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A Commentary on

Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach

for ChildrenWith Cerebral Palsy

by Corvelyn, M., De Beukelaer, N., Duelen, R., Deschrevel, J., Van Campenhout, A., Prinsen, S., et al.
(2020). Front. Physiol. 11:945. doi: 10.3389/fphys.2020.00945

INTRODUCTION

We appreciate the opportunity to comment on the above-referenced article from our colleagues in
Belgium. Our goals are (Domenighetti et al., 2018) to provide important background for this and
related studies and (Lieber et al., 2003) to opine regarding apparent differences between this work
and our previously published paper on the same topic (Domenighetti et al., 2018) (Figure 1).

To begin, we would like to state that we agree with the authors that the study of muscle
growth and development (myogenesis) in cerebral palsy (CP) is an important and timely topic and
that performing these studies (which requires direct access to human muscle tissue) is extremely
challenging. We previously performed a number of these studies (Lieber et al., 2003; Smith et al.,
2009, 2011, 2012, 2013; Dayanidhi et al., 2015; Domenighetti et al., 2018), including three relevant
investigations on resident muscle stem cell homeostasis in contractured CP muscle (Smith et al.,
2013; Dayanidhi et al., 2015; Domenighetti et al., 2018). Our studies were performed in children
with spastic CP of an average age of 9, 11, and 13 years respectively, and with motor dysfunction
rankings I–V of the Gross Motor Function Classification System (GMFCS). Some limitations of
our studies included low sample sizes (n = 6–10 children per group) and age differences between
groups in two of these studies, with children with CP being a few years younger than typically
developing (TD) control children who donated muscle tissue during ACL reconstruction surgery
(average age of∼14 years) (Smith et al., 2013; Domenighetti et al., 2018).

Corvelyn et al. (2020) are to be congratulated for circumventing some of these biases by
developing a method to obtain a non-intraoperative but smaller (∼10mg) muscle biopsy by
needle (Bergstrom, 1975), from less severely affected (GMFCS I–III) and generally younger
children (average ∼6 years of age). Unfortunately, their study lacked clarity regarding the
actual muscle stem cell population being studied. This is based on the method chosen to
extract myogenic cells from the very small biopsy and the need to expand and passage
these cells multiple times before FACS analysis. As such, without further characterization
of these cells, it is very difficult to interpret their results in light of muscle stem
cell biology.
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SATELLITE CELL HOMEOSTASIS IN
CHILDREN WITH CP

While multiple resident and non-resident stem cells can support
myogenesis, including fibroadipogenic stem cells (FAPs) (Joe
et al., 2010), pericytes (Crisan et al., 2008), and other cell
types (Brack and Rando, 2012), the actual primary self-renewing
stem cell that proliferates, differentiates and fuses to produce a
muscle fiber is the PAX7-expressing satellite cell (SC) (Schultz
and McCormick, 1994; Brack and Rando, 2012; Yin et al.,
2013). Muscle SCs are absolutely required for post-natal muscle

FIGURE 1 | Comparison of immunohistochemical appearance and fusion indices between studies. (A) Myoblasts from CP and TD preparations were differentiated for

42 h and stained for slow myosin heavy chain (MYH7) and a nuclear stain (4-,6-diamidino-2-phenylindole, DAPI). CP myotubes appeared spindly, thin, and with fewer

nuclei per myo- tube. Gray scale panels show MYH7 staining as a single channel. (B) Quantification of fusion index for CP and TD myoblasts. Quantification was

performed after 42 h of differentiation; ***CP vs. TD, P < 0.001 (n = 8 per group). Figures from Domenighetti et al. (2018). (C) Representative immunofluorescence

from satellite cell-derived progenitors of a TD child and a CP patient at days 0 and 6 of myogenic differentiation. MYOD+ nuclei (green) are highlighted by arrows when

included into myotubes and by arrowheads if not yet fused; MyHC (red) and nuclei are counterstained by HOECHST (blue). Scale bar: 200µm. (D) Fusion index (FI)

values are represented by boxplots and dots represent individual subjects (TD: n = 5; CP: n = 14; *p < 0.05). Figures from Corvelyn et al. (2020).

