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Comment: Lancaster Probabilities and
Gibbs Sampling
Gérard Letac

1. LANCASTER PROBABILITIES AS THE PROPER
FRAMEWORK

It is a pleasure to congratulate the authors for this
excellent, original and pedagogical paper. I read a pre-
liminary draft at the end of 2006 and I then mentioned
to the authors that their work should be set within the
framework of Lancaster probabilities, a remoted cor-
ner of the theory of probability, now described in their
Section 6.1. The reader is referred to Lancaster (1958,
1963, 1975) and the synthesis by Koudou (1995, 1996)
for more details.

Given probabilities μ(dx) and ν(dy) on spaces X
and Y, and given orthonormal bases p = (pn(x)) and
q = (qn(y)) of L2(μ) and L2(ν), a probability σ on
X×Y is said to be of the Lancaster type if either there
exists a sequence ρ = (ρn) in �2 such that

σ(dx, dy) =
[∑

n

ρnpn(x)qn(y)

]
μ(dx)ν(dy)

or σ is a weak limit of such probabilities. Alternatively,
one can say that the sequence of signed measures
[∑N

n=0 ρnpn(x)qn(y)]μ(dx)ν(dy) converges weakly
toward the probability σ when N → ∞ (here ρ does
not need to be in �2). An acceptable sequence ρ =
(ρn) is called a Lancaster sequence for the quadruple
(μ, ν,p, q). If p0 = q0 = 1 the margins of σ are (μ, ν).

Writing

σ(dx, dy) = μ(dx)K(x, dy) = ν(dy)L(y, dx)

the probability kernel of the “x-chain” considered in
the paper is

k(x, dx ′) =
∫
Y

K(x, dy)L(y, dx′)

=
[∑

n

ρ2
npn(x)pn(x

′)
]
μ(dx′)
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which clearly shows that pn is an eigenfunction for
the eigenvalue ρ2

n of the operator Tf (x) = ∫
X f (x′) ·

k(x, dx′).
I will not comment here on the multivariate case

X = R
k and Y = R

m. Everything which is known
about Lancaster probabilities and which is specific to
this case is mentioned in Section 7 of the paper. To
my knowledge, the Lancaster probabilities on the torus
(R/Z)2 associated to the trigonometric orthonormal
polynomials have never been considered.

For the present time, the richest case is obviously
the one where X = Y = R and where p = (pn) and
q = (qn) are the orthonormal polynomials obtained by
the Schmidt orthonormalization process in L2(μ) and
L2(ν) applied to the sequences (xn) and (yn), assum-
ing furthermore that

∫
ea|x|μ(dx) and

∫
ea|y|ν(dy) are

finite for some a > 0. In the sequel, the term “Lan-
caster probabilities” will refer only to this real case.
The following should be specified clearly:

Saying that conditions H1, H2 and H3 of
Section 3 are all fulfilled is equivalent to
saying that P(dx, dθ) is a Lancaster proba-
bility.

An elegant example can be found in Buja (1990, page
1049) with

σ(dx, dy) = a + b

B(a, b)
xa−1yb−11A(x, y) dx dy

where a, b > 0 and A = {(x, y); 0 < x,y; x + y <

1}. The margins are μ(dx) = βa,b+1(dx) and ν(dy) =
βb,a+1(dy) and the Lancaster sequence is

ρn = (−1)n
√

ab√
(a + n)(b + n)

.

The present paper on discussion is based on three ob-
servations. The first one is crucial: the two-components
Gibbs sampler is very easy to perform with a Lancaster
probability. This is the statement in Theorem 3.1. Parts
a and b are well known but part c is elegant and sur-
prizing.
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2. NATURAL EXPONENTIAL FAMILIES

In order to explain the other two observations, let us
introduce some notation: a (not necessarily bounded)
positive measure μ on R is said to be in M(R) if it is
not concentrated on one point and if its Laplace trans-
form

Lμ(θ) = ekμ(θ) =
∫ ∞
−∞

eθxμ(dx)

is such that the interior �(μ) of the interval D(μ) =
{θ ∈ R; Lμ(θ) < ∞} is not empty. To such a μ ∈
M(R) one associates the one-dimensional natural ex-
ponential family (NEF):

F = F(μ)

= {
P(μ, θ)(dx) = eθx−kμ(θ)μ(dx); θ ∈ �(μ)

}
.

