and 40 H. polygyrus-infected mice, either C57BL/6 or BALB/c were used in each experiment. 

Experiments in each strain were performed separately and so data are not intended to be directly comparable between strains. A direct comparison of 

differential strain resistances to H. polygyrus can be found in ref. 23. (A) Intestinal H. polygyrus burden 28 d post-infection. (B) qPCR analysis of duodenal 

Lactobacillus/Lactococcus-specific 16S rRNA gene expression 28 d post-infection in C57BL/6 mice. (C) qPCR analysis of duodenal Enterobacteriaceae-

specific 16S rRNA gene expression 28 d post-infection in C57BL/6 mice. (D) qPCR analysis of duodenal Lactobacillus/Lactococcus-specific 16S rRNA gene 

expression 28 d post-infection in BALB/c mice. (E) qPCR analysis of duodenal Enterobacteriaceae-specific 16S rRNA gene expression 28 d post-infection 

in BALB/c mice. (F) Correlation between intestinal H. polygyrus burden and duodenal Lactobacillus/Lactococcus-specific 16S rRNA gene expression mea-

sured by qPCR at day 28 post-infection in BALB/c mice. Statistics shown indicate analysis by Spearman correlation test. * indicates P  ≤ 0.05; ** indicates 

P  ≤ 0.01; *** indicates P  ≤ 0.001 and r indicates the correlation co-efficient.
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Lactobacillus taiwanensis correlates with Lactobacillus/
Lactococcus effects in H. polygyrus infection

To experimentally test whether increased Lactobacillus/
Lactococcus levels were causal in increasing susceptibility to H. 
polygyrus, we chose to identify the most prominent species from 
this bacterial group residing in the small intestine of infected 
mice. DNA was extracted from the duodenum of BALB/c mice 
showing the highest worm burdens 28 d post-infection. Primers 
specific for the 16S rRNA gene of the Lactobacillus/Lactococcus 
family members29 were used to amplify that region of the DNA, 
after which individual amplicons were sequenced and the 
results searched against a BLAST database. Of 13 amplicons 

screened, 12 were a 100% nucleotide match 
to the sequence of the Gram-positive, faculta-
tively anaerobic Lactobacillus taiwanensis first 
identified from silage cattle feed30 and since iso-
lated from the intestinal contents of rats.31 The 
remaining sample sequenced showed one nucle-
otide change from the sequence described for L. 
taiwanensis, which was still the closest match. 
Notably, L. taiwanensis is most closely related 
to L. johnsonii (Fig. 4A), isolates of which were 
reported to favor Th17 differentiation.26

It has previously been reported that L. tai-
wanensis is relatively highly divergent from 
closely related species at the gyrB gene locus,30 
therefore this region of the genome was chosen 
to design primers which would amplify DNA 
from L. taiwanensis, but not its close family 
members (Fig. S2). Levels of L. taiwanensis 
present in the duodenum of 28 d-H. polygyrus 
infected mice positively correlated not only with 
the total Lactobacillus/Lactococcus abundance 
readout from the same samples (Fig. 4B), but 
also with the number of worms remaining in the 
host at the same time point (Fig. 4C), suggest-
ing that levels of this single species may play a 
role in controlling susceptibility to H. polygyrus.

Lactobacillus taiwanensis administration 
enhances Treg frequencies and susceptibility 
to H. polygyrus infection

To establish if the correlation between L. 
taiwanensis and H. polygyrus abundance had a 
causal basis, we then tested the effects of feeding 
L. taiwanensis to BALB/c mice. Animals were 
given untreated drinking water or water con-
taining 2 × 108 colony forming units (cfu)/ml 
L. taiwanensis for one week prior to H. polygyrus 
infection, and throughout the course of infec-
tion (Fig. 5A). Egg output from H. polygyrus was 
measured each week; at day 14 post-infection, 
the bacteria-fed and control mice showed similar 
levels of egg production, however by day 21 post-
infection egg output was significantly higher 
from those mice that had received L. taiwanensis 
(Fig. 5B). L. taiwanensis-fed mice also bore an 

increased H. polygyrus burden 28 d post-infection compared with 
untreated mice in each of four independent experiments (Fig. 5C 
and D), suggesting that the presence of L. taiwanensis prolongs 
H. polygyrus infection in BALB/c mice. Co-infection of mice 
with the bacterial pathogen Bordetella bronchiseptica has previ-
ously been shown to promote H. polygyrus survival in mice,32 
but this is the first report to our knowledge that a component 
of the commensal microbiota can promote helminth parasite 
persistence.

