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Cercignani’s second-order slip model has been neglected over the years, perhaps due to Sreekanth’s
claim that it cannot fit his experimental data. In this paper we show that Sreekanth’s claim was based
on an incorrect interpretation of this model. We also show that Cercignani’s second-order slip
model, when modified and used appropriately, is in good agreement with solutions of the Boltzmann
equation for a hard-sphere gas for a wide range of rarefaction. Given its simplicity, we expect this
model to be a valuable tool for describing isothermal micro- and nanoscale flows to the extent that
the hard-sphere approximation is appropriate. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1587155#
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Accurate second-order slip coefficients are highly de
able because they allow the solution of flow problems us
the continuum description that is significantly more efficie
compared to molecular-based approaches. Even though
validity of Navier–Stokes is suspect beyond Kn*0.1, in
flows with high symmetry a second-order coefficient may
expected to give reasonable results for a few quantities
engineering interest such as the mean flow velocity.1 For this
reason significant effort has been expended in developin1–4

and evaluating4–6 second-order slip models.
One of the first second-order slip models to appear w

the one by Cercignani.1 He considers a steady flow alligne
with the x direction and parallel to a stationary straight w
whose normal pointing into the fluid is aligned with they
direction. Using the BGK approximation he obtains

uuwall51.016u
]u

]y U
wall

20.7667u2
]2u

]y2U
wall

, ~1!

whereu5mA2RT/P. Hereu is the gas velocity,m is the gas
viscosity,R is the gas constant,T is the temperature,P is the
pressure anduwall denotes evaluation at the wall. This resu
assumes that no gradients exist in directions other than
normal to the wall, that is,]u/]z5]u/]x50. The same re-
sult was obtained by Sone and Onishi.3

This result has been overlooked over the years. It
pears that one of the reasons for this is Sreekanth’s pa5

which claims that this model cannot fit his experimental da
In this paper we wish to point out that in his comparis
Sreekanth misinterpreted the above model and overloo
Cercignani’s suggestion to modify it such that it appli
to the Maxwell gas model which is more appropriate
describing isothermal flows of real gases.1 Below, we show
that, when modified appropriately, Cercignani’s slip mod
is in excellent agreement with solutions of the lineariz
Boltzmann equation for hard spheres, and DSMC simu
tions up to Kn'0.4. Agreement with experimental da
is always subject to factors such as surface accommoda
and in pressure-driven flows, fluid acceleration due
compressibility. The neglect of the fluid acceleration a
2351070-6631/2003/15(8)/2352/3/$20.00
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its effect on the flow profile and slip~recall that Cercignani’s
result requires]u/]x50) is typically justified in internal
flows through the use of the locally fully developed appro
mation. This is known to be a reasonable approximat
for a number of flows of practical interest.10 It is also gener-
ally accepted that the hard-sphere model is a reason
approximation to real-gas behavior for isothermal flow
For comparisons between solutions of the linearized Bo
mann equation for hard spheres and experimental data
Refs. 4, 8.

Cercignani’s correction amounts to multiplying th
second-order slip coefficient by 2/3. The slip model for
Maxwell gas therefore becomes

uuwall51.016u
]u

]y U
wall

20.511u2
]2u

]y2U
wall

. ~2!

Given that the slip coefficients are fairly insensitive to t
details of the intermolecular force law,7 we can use a
viscosity-based mean free path,

l5
m

P
ApRT

2
, ~3!

to obtain the followingprediction for the slip in a hard-
sphere gas:

uuwall51.1466l
]u

]y U
wall

20.647l2
]2u

]y2U
wall

. ~4!

Accurate numerical solutions of the Boltzmann equation
fact show9 that for a hard-sphere gas the first-order slip c
efficient isa51.11. This verifies that the slip coefficients a
only mildly dependent on the interaction model. Given th
information, we can improve the above prediction@Eq. ~4!#
by substituting the first-order term with the known value. W
also propose to scale the second-order term by the squa
1.11/1.1466 since this ratio is representative of the differe
in slip behavior between the Maxwell and hard-sphere m
ecules.~Rescaling the second-order term has a very sm
effect; the difference in slip velocity at Kn50.4 is of the
order of 1%.! By applying those changes we obtain
2 © 2003 American Institute of Physics
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FIG. 1. Nondimensional flow rate as a function of th
Knudsen number for fully developed flow. The soli

line denotesQ̄ as determined by a solution of the lin
earized Boltzmann equation for hard-sphere gases~Ref.
8!, the dash–dotted line denotes Eq.~7!, and the dashed
line denotes a first-order slip model. The stars den
DSMC simulation results.
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uuwall5al
]u

]y U
wall

2dl2
] u

]y2U
wall

, ~5!

whered'0.61.
As always, the slip-flow description is expected to

valid in the Navier–Stokes part of the flow, that is, aw
from the walls. The comparison of flow profiles is therefo
not very meaningful for Kn.0.1, since the Knudsen laye
covers a large part of the domain. As a result, attention
usually paid to the ability of the model to describe the flo
rate through a duct. To do this, the contribution of the Knu
sen layers to the flow rate, which is of the same order as
second-order slip, needs to be taken into account.