Since θ �→ kμ(θ) is strictly convex on �(μ) the map
θ �→ m = k′(θ) = ∫ ∞

−∞ xP (μ, θ)(dx) is injective and
its image MF = k′

μ(�(μ)) is an open interval called
the domain of the means of F. One denotes by m �→
θ = ψμ(m) the inverse map from MF to �(μ). Fi-
nally we say F or μ is steep if MF is the interior of
the convex support of μ. For instance D(μ) = �(μ)

(in this case F is said to be regular) implies that F is
steep. The converse is not true. Diaconis and Ylvisaker
(1979) show that if F is regular, if x0 ∈ MF and if
λ > 0 then there exists a constant C(x0, λ) such that

πx0,λ(dθ) = C(x0, λ)eλ(θx0−kμ(θ))1�(μ)(θ) dθ

is a probability. We call {πx0,λ; x0 ∈ MF , λ > 0} the
Diaconis–Ylvisaker family associated to the NEF F.

We now reparameterize it by the mean. More specifi-
cally, denote by

νx0,λ(dm) = C(x0, λ) expλ
(
x0ψμ(m) − kμ(ψμ(m))

)
· ψ ′

μ(m)1MF
(m)dm

the image of πx0,λ(dθ) by θ �→ m = k′
μ(θ). Finally

consider the distribution on R
2 defined by

σ(dx, dm) = P(μ,ψμ(m))(dx)νx0,λ(dm).

Note that the marginal distribution μ1(dx) of σ(dx,

dm) does not belong to F except in the normal case.
(Proving this is an amusing exercise. It even holds
when the reference measure dθ in the Diaconis–
Ylvisaker family is replaced by any other positive mea-
sure.1) The second observation of the paper, and a

1The family G obtained in this way is also a conjugate family to
F , which means that the a posteriori distribution π(dθ |x) is in G

when the a priori distribution π is in G. For this reason we do speak
of the Diaconis–Ylvisaker family instead of the conjugate family of
the paper, even if the later has the characteristic property mentioned
in Section 2.3.2.

quite original one, is that σ(dx, dm) is a Lancaster
probability if F is either binomial (Section 4.1), or
Poisson (Section 4.2), or Gaussian (Section 4.3). An
element of the Diaconis–Ylvisaker family associated
with the binomial case B(θ,n) is the beta distribution
ν1(dθ) = βa,b(dθ) and the marginal distribution of X

is the so-called hypergeometric distribution

μ1(dx) =
n∑

k=0

(
n

k

)
(a)k(b)n−k

(a + b)n
δk(dx).(1)

The construction of a Lancaster probability with these
margins (μ1, ν1) have never been done before. Here the
Lancaster sequence is ρj = n!/(a +b+n)j (n− j)! for
0 ≤ j ≤ n and ρj = 0 if n < j. The Lancaster probabil-
ities obtained for F = Poisson and F = Gaussian are
familiar and are mentioned in Koudou (1996, Section
3.3) and studied in Koudou (1995).

My guess is that these 3 types of NEF are the only
ones with such a property: this is obviously false for the
three other quadratic NEF (Negative binomial, gamma,
hyperbolic), for which νx0,λ(dm) has very few mo-
ments. The reader can check for example that the same
is true for the NEF generated by a stable law of para-
meter α ∈ (0,1) concentrated on (0,∞) and defined
by kμ(θ) = −c(−θ)α : recall that α = 1/2 gives the
celebrated Inverse Gaussian distributions (the case α ∈
[1,2) has not to be investigated since it is not steep).

In order to explain the content of the third observa-
tion of the paper, we introduce the Jorgensen set �(μ)

of μ ∈ M(R). It is the set of λ ≥ 0 such that for λ > 0
there exists μλ ∈ M(R) such that �(μλ) = �(μ) and
such that Lμλ = (Lμ)λ. We impose 0 ∈ �(μ). For in-
stance �(μ) = [0,∞) if and only if F(μ) is made
of infinitely divisible distributions. On the other hand
�(μ) is the set of nonnegative integers if μ = δ0 + δ1,
namely if F is the Bernoulli family. In general �(μ)

can be a quite complicated additive semigroup: see
Letac, Malouche and Maurer (2002) for its description
when μ is the convolution of a negative binomial dis-
tribution with a Bernoulli distribution. Now consider
μ ∈ M(R) and λ and η in �(μ). Let

(X,Y ) ∼ P(μλ, θ) ⊗ P(μη, θ).

