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Comment on "Generalized Hall-effect measurement geometries and 
limitations of van der Pauw-type Hall-effect measurements" 
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The general validity of the van der Pauw-Hall measurement technique for arbitrarily shaped 
samples has recently been disputed, and the claim has been made that the samples must have 
mirror symmetry. Here, it is shown that the analysis leading to the mirror symmetry requirement 
is more restrictive than necessary and that arbitrary shapes can be used. It is also shown that even 
with nonsymmetric shapes, magnetoresistance effects are eliminated by reversing the magnetic 
field and averaging the data. 

PACS numbers: n.20.My, 07.55. + x 

The general validity of the van der Pauw-Hall measure
ment technique for arbitrarily shaped samples I has recently 
been disputed by Boerger, Kramer, and Partain (BKP).2 In 
their paper they claim that the van der Pauw theory (1) re
quires alternating voltage and current contacts, although 
these were not specified by van der Pauw, (2) does not consid
er and eliminate the effects of magnetoresistance on the mea
sured Hall voltage, and (3) is not valid except in cases where 
the sample has mirror symmetry about a line connecting the 
current contacts. 

Because of the importance and wide use of the van der 
Pauw technique, it is necessary to elaborate on the first two 
contentions and refute the third. First, it is true that alternat
ing voltage and current contacts are required for the Hall 
voltage measurement. However, this was implied by van der 
Pauw's notation in his paper I when he refers to measuring 
LlRBD•AC on a sample with successive contactsA,B, C, andD. 
Nonalternating contacts (R AB•CD and RBC•DA ) were specified 
for measuring resistivity. 

Second, as BKP show, the van der Pauw treatment I 
does not explicitly take into account magnetoresistance ef
fects. As shown below, however, for crystals that exhibit 
isotropic conduction in the plane of the sample, the standard 
technique of averaging the measured values for the two mag
netic field directions eliminates this effect even with arbi
trary sample shapes. 

To see that mirror symmetry is not required, one only 
needs to use a more general version of the analysis presented 
by BKP. That analysis is based on finding the voltage that 
appears across the voltage contacts by integrating the elec
tric field along some path P (c,d) between the voltage con
tacts. Using J = O'E with 

( 

O-xx 

0'= -~Xy 
o 

(1 ) 

(2a) 

(2b) 

where J is the current density, E is the electric field, and 0- is 
the conductivity tensor. The symmetry implications of this 
tensor are discussed at the end of this correspondence. Note 
the negative sign in Eq. (2b), which differs from Eq. (7) in the 
paper by BKP. The voltage difference between the contacts 
is then 

Vm = - f E·dl = - f Ex (x,y) dx 

-f Ey(x,y) dy, (3) 

where dl lies along the path, and the other notation follows 
BKP. Using the symmetry relations for reversal of the mag
netic field strength B 

o-xx( - B) = o-xx(B), 

o-Xy( - B) = - o-xy(B), 

it can be seen that the Hall voltage V H is 

V H = ! [ V m (B) - V m ( - B )] 

(4a) 

(4b) 

= - ( 2o-
xy 2) (id 

Jx(X,y) dy - id 

Jy(X,y) dX)' 
o-xx + o-xy C C (5) 

BKP now require 

f Jy(x,y) dx = 0 (6) 

and identify the total current I 

1= W id 

Jx (x,y) dy, (7) 

where w is the sample thickness, so that the Hall coefficient 
is 

wVH o-xy 
RH = - --=- (8) 

BI B o-;x + o-;y 

However, there is no need to use Eq. (6) to arrive at this 
result because, for thin slabs, 

1= w [ J.fj dl, (9) 

where fj is a unit vector in the plane of the sample and per
pendicular to the path. Thus, by using 

n = I Xz = lyx -lxy, (10) 
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where A indicates unit vectors. one gets 

1= w ([ Jx(x,y) dy - [ Jy(x,y) dX), (11) 

and substitution into Eq. (5) yields Eq. (8). Elimination ofEq. 
(6) removes the requirement of mirror symmetry and con
firms the van der Pauw formulation. Note also that the field 
averaging used in Eq. (5) eliminated the effect of ohmic and 
magnetoresistances, even for arbitrary sample shapes. 

These results are expected, of course, because of the 
arguments given by van der Pauw in the section of his paper I 
that discusses the Hall voltage across arbitrary, thin, flat 
shapes. The arguments given in this comment ar~ ~n alterna
tive proof for cases where the sample conductIvIty can be 
described by the tensor in Eq. (1). Such a description requires 
only that conductivity be isotropic within the plane of ~he 
thin film or wafer. Since the nonlinear current paths WhICh 
occur in the van der Pauw configuration cause an averaging 
effect over a range of directions, the van der Pauw method 
cannot be used to determine the direction dependent mobili
ties of a sample with nonisotropic conduction. 

The largest errors that BKP observed when using the 
van der Pauw configuration occurred when nonalternating 
contacts were used. As mentioned, these are not consistent 

5351 J. Appl. Phys., Vol. 53, No.7, July 1982 

with the van der Pauw method for measuring mobility, but 
rather are used for measuring resistivity. In fact, since the 
net current which flows across any path connecting adjacent 
voltage contacts is zero, Eqs. (5) and (11) show that the field 
averaged V H equals zero for nonalternating contacts. The 
lesser errors can be ascribed to contact size effects and to 
their sample shape, rather than to lack of mirror symmetry. 
The square cross-section bars that they used do not satisfy 
the van der Pauw requirement that the thickness of the sam
ple (in the direction of the magnetic field) be much less than 
the transverse dimensions. As a result, the current density 
would not be uniform along the magnetic field direction, and 
Eq. (7) or Eq. (9) cannot be used. 

It has been shown that the analysis of Boerger, Kramer, 
and Partain was more restrictive than necessary and that, for 
thin planar samples with isotropic conduction in the plane, 
the use of arbitrarily shaped van der Pauw samples is valid. 
Furthermore, under the same conditions, the effects of mag
netoresistance are formally eliminated by averaging data 
taken for normal and reversed magnetic fields. 

'L. J. van der Pauw, Philips Res. Rep. 13, I (1958). 
2D. M. Boerger, J. J. Kramer, and L. D. Partain, J. App!. Phys. 52, 269 
(1981). 
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