For flow in a two-dimensional channel (]u/]x5]u/]z
50), the flow rateQ in the BGK approximation is given by
Downloaded 17 Nov 2011 to 18.80.3.157. Redistribution subject to AIP lic
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Q5E
A
Fu1j

] u

]y2GdA, ~6!

where the second term is the contribution of the Knuds
layer. Here A is the duct cross sectional area andj
50.4665RTm2/P2. According to Cercignani1 the Knudsen
layer contribution to the flow rate is largely independent
the molecular model and thereforej is not subject to the
same correction as the second-order slip coefficient~multi-
plication by 2/3!. We may thus assume that for a hard-sph
gasj.0.4665RTm2/P250.296l2.

Using the above, we find that the mean velocity,ū, for a
fully developed (]u/]x50) pressure-driven flow of a hard
sphere gas in a two-dimensional channel (]u/]z50) is
given by
e
d
s

ote
FIG. 2. The skin friction coefficient as a function of th
Knudsen number for fully developed flow. The soli
line denotes Eq.~10! and the dash–dotted line denote
the second-order slip result@Eq. ~8!#. The dashed line
denotes a first-order slip model and the stars den
DSMC simulation results.
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ū52
H2

2m

dP

dx S 1

6
1a Kn12b Kn2D . ~7!

The skin friction coefficient is given by

Cf5
tw

1/2rū2 5
24

~116a Kn112b Kn2!Re
, ~8!

where tw is the wall shear stress and Re5rū2H/m is the
Reynolds number. Hereb50.6120.296'0.31 is the second
order slip coefficient which includes the contribution of t
Knudsen layer. It is interesting to note that Sreekanth fou
b50.14 to fit his experimental data best. However, Sreeka
was using a first-order slip coefficient of 1.1466; the diffe
ence between his best-fit values and the model propo
above is thus small and within the acceptable limits of
perimental and modeling error.

These two results are compared below to hard-sph
DSMC simulations for ReH/L,O(1) and solutions of the
linearized Boltzmann equation for hard spheres.8 The results
for the flow rate~Fig. 1! are presented in terms of the no
dimensional flow rate per unit depthQ̄5Q̄(Kn),

Q̄5
ū

2
1

P

dP

dx
ART

2
H

, ~9!

as a function of the Knudsen number. The skin-friction c
efficient for arbitrary Knudsen numbers in fully develop
flow can be written10 in terms ofQ̄ as

Cf5
32

5Ap Re KnQ̄
. ~10!

A comparison between the second-order model, this re
and DSMC simulations is given in Fig. 2. Note that the w
shear stress in our DSMC simulations was evaluated f
direct momentum exchange with the wall and not from
pressure gradient.

Both figures show that the agreement for Kn&0.4 is ex-
cellent. Similarly to applications of practical interest, t
flow in our DSMC simulations was caused by a press
gradient applied at the ends of the channel, leading to s
fluid acceleration due to the axial pressure drop. Despite
the locally fully developed approximation appears to be r
sonable for ReH/L,O(1).

Equation~5! performs reasonably well by leading to
flowfield which satisfactorily captures the flow profile insid
the channel although, as explained above, this compariso
less meaningful11 for Kn.0.1. The maximum discrepancy i
the velocity profile away from the walls for Kn&0.3 is of the
order of 5% and typically less. Given its great simplicity~the
alternatives are molecular simulation or numerical solut
Downloaded 17 Nov 2011 to 18.80.3.157. Redistribution subject to AIP lic
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of the Boltzmann equation! and the relatively good predic
tive power of the hard-sphere model in isothermal flows, t
model should be of great use, and in particular in situatio
where the flow rate is of interest.12–14

For flows with velocity gradients in the plane normal
the flow direction~only ]u/]x50), Cercignani finds that the
only modification required within the BGK approximation
the replacement of]2u/]y2 with ]2u/]y21]2u/]z2 in Eqs.
~1! and ~6!. @It follows that Eqs.~2!, ~4! and ~5! will be
similarly modified.# Further work is required to ensure th
this generalization can be reliably used for other interact
models.15
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