Write S = X + Y ∼ P(μλ+η, θ) (the distribution of
Y knowing S does not depend on θ ) and denote by
σ(ds, dy) the joint distribution of (S,Y ). The authors
observe that, when F happens to be a quadratic NEF,
σ is a Lancaster probability: this is the essence of Sec-
tion 5. However, this is a particular case of the follow-
ing classical result mentioned in Eagleson (1964): sup-
pose that λ,η, ξ are in �(μ) and let

(X,Y,Z) ∼ P(μλ, θ) ⊗ P(μη, θ) ⊗ P(μξ , θ).
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Denote by σ(ds, dt) the joint distribution of (S, T ) =
(X + Y,Y + Z). Then σ is a Lancaster probability if
F is a quadratic NEF. More specifically if (p

(λ)
n ) is the

sequence of the orthonormal polynomials for P(μλ, θ)

and if 1/cn(λ) is the positive square root of the coef-
ficient of xn in p

(λ)
n the corresponding Lancaster se-

quence is

ρn = cn(η)√
cn(λ + η)cn(η + ξ)

.(2)

Thus Section 5 is based on the particular case λ =
n1, η = n2, ξ = 0 of this result.

3. FINDING ALL LANCASTER FAMILIES WITH
GIVEN MARGINS

Given a pair of probabilities (μ, ν) on R such that∫
ea|x|μ(dx) and

∫
ea|y|ν(dy) are finite for some a >

0, consider the set L(μ,ν) of Lancaster probabilities
σ with margins (μ, ν) and the set S(μ, ν) of corre-
sponding Lancaster sequences ρ = (ρn)

∞
n=0. They are

isomorphic compact convex sets which are completely
known if we know their extreme points. We denote by
I (μ) the smallest closed interval I such that μ(I) = 1.

We consider several cases:

Case A. I (μ) is bounded, I (ν) is unbounded.
Case B. I (μ) = R and I (ν) is a half-line.
Case C. I (μ) = I (ν) = R.

Case D. I (μ) and I (ν) are half-lines.
Case E. I (μ) and I (ν) are bounded.

Cases A and B are easy: the only Lancaster proba-
bility is the product measure. Denote by an > 0 and
by bn > 0 the coefficients of xn in the orthonor-
mal polynomials pn and qn. Case C is quite interest-
ing: from a remarkable result of Tyan and Thomas
(1975), extending an idea of Sarmanov and Bratoeva
(1967), which says that if γ = lim inf(a2n/b2n)

1/2n

and if ρ ∈ S(μ, ν), there exists a probability α(dt)

on [−γ, γ ] such that anρn/bn = ∫ γ
−γ tnα(dt). Simi-

larly in the case D, assuming without loss of gener-
ality that I (μ) and I (ν) are positive half-lines and if
γ = lim inf(an/bn)

1/n then there exists a probability
α(dt) on [0, γ ] such that anρn/bn = ∫ γ

0 tnα(dt). The
results of Tyan and Thomas (1975) can also essentially
be found again in Tyan, Derin and Thomas (1976) and
have been rediscovered by Christian Berg, quoted in Is-
mail (2005, page 114) who does not seem to be aware
of this previous work.

We shall speak about case E later on. Note that for
μ = ν the results by Tyan and Thomas are quite excit-
ing since they mean that a Lancaster sequence must be

the moment sequence of a probability either on [−1,1]
(case C) or on [0,1] (case D). If we are fortunate
enough to prove that ρn = tn is a Lancaster sequence
for all t ∈ [−1,1] (case C) or all t ∈ [0,1], by the theo-
rems of Tyan and Thomas, we have a complete descrip-
tion of the Lancaster probabilities L(μ,μ) since they
are parameterized by the probabilities α on [−1,1] or
on [0,1]. Interestingly enough, this is known to happen
only for 4 types of μ: Gaussian, Poisson, negative bino-
mial and gamma. The corresponding Lancaster prob-
abilities (see Bar-Lev et al., 1994) are the only ones
which belong to a two-dimensional natural exponential
family with variance function of the form[

a(m1) f (m1,m2)

f (m1,m2) a(m2)

]
.

