
Commentary on Standard ML

Robin Milner
Laboratory for Foundations of Computer Science

Department of Computer Science
University of Edinburgh

Edinburgh EH9 3JZ, Scotland

Mads Tofte
Department of Computer Science

University of Nigeria
Nsukka
Nigeria

May 2, 1991∗

∗I generated this file on October 12, 2002, from a back-up dated May 2, 1991, since no original
dvi file was available in the back-up. I had to change two occurrences of >From to From in the
source files (apparently corruption caused by a mail program). Furthermore, I had to edit the
tex files to force page breaks on pages 43, 99, 100, 111, 120, 130, 137 and 138 to be as in the
printed version. The page breaks in the Index differ from the printed version, but the number
of pages is the same as in the printed version. (Mads Tofte, October 12, 2002)

1

Contents

1 Executing a simple program 1
1.1 Execution . 1
1.2 Elaboration . 4
1.3 Evaluation . 9

2 Dynamic Semantics for the Core 13
2.1 Semantic objects . 13
2.2 The initial dynamic basis . 14
2.3 Evaluation order . 15
2.4 Function application . 16
2.5 Pattern matching . 17
2.6 Exceptions . 18
2.7 Constructors versus variables . 20
2.8 Evaluation theorems . 21

3 Dynamic Semantics for the Modules 25
3.1 Structures and signatures . 25
3.2 Structures only . 27
3.3 Signatures and interfaces . 28
3.4 Functors . 32
3.5 Alternative semantics . 34

4 Static Semantics for the Core 35
4.1 Contexts, environments and scope 35
4.2 Types and type schemes . 36
4.3 Closure of variable environments . 39
4.4 Explicit type variables . 40
4.5 Polymorphic references and exceptions 41

5 Type Declarations and Principality 47
5.1 Types, datatypes and type functions 47
5.2 Equality . 49
5.3 Principal types and environments 52

6 Static Semantics for the Modules 56
6.1 Structures . 56
6.2 Signatures . 59
6.3 Sharing . 63
6.4 Coercive signature constraints . 67
6.5 Principal Signatures . 68
6.6 Summary . 68

iii

7 Signature Matching 70
7.1 Matching . 70
7.2 Realisation . 70
7.3 Instantiation . 70
7.4 Enrichment . 71
7.5 Discussion of matching . 72
7.6 Equality type specifications . 73
7.7 Type explication . 74

8 Elaboration of Functors 76
8.1 Discussion . 76
8.2 Functor declaration . 78
8.3 Functor application . 81
8.4 Variations and extensions . 84
8.5 Higher-order functors . 86

9 Admissible Semantic Objects and Proofs 88
9.1 Consistency . 88
9.2 Well-formed signatures . 92
9.3 Cycle-freedom . 93
9.4 Admissibility . 93

10 Elaboration of Signature Expressions 95
10.1 The basis . 95
10.2 The rules . 96
10.3 The realisation theorem . 98
10.4 Admissification . 100
10.5 Checking admissibility . 104

11 Principal Signatures 105
11.1 Bare principality . 105
11.2 Defective signatures . 106
11.3 Covering and principality . 109
11.4 Equality-principal signatures . 111

A Appendix: Proof of Principality 116
A.1 Structural contractions . 117
A.2 The principality theorem . 118
A.3 Principal signatures . 130

B Appendix: Identifier Status 132

C Appendix: Solutions to Exercises 135

D Appendix: Mistakes and Ambiguities 147

Index 149

iv

Preface

In this book we seek to explain in depth the meaning of a programming language.
We present Standard ML by describing the objects in terms of which a programmer
thinks when he is building a program, and how these objects work together; in
more formal terms, we discuss the semantic theory of the language. The full
mathematical definition is given in The Definition of Standard ML1, and we have
written this Commentary as a companion to the Definition.

In this preface we explain the complementary rôle played by the Commentary
and the Definition, and we suggest how the reader may use them together to attain
a complete grasp of the language. In this task one needs formal definition; one
also needs informal discussion of the intuitions and motivations which underlie the
design. Our hope is that the two books together provide a mode of study which is
more effective than either book alone could provide, and even more effective than
a single text which interleaves the definition and discussion.

For readers who know little of Standard ML we begin with a brief character
sketch of the language.

Standard ML in outline

Standard ML has evolved from use in a demanding research environment, to be-
come a serious candidate for use in large and varied applications. It is primarily
a functional language, in the sense that it gives full power to treat functions as
objects, but it is also equipped with imperative power and with an exception mech-
anism. As far as functions are concerned, recent technical advances in compiler
techniques for functions – notably in pattern-matching, which is the workhorse
of function application – has made functional languages a serious competitor to
procedural languages in efficiency. The design of patterns for function-call in ML
takes full advantage of this technology and allows succinct expression. On the
other hand, in many applications one naturally deals with objects whose state
is both complex and dynamically changing; therefore ML combines expressive
imperative features with functions.

To assist program organisation, the language gives the power to define parame-
terised recursive data types, and it provides a rigorous but convenient polymorphic
type discipline which allows the same function to be used over a wide range of
types. This discipline was first presented in ML over a decade ago, and has be-
come widely adopted in other languages. The most innovative part of the language
consists of an advanced form of parametric module, for the purpose of organised
development of large programs. This feature, more than any other, has given rise
to new semantic techniques in the Definition; it is also the aspect of the language

1by R.Milner, M.Tofte and R.Harper, MIT Press, 1990. It will henceforth be referred to as
“the Definition”, distinguished by an initial capital letter.

v

which receives most discussion in this Commentary. We believe that a deep under-
standing of the semantic issues of parametric modules is an essential step towards
the robust design of large systems whose parts can be re-used.

