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ABSTRACT: Incrementally linear constitutive equations that are characterized by 
a~ orthotrop~c t~n~ential stiffness or. compliance matrix have recently become 
widely used m fimte element analYSIS of concrete structures and soils. It does 
not seem to be, however, widely appreciated that such constitutive equations 
are limited to loading histories in which the prinicipal stress directions do not 
rotate, and that a violation of this condition can sometimes have serious con
sequences. It is demonstrated that in such a case the orthotropic models do 
not s.a~isfy the form-invariance condition for initially isotropic solids, i.e., the 
condition that the response predicted by the model must be the same for any 
choice of coordinate axes in the initial stress-free state. An example shows that 
the results obtaine~ for various ~uch choices can be rather different. The prob
lem cannot be aVOided by rotating the axes of orthotropy during the loading 
pr?cess so as to keep them parallel to the principal stress axes, first, because 
this would imply rotating against the material, the defects that cause material 
anisotropy, such ~s microcracks, and, second, because the principal directions 
of stress and stram cease to coincide. The recently popular cubic triaxial tests 
do not give information on loading with rotating principal stress directions. 

INTRODUCTION 

The statistical scatter of the properties of concrete, and especially soils 
is distinctly larger than that of metals, polymers, and most other ma~ 
terials. Thus, it is not surprising to see a strong and certainly justified 
tendency to keep the mathematical models simple. It is probably for this 
reason that the incrementally linear constitutive relations that are char
acterized by an orthotropic tangential stiffness or compliance matrix, called 
the orthotropic models, have recently become very popular and have 
been widely used in finite element analysis of concrete structures and 
soils (1-4,9-14,16-27,29-42,44-48,50-52). In this approach, one tries to 
fi~re out th.e variation of tangential moduli or compliances directly, 
Without the aid of abstract concepts such as loading surfaces (potentials), 
flow and normality rules, stability postulates, work inequalities, path
dependence, intrinsic time, etc. 

.It ~oes not seem, however, to be widely appreciated that such con
stituhv~ eq~ations are limited to loading histories in which the principal 
~tress d~re.chons to not rotate, and that a violation of this condition, typ
Ical of finIte element applications, can sometimes have serious conse-
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quences. The objective of this paper, which is based on a 1979 report 
(5), is to examine these problems in detail and illustrate them by an 

example. 
The popularity of the orthotropic models may have been aided by the 

recent exaggerated emphasis on the so-called "true" triaxial tests that 
utilize cubic specimens loaded by normal stresses on their faces. We will 
see that these tests are incapable of revealing precisely those important 
triaxial properties which are the cause of trouble with the orthotropic 

models. 

ARE ORTHOTROPIC MODELS TENSORIALLY INVARIANT? 

Over a broad range of triaxial behavior, concrete and soils may be 
characterized by incrementally linear stress-strain relations, also called 

hypoelastic (49): 

da = CdE or dE = Dda .••••••...••••.•.•••...••••.•.•••••.•. (1) 

which, in the component form, reads 

d(Jij = CijlcmdEkm or dEij = Oijkmd(Jkm ...••...••••...••••...•••••..• (2) 

Here a, E = column matrices of the six stress and strain components; C 
= a 6 X 6 tangential stiffness matrix of the material (tangential moduli 
matrix), D = a 6 x 6 tangential compliance matrix of the material; (Jij' 

Eij , C ijkm , Oijkm = tensorial components of a, E, C and D referred to carte
sian coordinates Xi (i = I, 2, 3); repetition of subscripts implies summation. 

If the material is inelastic, matrices C and D must be considered to 
depend on a and E. Determination of this dependence, which causes C 
and D to exhibit the stress-induced (or strain-induced) anisotropy, is the 
main purpose of the theories of incremental plasticity or hypoelasticity 
and represents a complex problem. This is because we deal with a fourth
rank tensor (C or D) which must be a tensorially invariant functional of 
the histories of two second-rank tensors (a and E), satisfying the con
ditions of isotropy of the material with regard to the initial state. 