We next examined whether L. taiwanensis administration 
alone for one week (Fig. 5E) skewed cytokine production from 
α-CD3-stimulated MLN cells. No differences were seen in 

Figure  3. Lactobacillaceae species and H. polygyrus abundance both positively correlate 

with Th17 and Treg phenotypes. Six-week old BALB/c female mice were infected with 200 

H. polygyrus L3s. Twenty-eight days post-infection MLN cells were stained for Foxp3 expres-

sion, or MLN cells were restimulated with 1 μg HES for 72 h after which IL-17A production was 

determined by ELISA. (A, B) Correlation between MLN cell HES-specific IL-17A production 

and (A) duodenal Lactobacillus/Lactococcus-specific 16S rRNA gene expression measured by 

qPCR, and (B) intestinal H. polygyrus burden 28 d post-infection. (C, D) Correlation between 

total number of MLN CD4+Foxp3+ cells 28 d post-infection and (C) duodenal Lactobacillus/

Lactococcus-specific 16S rRNA gene expression measured by qPCR, and (D) intestinal H. poly-

gyrus burden 28 d post-infection. Statistics shown indicate analysis by Spearman correlation 

test. * indicates P ≤ 0.05; ** indicates P ≤ 0.01; and r indicates the correlation co-efficient.
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IFN-γ, IL-4, IL-5, IL-10, IL-13, or IL-17A production between 
cells from untreated and L. taiwanensis-treated BALB/c mice 
(Fig. S3A–F).

Treg expansion has previously been reported in mice which 
have been exposed to Lactobacillus bacteria,33-37 and thus the 
presence of Foxp3+ cells in the gut-associated lymphoid tissue 
(GALT) was examined after one week of L. taiwanensis exposure, 
prior to H. polygyrus infection (Fig. 5E). The frequency of Foxp3+ 
cells among CD4+ T cells was significantly elevated in both the 
MLN and Peyer’s patch (PP) cells of L. taiwanensis-treated mice 
compared with untreated BALB/c mice (Fig. 5F and G), con-
firming that L. taiwanensis exposure alone is sufficient to elevate 
Treg frequencies. Foxp3+CD4+ cell levels were next examined at 
day 7 and 28 of H. polygyrus-infection, in mice which had been 
exposed to L. taiwanensis for one week prior to and throughout 
the course of H. polygyrus-infection. At these time points, no 
differences in Treg frequencies were seen in the MLN or small 

intestinal lamina propria (LP) between untreated and L. taiwan-
ensis-treated mice (Fig. S3G–I), suggesting that it is the GALT 
Treg frequency at the time of infection which determines the out-
come of H. polygyrus infection.

Discussion

In recent years, the fundamental importance of the commensal 
microbiome to the developmental, immunological and metabolic 
well-being of the host organism has become clearly under-
stood.1,2,38 It has further been recognized that the immune system 
faces a profound challenge in discriminating between symbionts 
and pathogens, particularly when closely-related and competing 
organisms are present.39 Hence, pathogens can overturn tolerance 
to commensals,40 or otherwise dysregulate the steady-state floral 
constitution, giving rise to pathogenesis.41,42 In contrast, we report 

Figure 4. Lactobacillus taiwanensis correlates with Lactobacillus/Lactococcus effects in H. polygyrus infection. (A) Neighbor-joining tree showing related-

ness of Lactobacillus species based on the similarity at the region of the gyrB gene shown in Fig. S2. (B) Correlation between duodenal Lactobacillus/

Lactococcus-specific 16S rRNA gene expression and duodenal L. taiwanensis-specific gyrB gene expression measured by qPCR 28 d post-infection. (C) 

Correlation between intestinal H. polygyrus burden 28 d post-infection and duodenal L. taiwanensis-specific gyrB gene expression measured by qPCR at 

the same time point. (B, C) Statistics shown indicate analysis by Spearman correlation test. * indicates P  ≤ 0.05; *** indicates P  ≤ 0.001; and r indicates 

the correlation co-efficient.
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for the first time a more mutualistic relationship between a com-
mensal microbe and a helminth parasite, which in the non-patho-
genic setting of long-term infection, provides a new perspective on 
real-world interactions in the intestinal tract.

