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Abstract We show that a proposal by Vishwakarma to real-
ize conformal-covariance for the Weyl-Lanczos equation is
nonviable.
In the recently published review article [1] Vishwakarma con-
siders, among other topics, the question of how the Lanczos
potential Lμνσ in a four-dimensional Riemannian spacetime
behaves under a conformal transformation. In attempting to
formulate a consistent conformally-covariant treatment of
the potential, the author is led to impose a complicated alge-
braic constraint among the components of Lμνσ . However,
we show below that Vishwakarma’s proposed constraint is
incompatible with the existence of a Lanczos potential in a
large class of spacetimes and therefore must be rejected. We
briefly recap the author’s argument (denoting equation num-
bers that appear in [1] with the prefix “V”) and follow with
our critique.1

Vishwakarma begins with the Weyl–Lanczos equation,
expressing the Weyl conformal curvature tensor Cμνσρ as a
linear combination of first-derivatives of the potential Lμνσ :

Cμνσρ = Lμνσ ;ρ + Lσρμ;ν − Lμνρ;σ − Lσρν;μ
+ gνσ Lμρ + gμρLνσ − gνρLμσ − gμσ Lνρ

+ 2
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)
. Next, the author considers how Eq. (V4) changes

under the local conformal rescaling gμν → g̃μν =
�2(x)gμν, Lμνσ → L̃μνσ = �s(x)Lμνσ (where s is to be
determined) and finds that the right side transforms according
to:

1 Tensor calculations were performed in Wolfram Mathematica using
the xAct suite of packages for computer algebra [2].
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Demanding scale invariance, i.e., W̃μ
νσρ = Wμ

νσρ , Vish-
wakarma then sets s = 2 and discards the additive term
proportional to (s − 3) by proposing, without proof, that the
potential Lμνσ can always be chosen to satisfy the intricate
“symmetry” condition:
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for arbitrary �.
But this is easily falsified without any need to compute

Lanczos potentials and test them in the cumbersome rank-4
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condition (V32). We instead form a much simpler necessary
condition of rank-0 by first contracting Eq. (V32) withCανσρ

to get 8CανσρLανσ �,ρ = 0. Because the function �(x)
is arbitrary, this requires that the coefficient vector Qρ ≡
CανσρLανσ = 0 throughout all spacetime. And since Qρ

vanishes everywhere, then so must its covariant derivative
Qρ ;τ and, more specifically, its covariant divergence Qρ ;ρ .
The scalar condition Qρ ;ρ = 0 is thus necessary (but of
course, not sufficient) for the validity of Eq. (V32). To check
whether this divergence does indeed vanish everywhere, we
apply the product rule:

Qρ ;ρ = Cανσρ ;ρLανσ + CανσρLανσ ;ρ
and then use the once-contracted Bianchi identity:

Cανσρ ;ρ ≡ 1
2

(
Rασ ;ν − Rνσ ;α)

− 1
12

(
gασ R;ν − gνσ R;α)

along with the “scalarized” Weyl–Lanczos equation obtained
by the contraction of Eq. (V4) with the Weyl tensor:

CανσρCανσρ = 4CανσρLανσ ;ρ
to rewrite it as:

Qρ ;ρ =
(
Rασ ;ν − 1

6 gασ R;ν) Lανσ + 1
4C

ανσρCανσρ

Specializing now to Ricci-flat (“Rf”) Rασ = 0 spacetimes,
only the term quadratic in the Weyl-tensor survives on the
right side:

Qρ

(R f );ρ = 1
4C

ανσρCανσρ = 1
4 K

where K is the Kretschmann scalar. For example, in the Ricci-
flat Schwarzschild (“Sc”) spacetime with line element:

ds2 =
(

1 − 2GM

r

)
dt2 −

(
1 − 2GM

r

)−1

dr2

−r2
(
dθ2 + sin2 θ dϕ2

)

this divergence evaluates to Qρ

(Sc);ρ = 1
4 K(Sc) = 12 G2M2

r6 ,
which is clearly not zero for any finite radius r or at any
time t. In other words, the Lanczos potential L(Sc)ανσ in a
Schwarzschild spacetime with mass M �= 0 violates Eq.
(V32). Indeed, the potentials in all generic Ricci-flat space-
times with K �= 0 fail condition (V32), and we speculate that
those in most Ricci-curved spacetimes likely fail as well.

So while there might exist particular spacetimes with
Lanczos potentials that do happen to obey Eq. (V32), we con-
clude that Vishwakarma’s scheme to implement conformal-
covariance for the Weyl–Lanczos equation by setting s = 2
is not viable in the general case. Instead, we propose to accept
that the Lanczos potential Lμνσ most naturally scales with
the weight s = 3 and investigate whether the Weyl–Lanczos
equation itself can be altered to realize uniform overall scal-
ing with this weighting. This possibility will be examined
elsewhere.
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