In the orthotropic models one introduces a simplification by assuming 
that C and D have an orthotropic form, i.e. 

d(Jl1 Cl1 C 12 CJ3 

d(J22 C 21 C22 C 23 

d(J33 C3I C32 C 33 

d(J12 0 0 0 

d(J23 0 0 0 

d(J31 0 0 0 

dEl1 0 11 0 12 

dE22 0 21 0 22 

dE33 0 31 0 32 
or 

dE12 0 0 

dE23 0 0 

dE31 0 0 

0 0 

0 0 

0 0 

C44 0 

0 C 55 

0 0 

0 13 0 

0 23 0 

0 33 0 

0 0 44 

0 0 

0 0 
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0 

0 

0 

0 

0 

C66 

0 

0 

0 

0 

0 55 

0 

dEl1 

dE22 

dE33 

dE12 

dE23 

dE31 

0 

0 

0 

0 

0 

0 66 

. .............. (3) 

d(Jl1 

da22 

da33 

d(J12 

d(J23 

d(J31 

.......... (4) 



The appearance of C and D with just two subscripts (i.e., Call where a 
and ~ = 1, ... , 6) indicates the matrix components of C and D. Ob
viously, Du = Du U, DIS = Du 23, D44 = Dl2 12' etc. Matrices Cij and Dij 

usually are chosen as symmetric, but this is not necessary (33) and will 
be unimportant for our argument. 

To account for the decrease of material stiffness as the stress and strain 
increases, the dependence of the components of C and 0 on fIij and Eij 

is introduced in the orthotropic models directly, usually intuitively and 
without recourse to loading functions, flow rule, etc. Sometimes fIij and 
Eij are assumed to appear in the elements of matrix C and 0 in a manner 
exhibiting orthotropic symmetry. Sometimes, in the erroneous belief that 
this would achieve tensorial invariance, only the invariants of stress and 
strain are allowed to appear in the elements of matrix C or O. We will 
see, however, that no matter how this dependence is chosen, the or
thotropic form of C and 0 in Eqs. 3 and 4 cannot in general satisfy 
tensorial invariance. 

It is important to realize the difference from an orthotropic material, 
i.e., a material where the orthotropy is built in, due to the initial micro
structure, rather than stress-induced. An orthotropic material has to be 
invariant only with regard to 90° rotations and reflections of coordinate 
axes (43). We consider isotropic inelastic materials. They may exhibit 
stress- or strain-induced anisotropy but are isotropic in their initial stress
free state, and that is not the same as an anisotropic material. The in
duced orthotropy, in particular, is not ofa fixed direction but can have 
any direction in the material depending on the direction of the principal 
stresses that induced it. 

Thus, before the loading starts we can choose, due to initial isotropy, 
any coordinate system as the material reference frame. It is one basic 
principle of continuum mechanics of inelastic solids that the material 
reference frame must be kept attached to the material (i.e., be rotated 
with the material during the deformation process). We must, however, 
get the same states of stress and strain for the same loading history re
gardless of which directions of the coordinates we chose initially. 

FORM-INVARIANCE CONDITIONS 

Consider two cartesian coordinate systems: the original coordinates Xi 

(i = 1, 2, 3) and new rotated coordinates xl . The coordinate transfor
mation is xj == CijXi where Cij == cos (xl ,Xj) = matrix of direction cosines 
of Xi in coordinates xl . The transformation of the stress tensor is fIicm == 
CijCjmfIij and the transformation of the compliance tensor is D{,.,rs == 

CipCjqc/crcm.Dij/cm. Denote as O(a) or Dij/cm(a) the compliance matrix or ten
sor that is evaluated on the basis of stress tensor a with components 
fIij. Because the material is isotropic in the stress-free initial state, 0(0) 
must have the same form as for isotropic elastic material. Since the is
otropy group of transformations includes all rotations, the condition of 
tensorial form-invariance requires (43) that, for any coordinate rotation, 
the tensor 0 (a') determined on the basis of transformed stresses fI Ij 

must be the same as the transformation of tensor O(a) determined on 
the basis of original stresses fIij (Ref. 49 or p. 420 of Ref. 43); 

Dpqr.(a') = D{,.,rs •••••••••••••••••••••••••••••••••••••••••••••••• (5) 
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where D~ = CipCjqc/crcmsDijlcm(a), fIicm = Ci/cCjmfIij •••••••••••••••••• (6) 

To satisfy this form-invariance condition (Eq. 5), Dijl,m must be a tensor 
polynomial in aij , and the most general form of a symmetric tensor 0 (a) 

allowed by material isotropy may be written as 

Dij/cm = D\72", + D~Nm + D~~ + D\l2", + D~t. ......................... (7) 

1 
in which D~2", == A 1 8 ij 8/cm + 2 A2 (8i/c8jm + 8 jk 8 im ) ••••••••••••••••••• (8a) 

D~2", = A3fIij8/cm + A 4 fI/cm8 ij + As(fIjk8mi + fIjm 8 /ci + fIi/c8mj + fIim8kj) ••••• (8b) 