Our experiments have established two striking findings: that 
infection with the helminth H. polygyrus alters the microbial 

composition of the small intestine; and that the abundance of 
species present in the normal commensal microbiota can in 
turn alter H. polygyrus survival within the host. The expan-
sion of Lactobacillaceae family members in the duodenum of 
C57BL/6 mice is in accordance with a previous report of greater 
abundance of Lactobacillaceae species in the ileum of 14-d H. 

Figure 5. Lactobacillus taiwanensis administration enhances H. polygyrus infection. (A) Experimental protocol for (B-D). BALB/c mice were administered 

untreated drinking water, or water containing 2 × 108 colony forming units (cfu)/ml L. taiwanensis for one week prior to infection with 200 H. polygyrus 

L3s, and throughout the experiment. (B) Mean H. polygyrus egg output per gram of feces +/− SEM on days 14, 21 and 28 post-infection. (C) Intestinal H. 

polygyrus burden 28 d post-infection. Data shown are pooled from four independent experiments, each with 6–7 mice per group. (D) Mean intestinal H. 

polygyrus burden 28 d post-infection. Data shown are paired means from the four independent experiments shown in (C). (E) Experimental protocol for 

(F-G). BALB/c mice were administered untreated drinking water, or water containing 2 x 108 colony forming units (cfu)/ml L. taiwanensis for one week. 

(F) % Foxp3+ cells among CD4+ MLN cells. Data shown are pooled from two independent experiments each with 4 mice per group. (G) % Foxp3+ cells 

among CD4+ PP cells. Data shown are pooled from two independent experiments each with 4 mice per group. * indicates P  ≤ 0.05; ** indicates P  ≤ 0.01.
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polygyrus-infected C57BL/6 mice.24 However, as we show here, 
the opposite effect occurs in more resistant animals. An asso-
ciation between Lactobacillaceae species abundance and H. poly-
gyrus survival was also noted in GF mice monocolonized with 
Lactobacillus spp., which showed increased susceptibility to H. 
polygyrus-infection.17 Our data show that the administration of 
a single commensal species, Lactobacillus taiwanesis, is sufficient 
to elevate Treg frequencies in the GALT, yet the mechanism 
behind this interaction remains elusive. Previous work has attrib-
uted host immune modulation by specific commensal microbes 
to their metabolic products, such as short chain fatty acids.43-46 
Identifying the immunomodulatory molecules produced by com-
mensal microbes will be crucial in developing tools to modulate 
host responses, without the need for administering live microbes.

Two main hypotheses can be formulated to explain changes 
in the microbiota composition following H. polygyrus infection. 
First, H. polygyrus could be actively modifying the microbiota 
through secretory antimicrobial products such as the parasite-
encoded lysozymes previously reported;47 if it is possible that 
the helminth has evolved to select Th17- and Treg-generating 
microbes most favorable to its survival. As L. taiwanensis admin-
istration for 7 d expanded Treg frequencies, but did not raise 
Th17 responsiveness, we postulate that commensal promotion of 
Tregs, rather than of Th17-cells, may predispose mice to greater 
susceptibility to H. polygyrus infection. This hypothesis is also 
supported by other studies from our laboratory which show 
infection is unchanged in mice depleted with anti-IL-17 antibod-
ies, but increased H. polygyrus susceptibility is seen when Tregs 
are expanded with IL-2:anti-IL-2 complexes.27

