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Hall and Mitchell described a family of heat kernels (or equivalently coherent states)
and an associated resolution of the identity for a quantum particle whose classical
configuration space is the d-dimensional sphere Sd J. Math. Phys. 43(3), 1211 (2002).
These heat kernels were chosen intelligently but in the case of d = 2, “one” of the
formulas for the heat kernel must be corrected. C© 2011 American Institute of Physics.
[doi:10.1063/1.3626942]

Hall and Mitchell1, 2 (hereafter referenced as HM) have presented the heat kernels for a move-
ment quantum particle in which its phase space is cotangent bundle T ∗(Sd ). These heat kernels are
connected to the coherent states that satisfy the resolution of the identity. All of these heat kernels
depend on two primary heat kernels (d = 1, 2). It should be pointed out that the first formula of
HM (p. 1223) is correct, but formula (42) on p. 1224 is incorrect. To obtain the correct form, we
use the heat kernel on the two-sphere “S2” that was presented by Camporesi (see Eq. (4.39) of
Ref. 3), i.e.,

KS2 (θ ′, τ ) = 1

4π

∞∑
l=0

(2l + 1)e− τ
2 l(l+1) Pl(cos θ ′), (1)

where 0 < θ ′ < π . By analytic continuation, we can write the heat kernel on the complex sphere S2
C

as follows:

KS2
C

(θ, τ ) = ρ2
τ (a, x) = 1

4π

∞∑
l=0

(2l + 1)e− τ
2 l(l+1) Pl (cos θ ), (2)

where θ is a complex with 0 < Re(θ ) < π . In the other words, in Eq. (42) of HM paper, the factor
of

√
2l + 1 should actually be (2l + 1) and there should be a normalization factor of 1

4π
. The reader

can directly obtain this relation by the Poisson summation formula (see Appendix).

APPENDIX: THE CALCULATION OF HEAT KERNEL ON THE COMPLEX SPHERE

To obtain the correct form we start with the given equation on p. 1223 of Ref. 1:

ρ2
τ (−→a ,−→x ) = e

τ
8

(2πτ )−1

√
πτ

∫ π

θ

1√
cos θ − cos φ

∞∑
n=−∞

(−1)n(φ − 2πn)e
−

(φ − 2πn)2

2τ dφ,

where 0 < Re(θ ) < π . We can rewrite this equation by

ρ2
τ (−→a ,−→x ) = −e

τ
8

(2π )−1

√
πτ

∫ π

θ

1√
cos θ − cos φ

d

dφ

( ∞∑
n=−∞

e−inπ e
−

(φ − 2πn)2

2τ
)
dφ.
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By using the Poisson summation formula,

+∞∑
n=−∞

f (n) =
+∞∑

n=−∞
f̂ (n),

where

f̂ (n) =
∫ ∞

−∞
f (y)e2π inydy = e−inπ e

−
(φ − 2πn)2

2τ ,

we obtain

ρ2
τ (−→a ,−→x ) = 1

4π

∞∑
n=0

(2n + 1)e− τ
2 n(n+1)

(√
2

π

∫ π

θ

sin φ(n + 1
2 )√

cos θ − cos φ
dφ

)
.

The Legendre integral representation (see Refs. 4 or 5) leads us to rewrite this heat kernel as follows:

ρ2
τ (a, x) = 1

4π

∞∑
n=0

(2n + 1)e− τ
2 n(n+1) Pn(cos θ ).
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