D~!, = A6fIijfI/cm + A7(fIimfIjk + fIi/cfIjm) + As8ij fI/crfIrm + A9fIirfIrj8/cm 

+ A lO (8i/cfIjr fIrm + 8jkfIirfIrm + 8jmfIirfIrk + 8imfIjrfIrk) ••••••••••••••••••• (8c) 

D~==~~~~+~~~~+~~~~ 
+ fIirfIrmfIjk + fIjrfIrkfIim + fIjrfIrmfIik) + AI4 (fIi/cfIjrfI rm + fIjkfIirfIrm 

+ fIimfIjrfIrk + fIjmfIirfIrk) ••••••••••••••••••••••••••••••••••••••••• (8d) 

D~=~~~~~+~~~~~+~~~~ 

+ fIirfIrmfIj.fIs/c + fIjrfIrmfIjsfI.d • •••••••••••••••••••••••••••••••••••• (8e) 

Equations Ba, and 8b, were used to model concrete and soils in Ref. 
15. Coefficients Al , A2 , A3 , ••• are functions of the invariants of stress 
and strain. Note that the third and higher powers of tensor fIij, such as 
fIirfIr.fI.j or fIirfIrsfI,pfIpj' do not appear in Eqs. 7-8 since, according to Cay
ley-Hamilton's theorem, they can be expressed as linear combinations 
of fIij and fIirfIrj with coefficients that depend on the invariants of fIij. 

Also note that terms like AofI" or AofIrsfIrs need not appear either, since 
fIrr and fIrsfIrs are invariants, and AI, ... , Al6 are assumed to depend on 
the invariants. 

When Dij/cm depends on Eij , the dependence must be of the same form 
as that on fIij in Eqs. 7-8. An analogous form, but with many more terms, 
is required when 0 depends upon both fIij and Eij' Similar expressions 
hold for C. 

The orthotropic compliance matrix in Eq. 4 involves none of the fIir 

dependent terms listed in Eqs. 8b-8e. If it did and if, e.g., fIl2 ¥- 0, then 
according to Eqs. 7-8 the term DW12' contributing to D14 , would be 
nonzero whereas in Eq. 4 it is zero. We see that if any of the fIirdepen
dent terms D~2", or D~~ is present, then all components of matrix Dare 
nonzero if fI12, fI23, fIl3 are nonzero. Therefore, if the zeros are placed 
where they are shown in Eq. 4 (or Eq. 3), matrix 0 (or C) must be of 
the form of Eq. Ba. This form is equivalent to the well-known isotropic 
compliance matrix: 

E-I -vE-I -vE-I a a a 
E-I -vE- I a a a 

0= 0(0) = 
E-1 a a a 

....... (9) 
sym. (2G)-1 a a 

(2G)-1 a 
(2G)-1 
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in which E- l = Al + A 2 , vE- l = -AI, (2G)-1 = A 2 , E, G and v being 
variable Young's modulus, shear modulus and Poisson ratio. However, 
a compliance matrix of isotropic form, even if variable, cannot closely 
describe the real behavior, because the incremental properties of stressed 
concrete or soil in different directions are not the same. 

We must therefore conclude that if the material reference axes are at
tached to the material, it is in general inadmissible to restrict the tan
gential compliance or stiffness matrix to an orthotropic form, with zeros 
placed as shown in Eqs. 3 and 4. The only case when this is admissible 
is when the principal stresses <Tl , <T2, and <T3 are of the same directions 
as the principal strains El' E2, and E3 and do not rotate as the material 
deforms. Only in this case it is possible to orient the coordinate axes Xl , 

X2, and X3 in such a manner that all shear components of stress and 
strain increments vanish for any loading increment. Then, however, 6 
x 6 matrices are unnecessary and one may write (33): 

{

dEl} [Dn Dl2 D13]{d<Tl} 
d E2 = D2l D22 D23 d <T2 .....•••••..••••.....•••..•••.•• (10) 

dE3 D3l D32 D33 d<T3 

It thus appears that the orthotropic models are unsuitable for general 
finite element programs because it is not possible to guarantee that the 
principal stress directions would not rotate during the loading process. 

Note that the problem is not avoided by coordinate transformation 
from Xi to xi , in which the orthotropic matrix transforms to a matrix 
with nonzero coefficients relating the increments of normal strains and 
shear stresses (e.g., dEll and d<T12). This is because the orthotropic sym
metry properties do not change with the coordinate transformation and 
still apply after transformation with regard to axes Xi which are inclined 
relative to xi . 