Second, either or both the inflammatory response elicited by 
helminth infection, or parasite disruption of the epithelial bar-
rier may alter the intestinal niche in favor of certain commen-
sals. Previously published data has reported that the composition 
of cultivatable microbes isolated from the luminal ileum differs 
between naïve and H. polygyrus-infected mice, and that simi-
lar compositional shifts occur following infection of IL-4Rα−/− 
mice,25 suggesting that IL-4 or IL-13 signaling may not contribute 
to the modification of microbiota composition during infection. 
However, this does not rule out that other immune responses 
induced by the presence of H. polygyrus, such as Tregs,48 may 
contribute to shifts in intestinal microbiota composition. Colonic 
microbiota populations are altered following Trichuris suis infec-
tion of the pig, and the authors suggest this is due to the avail-
ability of different nutritional sources for bacteria as a result of 
parasite damage to the intestinal epithelium.49

Overall, these data suggest that the microbiota composition 
in the duodenum can impact the survival of H. polygyrus within 
the murine host, and furthermore, H. polygyrus may be actively 
modifying the microbiota in order to promote its own survival. 
Following an earlier demonstration that establishment of another 
parasitic nematode, Trichuris muris, is dependent on the presence 
of colonic microbes,50 our study suggests the existence of a richer 
and more interactive relationship between the microbiota and 
helminths in the gastrointestinal tract of mammals.51

An additional important dimension to the host-commensal-
parasite trio is the genetic status of the host; in our studies we find 

that the modulatory effect of L. taiwanensis is most significant in 
the relatively resistant setting of the BALB/c mouse strain, rather 
than in the fully susceptible C57BL/6 mouse. This may reflect 
host genetic differences which regulate establishment of commen-
sal species, or a more subtle role of the microbiome in modifying 
rather than dictating host immune responsiveness to infection.

It is notable that variation in Lactobacillus abundance sig-
nificantly correlates with, but does not fully explain, variation 
in adult worm burdens (for example in Figure 2F). It is likely 
therefore that other commensal species may exert more subtle 
effects in restraining or promoting worm expulsion, and future 
work should explore this possibility. Indeed, identification of 
additional species that act in a similar manner to L. taiwanen-
sis would open the possibility of defining a cocktail of microbes 
with complementary immunomodulatory functions that exert a 
more robust effect on host immunity.52

The immunomodulatory capacities of helminth parasites, 
including H. polygyrus, have been well described,22 and helminth 
products are being tested for therapeutic use in autoimmune 
and allergic disease conditions.53,54 Intriguingly, many of the 
perceived immunoregulatory effects of helminth infection have 
also been reported to be benefits of certain species and strains 
of Lactobacillus.33,35-37,55,56 Mice that lack expression of MyD88, 
an adaptor protein which mediates signaling through Toll-like 
receptors and IL-1 family members57 are rendered more resistant 
to H. polygyrus infection,58 raising the possibility that functional 
MyD88 signaling is required for the recognition of specific 
microbiota components to maintain susceptibility to helminth 
infection.  It will be important therefore for future work to tease 
apart the respective influences of parasite and microbe on the 
immune system, and to track the impact of ongoing antibiotic 
and anthelmintic treatments in human populations on the intes-
tinal biota in the broadest sense.

Materials and Methods

Animals and parasites
BALB/c and C57BL/6 mice were bred in-house and housed in 

individually ventilated cages under SPF conditions. Littermates 
were randomly distributed between test groups for antibiotic 
treatment and L. taiwanensis-administration experiments. Mice 
were infected by oral gavage with 200 H. polygyrus bakeri third 
stage larvae (L3s) obtained from fecal cultures from H. poly-
gyrus-infected mice, in 200 μl of dH

2
O. To ensure microbiota 

population changes following infection were a result of parasite 
infection, and not due to the gavage procedure, control ‘naïve’ 
mice were orally gavaged with the same 200 μl dH

2
O in which 

L3s had been stored in, after L3s had been filtered out using a 
40 μm cell strainer (BD Biosciences). H. polygyrus egg counts 
were performed using a McMaster 2 cell counter (Hawksley). 
All animal studies were performed in accordance with UK 
Home Office guidelines.