development and growth (Cardasis and Cooper, 1975; White
et al., 2010; Delhaas et al., 2013; Duddy et al., 2015; Gattazzo
et al., 2020). When resident SC number or rates of myogenesis
are decreased in a non-physiological manner during postnatal
development, it leads to impaired muscle growth or recovery
from contracture (Murach et al., 2017; Bachman et al., 2018;
Chang et al., 2019; Dayanidhi et al., 2020). We and others showed
that the PAX7-expressing SC pool is significantly reduced in
contractured hamstrings and biceps of 3–18 years old children
with CP (Smith et al., 2013; Dayanidhi et al., 2015; Von Walden
et al., 2018). We also showed that myoblast progenitors derived
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from the same SCs (enzymatically extracted from contractured
hamstring muscles and FACS-sorted as CD34−, CD45−, CD56+

cells) had decreased capacity to fuse and to differentiate into
myotubes in vitro (Domenighetti et al., 2018). This result is in
apparent contrast to what Corvelyn et al. observed with their
mixed CD56+ cell populations (Figure 1).

DIFFERENT EXPERIMENTAL METHODS
TO ISOLATE MYOGENIC STEM CELLS

Based on their very small tissue sizes, Corvelyn et al. were forced
to allow cells to grow out of the biopsy onto a culture dish for
several days (see their Figure 1), and then expand them in vitro
for several passages to obtain sufficient numbers of cells to sort
into CD56+ and CD56− populations by FACS. There are two
major drawbacks with this approach: First, is lack of control
over which cells (and in what percentages) will colonize the plate
and continue to expand over several passages, leading to highly
variable cultures. Second, without preplating (Yoshioka et al.,
2020), growth of primary myogenic cultures over time will result
in non-myogenic enriched populations of cells (Rando and Blau,
1994), while SCs will differentiate into myoblasts and rapidly
lose their potential to self-renew and contribute to muscle fiber
formation (Cosgrove et al., 2009). These limitations necessitated
a longitudinal characterization of cell types at the time of plate
colonization and then during amplification.While Corvelyn et al.
confirmed presence of CD56+ and MYOD+ myogenic cells in
vitro (their Supplementary Figure 3A), cell sorting should have
included additional negative selection markers and a verification
that a sampling of CD56+ sorted cells were also PAX7+. This was
not done and the amplified cell type(s) are not known.

Thus, we believe that apparent biological differences between
our two studies (Figure 1) are mainly caused by a lower-
than-expected myogenic potential of cell cultures in Corvelyn
et al. Modest upregulation of myosin heavy chain (MyHC)
during 6 days of differentiation is indicative of this phenotype
(see their Figure 3A). Furthermore, myogenic potential of
their TD CD56+ cultures (∼20% fusion index after 6 days of
differentiation) is significantly lower than expected for human
SC-derived myoblasts (60–80% fusion indices after 24–48 h of
differentiation) (Fischer-Lougheed et al., 2001; Cerletti et al.,
2006; Agley et al., 2017; Catteau et al., 2020). Thus, our

provisional interpretation of their data is not that CP cells were
more myogenic than TD but that, for unexplained reasons,
the TD cells were grossly underperforming. It is also possible
that muscle-specific differences in the differentiation ability of
isolated myogenic progenitors could also have contributed for
some of the differences observed between our studies. However,
since both of these muscles have the same embryonic origin, we
think this unlikely (Zammit, 2008).

DISCUSSION

Our goal in this commentary was to provide background insight
into the complexity of performing such in vitro experiments
from tissue extracted from young children, and the resulting
difficulty interpretating results when the cellular identity is not
clear. We congratulate the authors on completing a very difficult
study and offer this critique in the spirit of improving all of
our experiments and with the hope of uncovering new insights
into etiology and treatment of cerebral palsy. Specifically, we
believe that the optimization of techniques for SC isolation
from small muscle biopsies of very young children (e.g., 0–
3 years old) will significantly improve our understanding of
early/developmental biological mechanisms that lead to motor
and muscle impairments (including contracture development) in
CP. We welcome continued development of these techniques of
SC isolation.
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