Is THE LACK OF INVARIANCE A SERIOUS PROBLEM? 

Many experts have no doubt been aware of the lack of tensorial in
variance, but they did not expect it could cause discrepancies of more 
than a few percent. We must therefore also examine the severity of the 
problem by an example. At the same time, an example will illustrate the 
problem. 

Assuming the initial Poisson ratio to be v = 0.2, the initial compliance 
matrix is 

1 -0.2 -0.2 0 0 0 

1 -0.2 0 0 0 

1 1 0 0 0 
D° =- ....................... (11) 

E 1.2 0 0 

sym. 1.2 0 

1.2 

Consider that a uniaxial compressive stress <Tn = -T (all other <Tr = 0) 
is first applied on the material (Fig. l(a». We shall assume that T ii quite 
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---I,&. .... --~, 

FIG. 1.-Dlagrams illustrating Lack of Tensorlal Invarlance 

large, say 0.9 of the strength, so that the axial compliance Dn is much 
larger than the lateral compliances D22 , D33 (Fig. 1(j». 

Assume a concrete of strength f~ = 4,650 psi (32 MPa), initial Young's 
modulus E = 4.7 x lcr psi (32,400 MPa), strain at peak stress in uniaxial 
compression test Ee. = -0.00215, and consider the unixial stress <Tn = 
-T = -0.9 f~ as the stress state just before the loading increment. On 
the basis of one particular recent orthotropic model for concrete among 
those referenced here, the following tangential compliance matrix was 
evaluated in Ref. 5 from the foregoing data: 

1.87 -0.31 -0.31 0 0 0 

-0.31 1.0 -0.2 0 0 0 

1 -0.31 -0.2 1.0 0 0 0 
................. (12) 0=-

1.62 0 0 E 0 0 0 

0 0 0 0 Dss 0 

0 0 0 0 0 D66 

854 



It does not matter to which particular model this matrix corresponds 
since the results of the analysis that follows are about the same for all 
orthotropic models which can represent the difference in incremental 
stiffness in various directions. What is important in Eq. 12 for our sub
sequent result is that Dll/D22 is much larger than 1.0, or that D44/D22 is 
much larger than (1.0 + 0.31). These features are true of all orthotropic 
models since their purpose is to describe the deviations from an incre
mental isotropic matrix. (The values of Dss and D66 in Eq. 12 are not 
needed for our calculations.) 

Consider now alternatively coordinate axes xi , X2, and X3 that are ro
tated by 45° about axis X3 (Fig. la). According to Mohr's circle (see points 
I' and 2' in Fig. l(g», the uniaxial compressive stress T then appears as 

T T 
0'1I = 0'21 = --, O'h = -, 0'33 = O'b = 0'23 = 0 ................... (13) 

2 2 

Using these stress values (with T = 0.9 t;) and applying again the same 
orthotropic model as that from which Eq. 12 was evaluated, we now 
find that, for coordinates xi , the compliance matrix is 

1.10 -0.25 -0.22 0 0 0 

-0.25 1.10 -0.22 0 0 0 

1 -0.22 -0.22 1.0 0 0 0 
0' =-

0 
................ (14) 

E 0 0 0 1.35 0 

0 0 0 0 DS5 0 

0 0 0 0 0 0 66 

Since the material is isotropic, tensorial transformation (Eq. 5) of ma
trix 0 (Eq. 12) into the rotated coordinates must yield matrix 0'. The 
matrix resulting from this transformation is, however, altogether differ
ent from 0', the most significant difference being that large non-zero 
coefficients are obtained in place of the zeros in Eq. 14. We leave it up 
to the interested reader to check this himself, but we now demonstrate 
the discrepancy in a simpler way by superimposing upon the uniaxial 
compression T in the direction XI a uniaxial compressive stress increment 
.iO'h = -.is at 45°-inclined direction xi. (all other .iO'ij = 0); see Fig. l(b) 

and 1(f) and the stress paths in Fig. l(j) and l(k). According to the 
Mohr's circle (points 1 and 2 in Fig. l(h», this increment is equivalent 
to (Fig. l(d»: 

.is 
.i0'1l == .i0'22 = .i0'12 = -2"' .i0'33 = .iU23 == .iU13 = 0 ............... (15) 