Cell preparation and staining
MLN or PP were isolated and single cell suspensions prepared 

using a 70 μm cell strainer (BD Biosciences) in RPMI 1640 
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(Gibco) containing 10% FBS (HyClone), 2 mM L-glutamine, 
100 U/ml penicillin, and 100 μg/ml streptomycin. Small intes-
tinal LP cells were isolated 7 d post-H. polygyrus infection: first, 
PP were manually removed from the small intestine, which was 
longitudinally opened in ice cold RPMI 1640 (Gibco) con-
taining 3% FBS (HyClone), and intestinal contents removed. 
The remaining tissue was diced into RPMI 1640 (Gibco) con-
taining 2mM EDTA (Gibco) and 20 mM HEPES (Sigma-
Aldrich), and manually shaken for 90 s, followed by a wash 
step in the same media. Tissue was then stirred for 15 min at 
37 °C in RPMI 1640 (Gibco) containing 4% FBS (HyClone), 
0.5 mM EDTA (Gibco) and 14.5 μg/ml DL-Dithiothreitol 
(Sigma-Aldrich), followed by further manual shaking for 90 s 
and washing in RPMI 1640 (Gibco) containing 2mM EDTA 
(Gibco) and 20 mM HEPES (Sigma-Aldrich). Next, tissue 
was placed into RPMI 1640 (Gibco) containing 0.5 mg/ml 
Deoxyribosnuclease I from bovine pancreas (Sigma-Aldrich) 
and 0.1 mg/ml Liberase TL (Roche) and digested for 24 min 
at 37 °C with gentle stirring. The digest reaction was stopped 
by addition of 3% FBS (HyClone), and single cell suspensions 
were made by passing tissue through 40 μm cell strainers (BD 
Biosciences). 2 × 106 MLN, PP, or LP cells were washed in PBS, 
and stained with CD4 (Clone RM4–5; BD Pharmingen) for 20 
min at 4 °C. Cells were fixed for one hour in Fix/Perm (eBio-
science) and stained with Foxp3 (Clone FJK-16s; eBioscience) 
in Permeabilization buffer (eBioscience) for 20 min at 4 °C. 
Isotype matched controls were also used. Marker expression 
was measured on a LSRII f low cytometer and analyzed using 
FlowJo software (Tree Star).

Antigens and restimulation
For antigen-specific restimulation, HES was produced as 

described previously.57 MLN cells were isolated as described 
above, and 1 × 106 cells were plated in duplicate in 96-well flat 
bottom plates with or without 1 μg/ml HES or 1 μg/ml α-CD3 
(BD Pharmingen), at 37 °C with 5% CO

2
 for 72 h. Supernatants 

were then collected, and analyzed for IL-17A or IL-4 presence 
by ELISA using IL-17A or IL-4 capture and detection antibod-
ies (BD Pharmingen) or by a cytokine bead assay for IFN-γ, 
IL-4, IL-5, IL-10, IL-13, IL-17A (BD Biosciences) each by the 
manufacturer’s protocol. Cytokine levels were quantified against 
a standard curve created using recombinant cytokines.

Antibiotic treatment
0.5 g/L vancomycin (Univeristy of Edinburgh Pharmacy) 

was dissolved in the drinking water of autoclaved, UV-sterilized 
drinking water, and replaced weekly.

qPCR for bacterial abundance
DNA from the duodenum or feces was extracted using the 

QIAamp DNA Stool Mini Kit (Qiagen) by the manufacturer’s 
protocol, including the optional 95 °C incubation step, to lyse 
bacterial cell walls. DNA concentration was quantified using a 
Nanodrop 2000 (Thermo Scientific) and adjusted to 30 ng/μl. 
Four μl of DNA was mixed with 5 μl SYBR Green Ι (Roche), 0.4 
μl DEPC-treated H

2
O, and 0.2 μl each of 10 μM forward and 

reverse primers targeting the 16S rRNA or gyrB gene of all or spe-
cific bacterial groups. For detection of total bacteria, the 16S rRNA 
gene-specific 5′-3′ACTCCTACGG GAGGCAGCAG T and 5′-3′ 