More specifically one can conjecture the following:

• If I (μ) = R and if (tn) is in S(μ,μ) for all t ∈
[−1,1] then μ is Gaussian.

• If I (μ) = [0,∞) and if (tn) is in S(μ,μ) for all t ∈
[0,1] then μ is either gamma, or Poisson, or negative
binomial.

In the gamma case, it is interesting to consider
the classical two-dimensional distribution of Kibble
(1941) and Moran (1967) with correlation r ∈ [0,1]
and Jorgensen parameter q . It can be defined by its
Laplace transform∫ ∞

0

∫ ∞
0

e−sx−tyσr(dx, dy)

= (
1 + s + t + (1 − r)st

)−q
.

As observed by D’jachenko (1962), this probability is
actually a Lancaster probability with ρn = rn, and thus
an extremal one (the last three references are taken
from Johnson and Kotz, 1972, pages 479–482). This
means that in general σ is a Lancaster probability for
the gamma margins μ = ν = γq if and only if it is
a mixing of Kibble and Moran distributions, which
means that there exists a probability distribution α(dr)

on [0,1] such that∫ ∞
0

∫ ∞
0

e−sx−tyσ (dx, dy)

=
∫ 1

0

(
1 + s + t + (1 − r)st

)−q
α(dr).

Take for instance α(dr) = βη,q−η(dr) to get back (2)
for the gamma case and λ = ξ = q − η.

For the cases C and D and for ν not an affine transfor-
mation of μ, there is no known example where the set
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of the extreme points of L(μ,ν) can be completely de-
scribed. Koudou (1995, 1996) has shown that ρn = tn

is a Lancaster sequence:

• for μ = Pa and ν = Pb (Pa means Poisson distribu-
tion with mean a) for 0 ≤ t ≤ (a/b)1/2 if a ≤ b;

• for μ = NBa,λ and ν = NBa,λ [the negative bino-
mial distribution NBa,λ is (1 − a)λ

∑∞
n=0

(λ)n
n! an ·

δn(dx)] for 0 ≤ t ≤ (a/b)1/2 if a ≤ b;
• for μ = NBa,λ and ν = γλ for 0 ≤ t ≤ a1/2.

In these three cases, one can conjecture that one has
obtained all the extreme points of S(μ, ν).

Consider a hyperbolic distribution μq as described in
Section 2.4 and simply defined by Lμq (θ) = (cos θ)−q

with q > 0 and �(μq) = (−π
2 , π

2 ). Lai and Vere-Jones
(1975) have proved that (tn) is never in S(μq,μq) (an
other proof is in Bar-Lev et al., 1994). Formula (2) ap-
plies here with cn(q) = (q)n

n! . In (2) we take 0 ≤ η ≤ q

and λ = ξ = q − η to show that the sequence

ρn = cn(η)

cn(q)
= 1

B(η, q − η)

∫ 1

0
tntη−1(1 − t)q−η−1 dt

is an element of S(μq,μq). This illustrates the re-
sults of Tyan and Thomas with α(dt) = βη,q−η(dt).

One can conjecture (as done by Lai and Vere-Jones
for q = 1) that such a Lancaster sequence indexed by
η ∈ [0, q] is an extreme point of S(μq,μq), and that all
extreme points are of this type.

4. THE CASE WHERE μ AND ν HAVE BOUNDED
SUPPORT

This is the case E above. For the variety of results al-
ready obtained in the literature, this is the richest case.
For future research, it is the most challenging. If μ = ν

suppose that there exists x0 such that |pn(x)| ≤ pn(x0)

μ almost surely, and consider

K(x,y, z) =
∞∑

n=0

1

pn(x0)
pn(x)pn(y)pn(z).(3)

Koudou (1995) has shown that K ≥ 0 for almost all
(x, y, z) in the μ sense implies that the extreme points
of S(μ,μ) are defined by ρn = pn(x)/pn(x0) when x

describes the support of μ. This extends a remarkable
paper by Eagleson (1969) devoted to the case where μ

is discrete with finite support, where it is shown in par-
ticular that K ≥ 0 when μ is a binomial distribution.
As mentioned in the paper, the analysis by Koudou
(1996) of Gasper’s (1971) delicate results shows that
K ≥ 0 when μ = βa,b is a beta distribution such that
a, b ≥ 1/2 [note that the case min(a, b) < 1/2 is open].