According to the matrix 0 (Eq. 12), this produces strain increments 

(
.is) 1 0.78 

.iEll = -2" E (1.87 - 0.31) = -E .is 

(
.is) 1 0.34 

.iE22 = - 2" E (-0.31 + 1.0) = -E .is 
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.iE.12 = ( - .i:) 1;2 = _ O;I.iS ................................. (16) 

Using the Mohr's circle (see points 1', 2' in Fig. l(i» we may transform 
these strains to the rotated axes xi: 

1 1 
.iEil = - (.iEll + .iE22) + .iE12' .iE21 = - (.iEll + .iE22) - .iE12 , 

2 2 

1 
.iEi2 = - (.iE22 - .iEn) .......................................... , (17) 

2 

1.37 0.25 0.44 
which yields .iE il = - -, .iE21 = - .is, .i'Y i2 = - .is .... , (18) 

E E E 

in which .i'Yi2 = 2.iEh = increment of shear angle. On the other hand, 
using matrix 0' (Eq. 14) we obtain 

.iEil = - 1;0, .iE22 = 0:5 .is, .i'Yi2 = 0 ....................... , (19) 

These strains must be the same as those in Eq. 18, and they are not. 
For example, the shear strain increment .i'Yi2 calculated according to 

the orthotropic model in the rotated axes is zero (Eq. 19), but when it 
is calculated according to the orthotropic model for the original axes it 
has a significant non-zero value (Eq. 18), amounting to 40% of the axial 
strain .iElI obtained for .is in the rotated axes. Thus, the lack of tensorial 
invariance does indeed have serious consequences. The results signifi
cantly depend on our choice of coordinates, which violates the principle 
of objectivity. 

It should also be pointed out that the existing orthotropic models gen
erally underestimate the difference in compliances Dll and D22 (or D12 
and D23 ) in Eq. 12. According to plastic-fracturing or endochronic models, 
greater differences are obtained near the peak point of uniaxial stress
strain diagram. It should be noted that the value of .i'Yi2 in Eq. 18 would 
then be larger, making the discrepancy still greater. 

It is interesting to check whether there exists an orthotropic model for 
which these discrepancies would be insignificant. In general terms we 
have 

.is .is 
.iEll = -Dll(O') 2" - DdO') 2" , 

.is.iS .is 
.iE22 = -021 (0')2" - D22(O') 2"' .iE12 = 0 44 (0')"2 ................ (20) 

the transformation of which according to Eq. 17 yields 

.is .is 
.iEil = .iE;" + 0 44 (0) 2"' .iE22 = .iE;" - 0 44 (0') 2" 

.is 
.iE;" = -[Dll(O') + D22 (O') + 0 12 (0') + D21 (0')l4 
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.:1E12 == [Ol1(a) - 022(a) + Oda) - 0 21 (a)] ~5 ................... (21) 

On the other hand, the direct use of Eq. 14 gives 

.:1Ei! == 0 11 (a') .:15, .:1En == 0 21 (a') .:15, .:1EI2 == 0 .................. (22) 

By equating these values to the expressions in Eq. 21 we find that the 
results could be the same for both coordinate choices only if 

0 22 (a) - 0 11 (a) = Oda) - 0 21 (a) ......................•.....•. (23) 

0 11 (a) + 022(a) + Oda) + 0 21 (a) = -2[011(a') + 021(a')] ...•... (24) 

044(a) == 0 11 (a') - 0 21 (a') ..................................... (25) 

!n case of symmetry (012 == 0 21 ), Eq. 23 requires that 0 22 ( a) = 0 11 (a), 
l:e., tha.t the norm~l stiffnesses in Xl and X2 directions be the same. Equa
tion 2? IS then eqUlvalent to the relation between G, E and v for isotropic 
matenals. Thus, we see that tensorial invariance can be achieved with 
the orthotropic model only if the material is incrementally isotropic. 
However, this would make it impossible to model the real behavior. 

It also follows from Eq. 23 that, as long as 0 11 significantly differs from 
0 22 , the discrepancies due to the choice of the coordinate system are 
large. The discrepancies can be removed only if we abandom incremen
tal orthotropy and assume general stress-induced anisotropy using non
zero values for the remaining coefficients of the matrices, e.g., for 0 41 

(== 0 12,11). 

Note also that is is impossible to circumvent the condition in Eqs. 4 
and. 5 by stipulating that matrix 0 or C may be evaluated only on the 
baSIS of the stress tensor components referred to the coordinate axes of 
the principal stress applied first. What would we then do if an extremely 
small stress <Tn, say 10-6 f~, were followed by stress increment .:1<T11 = 

0.9 f ~ in the inclined direction? Is this not equivalent to the first stress 
being <TIl == 0.9f~? 