ATTACCGCGG CTGCTGGC primers59 were used, for detection 
of Lactobacillus/Lactococcus species, the Lactobacillus/Lactococcus 
16S rRNA gene-specific 5′-3′ AGCAGTAGGG AATCTTCCA 
and 5′-3′ CACCGCTACA CATGGAG primers29 were used, for 
detection of Enterobacteriaceae species, the Enterobacteriaceae 
16S rRNA gene-specific 5′-3′ GTGCCAGCMG CCGCGGTAA 
and 5′-3′ GCCTCAAGGG CACAACCTCC AAG prim-
ers were used,60 for detection of Eubacterium/Clostridium spe-
cies, the Eubacterium/Clostridium 16S rRNA gene-specific 5′-3′ 
ACTCCTACGG GAGGCAGC and 5′-3′ GCTTCTTTAG 
TCAGGTACCG TCAT primers were used,61 and for detec-
tion of L. taiwanensis, the L. taiwanensis gyrB gene-specific 5′-3′ 
CAACGGATAT AAGACAACAC TCATGACCTT C and 5′-3′ 
GGTAGACCGC GCATTTTCAG AAACC primers were used. 
The reactions were run on a LightCycler 480 ΙΙ (Roche), with 45 
cycles of 95 °C for 10 s, 60 °C for 10 s, 72 °C for 10 s. Reactions 
were set up in triplicate and run alongside a serially-diluted pool of 
all samples to be analyzed, to create a standard curve of Ct value 
vs gene expression level in arbitrary units. Data for each sample are 
presented as the mean expression level in arbitrary units.

L. taiwanensis identification, culture, and administration
DNA from the duodenum of three highly H. polygyrus-infected 

BALB/c mice (each harboring <130 adult worms at 28 d post-
infection) was extracted using the QIAamp DNA Stool Mini Kit 
(Qiagen) as described above. Lactobacillus/Lactococcus specific 
primers as described above were used to amplify a Lactobacillus/
Lactococcus specific region of the 16S rRNA gene. The result-
ing amplicon was ligated into pGEM vectors (Promega) by the 
manufacturer’s protocol, and JM109 cells (Promega) were trans-
formed with the ligation reaction by the manufacturer’s protocol. 
Colonies were left to grow overnight on agar plates containing 50 
μg/ml ampicillin in a 37 °C incubator with 5% CO

2
. Individual 

colonies were collected and grown overnight in LB broth con-
taining 50 μg/ml ampicillin in a 37 °C shaking incubator, after 
which DNA was extracted using QIAprep Spin Miniprep Kits 
(Qiagen). DNA was sequenced in-house using pGEM-specific 
T7F (5′-3′: TAATACGACT CACTATAGGG) and SP6 (5′-
3′: ATTTAGGTGA CACTATAGAA T) primers. Resulting 
sequences were analyzed on MacVector and BLAST-searched 
against known microbial sequences.

L. taiwanensis strain BL263 was obtained from the 
Lactic Acid Bacteria and Probiotics Laboratory (Instituto de 
Agroquímica y Tecnología de los Alimentos, IATA-CSIC). 
Static overnight cultures were set up at 37 °C with 5% CO

2
 

in Lactobacillis MRS broth (Difco). Optical density (OD) of 
the culture was measured at 600 nm and the number of cfu 
determined using the following equation, based on the stan-
dard curve for a closely related species, L. casei, calculated by 
the Lactic Acid Bacteria and Probiotics Laboratory (Instituto 
de Agroquímica y Tecnología de los Alimentos, IATA-CSIC): 
cfu/ml = (8 × 108 × OD) – 6 × 107. Prior to administration in 
autoclaved, UV-sterilized drinking water, L. taiwanensis cells 
were washed twice in dH

2
O, and resuspended in drinking water 

at a concentration of 2 × 108 cfu/ml. L. taiwanensis-containing 
drinking water was replaced every 48 h throughout the course 
of the experiment.
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Statistical analysis
Data sets were first examined for normality. For compari-

sons between two groups, where data were parametrically 
distributed an unpaired t test was used, and if data were not 
parametrically distributed a Mann–Whitney test was used. 
A paired t test was used where indicated to examine differ-
ences between mean worm burdens in separate experiments, 
where each experiment measured worm burdens of control and 
treated mice in parallel. For correlation analyses on non para-
metric data, a Spearman correlation test was used. The correla-
tion co-efficient r value was added to graphs where correlations 
reached significance. NS on graphs denotes no statistical dif-
ferences; * indicates P =  ≤ 0.05; ** indicates P =  ≤ 0.01;  
*** indicates P =  ≤ 0.001.
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