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TABLE r. Ground-state energies at equilibrium separations. 

Source 

KH,,,,o 
KH,"'I 
This work, "'1 
KH,"'2 
This work, "'2 
Kolos and 

Wolniewkz 

• Energies in Hartree atomic units. e'/ao =27.2 eV. 

Ref. Rmin (£10) 

1 1. 55 
1 1.48 

1.55 
1 1.47 

1.53 
9 1.40 

Our Eq. (2) agrees with KH, while Eq. (3) does not. 
In particular, we find 

in contrast to KH. Thus, their conclusions based on 1/11 
and 1/12 which give rise to the integrals in question need 
be re-examined; their results based on 1/10 alone are 
correct. 

Differences between our recalculations6 •7 and those 
of KH corresponding to 1/11 and 1/12 are summarized in 
Table I and Fig. 1. We obtain larger equilibrium 
separations and higher minimum energies. Our binding 
energy8 curves are all bounded from below by the exact 
one.9 We find, in contrast to KH, that the addition of 
p", and py terms affords substantial improvement in the 
energy near the equilibrium separation. Our variational 
parameter r is quite different from theirs. 

The main thrust of the KH article was to determine 
whether a simple Gaussian wavefunction would yield a 
potential curve with an error which is essentially con
stant over the whole range of internuclear separations. 
KH concluded that, especially for long-range inter
actions, Gaussians were not too promising. Our 
corrected binding energy curves6 still don't fulfill the 
KH desideratum. Whether this goal is attainable by 
using Gaussian trial functions more sophisticated than 
that of Eq. (1) remains an open question. 

Thanks are due J. O. Hirschfelder, W. A. Lester, Jr., 
and 1. Shavitt for their helpful comments. 

* N. S. F. undergraduate research participant, 1968. 
t Present address: Department of Chemistry, Indiana Univer

sity, Bloomington, Ind. 47401. 
1 H. Kim and J. O. Hirschfelder, J. Chern. Phys. 47,1005 (1967). 
2 KH denote their three wavefunctions as "'., "'" and "'2. They 

are obtained from Eq. (1) as follows: ",.: C.(')=C.(2)=0; "'I: 
C,(')=a, C,(2) =0; "'2: C2(1)={j, C2(2)=')'. 

3 In both our and the KH calculations, the coordinate systems 
centered on the nuclei are both parallel and right handed. 

4 r. Shavitt, Methods Computational Phys. 2, 1 (1963). 
• In Eqs. (2) and (3), 

F(x) = m (7r/x) 112 erf(x1l2) 

= flexP( -xu2)du, 
o 

(x>O). 

6 S. L. Brenner, B. A. thesis, Harpur College, State University 
of New York at Binghamton, 1969, gives detailed results. 

-Emina -llEmina rmin 

0.9868972 0.1380712 0.35879 
1.1321059 0.2832799 0.42209 
0.9945540 0.1457277 0.36952 
1.1390731 0.2902471 0.42423 
1.0029703 0.1541439 0.37151 
1.1744746 0.1744746 

7 The following programs, obtained from the Quantum Chem
istry Program Exchange, Indiana University, were used in our 
calculations: F. Prosser, GIVENS, Program 62.1;H. H. Michels and 
P. Elliott, NESBET, Program 93, and CEIG, Program 97; J. P. 
Chandler, SIMPLEX, Program 67. 

8 Following KH, the binding energy is defined as llER = ER -

Ew, where Ew=2( -4/37r) = -0.848826 a.u., and r",=8/97r= 
0.282942. 

9 Compare with the nearly exact results of W. Kolos and L. 
Wolniewicz, J. Chern. Phys. 43, 2429 (1965). 
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In a recent paperl Wheeler and Gordon used 
Chebyshev inequalities and the moments of the lattice 
frequency spectrum, G(x) in their notation, to derive 
inequalities on various quantities, including the inte
grated frequency spectrum, 

r dxG(x). 
o 

Their bounds, at least on this latter integral, may be 
improved by employing other information about G(x), 
namely, that it is bounded. Their figure shows G(x) to 
have a bound of about 2.06. Using this bound gives the 
improved bounds on 

r dxG(x) 
o 

shown in Fig. 1. As in Ref. 1, the marked points are the 
calculated points, and the lines have been interpolated. 
Using the more conservative upper bound on G(x) of 3 
gives bounds on the integral rather closer to the inner 
set than to the outer. The method follows the analysis of 
Mallows,2 and briefly, is this. If the density function, 
in this case G(x), is known to have a bound of L, say, 
then extremal distributions may be formed of sums of 
rectangles-fi(x) =L for ai<x<bi, =0 otherwise-
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rather than 8 functions. The fundamental integral of the 
theory is (see, for example, Shohat and Tamarkin3 ) 