Further, serious discrepancies exist between Eqs. 17 and 18 for the 
values of .:1EI1 as well as .:1En . These are more sensitive to the numerical 
values in Eqs. 12 and 13 and substantially differ from model to model. 
They are significant for any orthotropic model for concrete, as its user 
may check. 

Similar serious discrepancies can be demonstrated for other simple 
nonproportional loading paths. The interested reader may for example 
cal~ul~te the responses in Xj and xi coordinates for these loadings: (1) 
Umaxlal stress <Tn == - T followed by shear stress .:1<T12 = .:15; (2) biaxial 
compression <T11 == <T22 == -T followed by .:1<T13 == .:15, .:1<Tn == .:1<T33 = -.:15; 
(3) uniaxial compression <T11 = - T followed by hydrostatic pressure .:1<T11 

== .:1<T22 == .:1<T33 == -p; and (4) shear stress <T12 == T followed by uniaxial 
compression .:1<T11 == -.:15, etc. 

Analogous calculations can be made when the stiffness rather than 
compliance formulation (Eq. 3) is used. In that case we would consider 
a uniaxial strain Ell followed by uniaxial strain .:1Elr in the rotated co
ordinates and we would obtain a similar magnitude of the discrepancies. 

To sum up, our calculations not only illustrate the lack of tensorial 
invariance, but also reveal that its consequences can be serious. 
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The initial uniaxial compressive stress <Tn = - T, considered in the 
foregoing example, produces in rock or concrete a system or microcracks 
whose planes exhibit a prevalent orientation parallel to axis Xl; see Fig. 
l(a). The situation when we subsequently apply the skew uniaxial stress 
.:10"11 == -.:15 is pictured in Fig. l(b), and we see that .:15 produces a tan
gential stress on the weakened crack planes. So, .:15 must produce a 
shear strain on these planes (Fig. 1(d», which does not allow the de
formation to be symmetric with respect to axis Xl (Fig. l(b». Thus, nor
mal stress .:10"11 produces shear strain .:1E12 , which is not reflected in the 
orthotropic models. 

Generally, due to the location of zeros in the orthotropic incremental 
compliance or stiffness matrix, the cross effects are not present, i.e., the 
normal stress or strain increments produce no shear strain or stress in
crements, and the shear stress or strain increments produce no normal 
strain or stress increments. Yet, these cross effects are important for 
modeling the inelastic dilatancy of concrete or the compaction of soils, 
the hydrostatic pressure sensitivity, and other phenomena. 

It is normally stipulated that the orthotropic models do not cover un
loading. It is, however, not so simple to leave out an unloading crite
rion. For illustration, consider that a uniaxial stress <Tn == - T is followed 
by a shear stress increment .:1<T12 = .:15. Not only do we get different 
results applying the orthotropic model in the two coordinate systems, 
but we further face an ambiguity in deciding what is unloading. None 
of the stresses decreases, and so one might assume that we have no 
unloading, a case for which the model is intended. However, in the 
rotated axes, .:10"12 appears as .:1<TI1 == .:15, .:10"22 == -.:15 (all other .:1<Ti; = 

0), and because 0"11 == <T22 == - T /2, we see that 10"111 first increases and 
then decreases, which would be regarded as unloading. 

Similar examples of ambiguity, such that a loading for all strain com
ponents in one coordinate system appears to involve unloading for some 
strain components in another coordinate system, can be found for most 
loading paths in which the principal stress directions rotate. To for
mulate a criterion for unloading that is the same in any coordinate sys
tem and avoids the ambiguity just exemplified, one must obviously use 
conditions that are invariant with regard to coordinate transformation, 
i.e., consist of functions of stress invariants. This leads, naturally, to 
loading functions (loading surfaces) and indicates that their use is in
evitable, unless we restrict ourselves to stress histories in which the 
principal directions do not rotate. (The endochronic theory, too, implies 
a certain loading function (6,7), although it has originally been derived 
without introducing one.) 

CAN INVARIANCE BE ACHIEVED BY ROTATING THE AxES OF ORTHOTROPY? 

Some structural analysts say they avoid the lack of invariance by keep
ing the orthotropy axes always oriented in the direction of principal 
stresses, rotating them against the material as principal stress directions 
rotate, and using the incremental shear moduli (044 ) only for the first 
infinitesimal shear stress increment away from the principal stress ref
erence frame. There are, however, certain limitations with this approach. 