The particular case a = b ≥ 1/2 deserves a special
mention. Using the transformation x �→ 2x−1, we first
move the distributions from [0,1] to [−1,1] and we
introduce

�(x,y, z) = 1 − x2 − y2 − z2 + 2xyz.

For −1 < z < 1 we consider the plane domain Uz =
{(x, y); � > 0}. This domain is limited by an ellipse
Ez tangent to the sides of the unit square [−1,1]2.

Denote μa(dx) = 21−2a

B(a,a)
(1−x2)a−11(−1,1)(x) dx. The

number x0 involved in the definition of K in (3) is
1, and the polynomials pn are the Jacobi polynomials
with suitable parameters and normalized such that they
become orthonormal with respect to μα. With these no-
tation, K is zero outside of Uz and is equal to

Ka(x, y, z)

= C(α)[(1 − x2)(1 − y2)(1 − z2)]1−a�a−3/2

in Uz. The important point is the following. For z ∈
(−1,1) consider the extremal Lancaster probabilities
σz(dx, dy) = Ka(x, y, z)μa(dx)μa(dy). These Lan-
caster probabilities σz are the only ones (together with
the centered nonsingular Gaussian distributions with
covariance of the type

[
a b
b a

]
) to be elliptically con-

toured. More specifically, let E = R
2 have the Euclid-

ean structure such that Uz is the unit disk. Saying that
σz is elliptically contoured means that σz is invariant
by the orthogonal group O(E) of this Euclidean struc-
ture. This characterization is the consequence of an
elegant result of McGraw and Wagner (1968). While
most of the “results” about elliptically contoured dis-
tributions in R

d are trivially reduced to considerations
about rotational invariant distributions, this is not the
case here. The reason is that the canonical basis of R

2

is structurally important for Lancaster probabilities. In
the other hand this canonical basis is not orthonormal
for the Euclidean structure associated with a given el-
liptically contoured distribution and this makes attrac-
tive the McGraw and Wagner result.

Koudou (1995) shows that we have K ≥ 0 when

μ(dx) = q + 1

2π

√
p2 − x2

1 − x2 1(−p,p)(x) dx

where q > 0 and p = 2
√

q/(1 + q). When q is an
integer this strange probability is the Plancherel mea-
sure of the Gelfand pair associated to the homo-
geneous tree where every vertex has q + 1 neigh-
bors. The corresponding polynomials are called the
Cartier–Dunau polynomials in the literature (see Ar-
naud, 1994). A general theory of the probabilities μ
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with bounded support such that the function K of (3)
is positive could be a subject of research. As an exam-
ple, I do not know whether K ≥ 0 or not when μ is the
hypergeometric distribution (1) considered in the pa-
per, where the orthonormal polynomials are the Hahn
polynomials.

When μ and ν are two probabilities with bounded
support such that ν is not an affine transform of μ,
the search of extreme points of the Lancaster mea-
sures does not seem to have been done for any exam-
ple. Suppose that we have found some ρ ∈ S(μ, ν).

A good way to create other elements of S(μ, ν) is to
pick a ∈ S(μ,μ) and b ∈ S(ν, ν). It is easy to see that
(anρnbn)

∞
n=0 is also in S(μ, ν). Applying this remark

to the interesting pair (μ1, ν1) defined by (1) and to the
new Lancaster sequence ρj = n!/(a + b + n)j (n − j)!
discovered by the authors would lead to a better under-
standing of S(μ1, ν1).

5. CONCLUSION

We referred to several bright papers by Eagleson,
Koudou, McGraw and Wagner or Tyan and Thomas,
and to a genuine masterpiece by Gasper. Many stim-
ulating questions and conjectures remain, regarding in
particular special functions and group theory through
the function K . The present paper shows us how unex-
pectedly these bivariate probabilities can be important
for very practical questions: it will be in turn a new
landmark of the theory of Lancaster probabilities.
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