100 dxG(x) J.Lo J.l.l 
I(z)= --'"'-'-+-+"', 

-00 (z-x) z Z2 

the J.Li being moments of G. Substituting the "sum of 
rectangles," trial distribution for G gives 

exp[L-II(z)] = II[(z-ai)/(z-bi)]. 
i 

Thus, the ai and bi are the roots of numerator and 
denominator polynomials, respectively, obtained as 
successive approximations to the continued fraction 
representation4 of the expansion of 

in powers of liz. 
The computing was done on AECL's CDC-6600 

computer, using double-precision arithmetic to derive 
the recurrence-relation coefficients for the continued 
fractions (after the method of Wall,4 Chap. XI). The 
set of recurrence relations was written as an nX n 
tridiagonal matrix (as in Ref. 5, for instance), whose 
eigenvalues are the roots of the nth-order polynomial. 
The matrix was diagonalized using single-precision 
arithmetic; improved values of the eigenvalues were 
then found by evaluating the polynomial and its 
derivative at each eigenvalue (using the recurrence 
relation in double precision) and extrapolating to zero. 
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FIG. 1. Upper and lower bounds to the cumulative distribution 

jZ dx'G(x') 
o 

3;s in ,Fig. 1 of Ref. 1. .Th~ points are calculated, and the straight 
hnes rnterpolated. Solid Circles correspond to unbounded density 
(as in Ref. 1), open circles to bounded density with G(x) ~2.06. 

In the repetition of the calculation of Ref. 1, the 
Gaussian-integration points and weights of Table II 
were reproduced to 10 significant figures. In both 
calculations shown in Fig. 1 the original moments were 
reproduced to 2X 10-14 or better. 

To improve the precision of the numerical exponentia
tion of the power series, the identity 

exp (L -IL ~i) 
i Z·+1 

was used, with rand C chosen to make the last two 
values of J.l.i-Cri+1/i+1 equal to zero. 

The purpose of this note is to point out that these 
improved bounds can be calculated, and that they are 
substantial improvements over the bounds obtained by 
the classical Chebyshev inequalities. If the actual values 
of the bounds were the primary interest, one would 
make two improvements. First, the maximum value of 
the density, in this case the value of G(x) at the cusp, 
would be calculated, rather than taken from a figure. 
Since in this case the maximum is a cusp, this is not so 
important, for the area of the upper part of a cusp is 
small. Alternatively, some part of the cusp could be 
subtracted and dealt with separately as Wheeler and 
Gordon did with the x=o end of the spectrum. The 
second improvement would be to adjust the recurrence
relation coefficients at each stage of the calculation by 
using a least-squares fitting routine to fit the moments 
better. It is expected that this also would cause little 
change in the bounds. A proper error analysis of the 
Chebyshev inequalities calculations has not, to the 
author's knowledge, been done. The author's observa
tions, based on a few hundred such calculations, is that 
small changes in the moments make small changes in 
the bounds-the large shifts in the Gaussian integration 
points are compensated by the large shifts in the 
weights. However, once the errors exceed some critical 
size, they rapidly become huge. This trouble occurs in 
the calculation of the recurrence relation coefficients, 
where one is subtracting nearly equal large numbers. 

It may be mentioned in passing that inequalities such 
as these are useful also in the solution of integral 
equations in which it is easv to calculate moments and 
harder to find solutions. -

I J. C. Wheeler and R. G. Gordon, J. Chern. Phys. 51, 5566 
(1969). 

2 C. L. Mallows, J. Roy. Stat. Soc. BIS, 139 (1956). 
3 J. A. Shohat and J. D. Tamarkin, The Problem of Moments 

(A~erican Mathematical Society, New York, 1943), Mathe
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4 H. S. Wall, Analytic Theory of Continued Fractions (Van 
Nostrand, New York, 1948). 
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