First, one must not forget the principal strain directions. They evi-
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dently coincide with the principal stress directions as long as these do 
not rotate. Consider now the first stress increment !lfIij which causes the 
principal stress directions to rotate. In the plane (Xl,X2), the principal 
directions of stress and of strain then rotate by the angles 

!lfI12 !lE12 
!lOa = , !lO. = ................................ . (26) 

fIll - fI22 Ell - E22 

if l!lfId « IfIll - fI221, I!lE121 « IEll - E22I. Now, we should note that, 
in general, !lOa ,= M. except when the tangential shear modulus D44 

(= !lfI12/!lEd is 

fIll - fI22 
D44 = (for Ell ,= E22) ..•••...•••.......••....•.....•.• " (27) 

Ell - E22 

In none of the existing orthotropic models, the tangential shear modulus 
is given by this expression, and so the rotations of the principal direc
tions of stress and of strain are not the same. Therefore, as soon as the 
principal stress directions start to rotate, they also cease to coincide with 
the principal strain directions. Should then the axes of orthotropy be 
kept parallel to the principal directions of stress, or of strain? Evidently, 
they cannot be kept parallel to both. 

Second, consider the physical microstructural aspects. The defects which 
are produced in the microstructure by the previous loading history and 
are the source of a change in tangential stiffness consist of microcracks, 
or plastic and frictional slips on certain planes, or grain rearrangements. 
These defects are locked within the material once they form. Rotation of 
the axes of orthotropy would physically imply rotating such defects against 
the material, which is obviously impossible. So, the lack of invariance 
cannot be avoided by rotating the axes of orthotropy. 

We must realize, however, that there exists a certain special case to 
which the last objection does not apply. This is the case of classical in
cremental plasticity, for which the incremental stress-strain relation for 
loading can be written as 

_ e/ 1 aF OF 
dEij = DijkmdfIkm, Dijkm - Dijkm + - - -- ........................ (28) 

h afIij afIkm 

in which D~km = isotropic tensor of elastic moduli, h = function of stress 
invariants, and F = F (0") is the plastic potential (loading surface). If the 
coordinate axes are rotated at each loading stage so as to coincide with 
the principal directions of tensor a F jafIij' then Dijkm differs from D~km 
only when i = j = k = m, which means that the matrix of Dijkm is or
thotropic. The directions of orthotropy, however, coincide with the prin
cipal stress directions only if tensor a F / afIjj has the same principal stress 
directions as fIij. This is true only if the loading surface is quadratic in 
fIij' Le., if it is of von Mises or Drucker-Prager type. 

Physically, the incremental orthotropy exhibited by these classical 
plasticity theories means that the microstructural defects which cause 
inelastic behavior are assumed to depend only on the current fIij' and 
be independent of the current Eij' as well as of the histories of fIij and 
Eij (loading path), Le., be path-independent. Such an assumption may 
be quite acceptable for plasticity but hardly for concrete and geomaterials 
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for which the microstructural defects are mainly microcracks (or grain 
slips, losses of contacts between grains). The location, size and orien
tation of microcracks does not depend only on the current stress. 

If the current state of microstructural defects depended only on the 
current stress and strains, the response could be also described by the 
total strain theory (Le., Hencky's deformation theory), for which, in the 
case of isotropy, Sij = 2 G (0", E) eij and 

aG aG 
dSij = 2Gdeij + 2eij dG, dG = -- dEmn + -- dfImn ................ (29) 

aEmm afImn 

aK aG 
dfIkk = 3KdEkk + 3EkkdK, dK = - dEmn + -- dfImn ............... (30) 

aEmn afImn 

Now, consider that the material axes are rotated so as to coincide with 
the principal directions of tensor aGl.afIy' Then, however, dfIll pr~d~ces 
in general a nonzero dE12 because E12 IS m general no~zero, the pnnclpal 
directions of er being different. If, instead, the materIal axes. are rotated 
so as to coincide with the principal directions of Eij , dfI12 agam produces 
in general nonzero dEll because aGjafI12 is in genera! nonz~ro. So, the 
total strain theories do not conform to the assumption of mcremental 

orthotropy. 

LIMITATIONS OF CUBIC TRIAXIAL TESTS 

The broad use of orthotropic models seems to be a consequence of the 
recent exaggerated emphasis on the cu~ic tria~al tests ~s opposed to t~e 
classical cylindrical triaxial tests. In CUbIC speclIl~ens (FIg. 2(~», the prm
cipal stress axes cannot be made ~o ~otate .du~ng the loadmg proces.s, 
and by virtue of symmetry the pnnclpal. drrections. of stress and stram 
are forced to coincide. From the foregomg analYSIS we see that these 
tests have serious limitations. They do serve the purpose of measuring 
the effect of the intermediate principal stress, but at the same time they 
miss other effects which are usually more important. 

Thus, it will be necessary to concentrate on different .types of tests. 
One attractive test specimen is a cylinder subj~cted to aXlall~ad, lateral 
external and internal pressure, and torsion (FIg. 2(b». In thls test one 
can induce any combination of principal stresses, and ~oreover on~ can 
make the principal stress direction have any angle wlt.h the speclIl~en 
axis and rotate, either continuously or abruptly, dunng the loadmg 

process. 

{a} (b) F 

T 

-- -- ..... 

FIG. 2.-Crltlcal Test and Triaxial-Torsional Test 
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SUMMARY AND CONCLUSIONS 

Examined are incrementally linear (hypoelastic) constitutive equa
tions, called orthotropic models, in which the stress and strain incre
ments are related by a stiffness or compliance matrix that depends on 
the stresses and strains but is restricted to an orthotropic form. Although 
these materials exhibit stress-induced anisotropy, they are isotropic in 
their initial stress-free state. This means that any coordinate system, at
tached to the material, may be chosen as the material reference frame 
at the outset, and the response to the same loading worked out in any 
coordinate system must be the same. The conslusions are: 

1. When one adheres to the requirement that the material references 
axes must not be rotated against the material during the deformation 
process, the orthotropic models are not tensorially invariant. One ob
tains different results depending on the choice of coordinate axes. There
fore the formulation is unobjective. 

2. The lack of tensorial invariance can sometimes cause serious dis
crepancies. An example in which the shear angle increment is obtained 
as zero for calculations in one coordinate system and as 40% of the max
imum normal strain increment for calculations in a rotated coordinate 
system is given for one practical orthotropic model. 

3. One severe limitation is that orthotropic models neglect the cross 
effects, i.e. the normal strain increments caused by the shear stress in
crements and the shear strain increments caused by the normal stress 
increments. These effects are important for the modeling of dilatancy or 
compaction due to shear and hydrostatic pressure sensitivity of shear. 

4. The physical mechanism that gives rise to these cross terms consists 
in the fact that the microstructural defects caused by stress, such as mi
crocracking, exhibit some prevalent orientation. If the principal direction 
of the stress increment is skew (between 0° and 90°) with regard to the 
prevalent orientation of the defects caused by previous stress history, a 
generally anisotropic incremental stiffness or compliance matrix must be 
expected, with all elements of the matrix being nonzero. 

5. Orthotropic models should, therefore, be restricted to loading his
tories in which the principal stress or strain directions do not rotat~ rel
ative to the material during the loading process or when they rotate they 
do so only by a negligibly small angle. The coordinate axes in each finite 
element cannot then be oriented arbitrarily but must be oriented in the 
principal stress directions. 

6. The lack of invariance can hardly be avoided by rotating the or
thotropy axes against the material so as to keep them coinciding with 
the principal stress directions. This is because the orthotropy axes should 
just as well coincide with the principal strain directions, which rotate 
differently than the principal stress directions. 

7. From the physical viewpoint, rotation of the material reference frame 
against the material implies rotating the microstructural defects which 
causes the degradation of tangential stiffness. This is inadmissible for 
defects such as microcracks or grain rearrangements in sands. It would 
be admissible only if the material followed classical incremental plasticity 
with von Mises (or Drucker-Prager) loading surface, but this is not a 
good model for concrete and geomaterials. 
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8. The orthotropic models are unsuitable for finite element programs. 
9. The recently popular cubic triaxial tests do not provide information 

on material response when the principal stress directions rotate during 
the loading process. For this important purpose, other test specimens 
are needed. One possibility is offered by a cylindrical specimen sub
jected to axial load, lateral fluid pressure and torsion. 

Final Remark.-The orthotropic models are not the only ones which 
have recently been criticized. Other models were critized, e.g., for their 
lack of uniqueness, stability, and continuity of response, and still others 
for their inability to represent observed material behavior which appears 
to violate uniqueness, stability and continuity. No perfect model exists 
free from criticism (6,7). Violation of tensorial invariance is, however, a 
more severe problem, since the model ceases to be objective, in partic
ular, independent of the analyst'S choice of reference frame. Objectivity 
is the first requirement for any mathematical model of a physical 
phenomenon. 
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