Perhaps the most prominent feature of the language Definition is the sharp
distinction between two phases of the execution of a program. First, there is the
static phase, in which one checks that a program is sound before it is run; then
there is the dynamic phase in which the program can be run without any dynamic
checks for soundness, since this has been fully checked in the static phase. This
distinction is of course not new; but in ML it is represented in an advanced form
for the polymorphic type discipline and the module discipline. Furthermore, the
semantic Definition reflects the distinction faithfully.

Need for a Commentary

The purpose of the Definition was to define exactly what Standard ML is, and
what it means. The emphasis was on precision and brevity. The document is
almost one big definition, at the technical level that one finds in mathematics.
Indeed, whereas mathematical authors normally single out their definitions from
their narrative text, we tended to single out comments from the defining text, since
the latter so much dominates the former. Moreover, to keep the Definition within
reasonable bounds we often omitted theorems which would justify the definitions.
Not surprisingly, anybody who sets out to read the Definition from cover to cover
finds it tough going.

This kind of language definition, which tells the what more than the why,
can give a distorted impression of the language as being determined beyond ar-
gument. Moreover, the use of mathematical notation can give a false air of au-
thority; a reader may say “Well, I don’t really understand what is going on here,
but someone probably has a good reason for it”. (A less charitable reader may
say something stronger.) It is true that if a community of people wish to use the
same programming language with the same meaning, then a precise definition is
a necessity – and to be precise it must be in mathematical notation. But, al-
though necessary, it is not sufficient to gain acceptance by the community. For
this acceptance, it is also necessary to achieve a reasonably high level of commu-
nal understanding. Thus the main purpose of doing formal semantics, which is to
gain greater understanding, has also a solid pragmatic justification. Moreover, for-
mal notations are just the vehicle for approaching this understanding, and formal
definitions are just the starting point.

Early in the process of writing the Definition, we decided that to interleave
more discussion and theoretical development with the primary material – which
exactly describes the execution of ML programs – would lead to an unwieldy text,
and that cross-reference between the primary material and the theoretical develop-
ment would be much easier with two texts than with one; hence this Commentary.
We hope thus to make both texts accessible to readers with different purposes:

vi

• Implementers, who wish to stay faithful to the Definition;

• Programmers, familiar to some extent with ML but wishing to deepen their
understanding;

• Teachers of courses on programming languages;

• Researchers into programming language design and semantics.

Aims of the Commentary

By writing the Commentary, we intend first to make the Definition easier to
understand, and to use. We argued in the preface to the Definition that the
understanding of a language must be in terms of the various semantic objects –
things like structure, type, reference, exception, channel – which people have in
mind when they discuss the language, and whose names often creep into the syntax
of the language as keywords. In the Definition we do say what these objects are
– i.e. we define them – but we devote only a little space to developing the theory
which shows how they hang together, and which thereby illumines this “world of
meanings” in which the language finds expression. So in the Commentary we have
given much more space to this theory.

We insist that the theory be mathematical. In the past it has not been com-
mon, when describing a particular programming language, to explain things like
type-checking or dangling references or determinacy by means of theorems, though
of course there are general theories of some such things. But weaknesses in lan-
guage design, or incompatibilities between different implementations of the same
language, have often remained unnoticed or become accepted as part of the land-
scape (“not a bug but a feature”); we believe one reason for this is that they
have not been placed in the searchlight of mathematical analysis. Indeed our own
experience gives evidence for this; we had to correct the Definition several times
before it reached its published form, due to failures to prove the properties which
we wished it to have. Our Commentary, therefore, is not only the place to provide
insight via discussion; it is also the place to present some of the rigorous analysis
which supports the Definition. We have therefore included a selection of theorems
which express important properties of the language.

Besides clarifying the Definition in the sense of explaining what ML is, we also
try in this Commentary to explain why it is so. Frequently in the work leading
up to the Definition, false steps were taken and retracted; or restrictions were
found necessary; or plausible alternative paths were seen to lead to trouble; or
other such paths were not seen to lead to to trouble but still not taken. The
reasons for particular decisions can therefore vary both in nature and in strength;
in important cases, we try in the Commentary to indicate what the reasons were.
We also point out some cases where the decision was not fully determined; that
is, cases where we cannot argue conclusively against an alternative.

vii

By this kind of clarification, the Commentary aims to become a practical
working document in several senses, which correlate quite well with the different
kinds of reader that we mentioned above. First, everyone with an interest in ML, or
in languages with similar features, can use it to gain understanding; in particular,
they can also use it to settle fine points of interpretation. Second, with the benefit
of insight rather than just dry specification, implementers will find it easier to
design efficient ways of achieving the specified meaning. (An example of this is
provided by the notion of well-formedness [Sec 5.3, p 32];2 the Definition demands
that semantic objects must be well-formed for an elaboration to be admissible,
and by understanding elaborations in detail an implementer can discover exactly
how seldom well-formedness needs to be checked.)

But perhaps most importantly, the Commentary and Definition together aim
to provide a working platform for future development of ML, and even for other
languages too. Nothing remains fixed in language development; but these docu-
ments provide a fairly deep analysis of one design choice, and we hope that the
influence of this will be – paradoxically perhaps – both stabilising and liberating.
The stabilising influence should be that, if anyone proposes a change or extension,
then the community is unwilling to accept it unless its semantic effect is fully anal-
ysed in terms of the framework which the Definition provides. But what about
the liberating influence? Well, the semantic theory – when properly understood
– does indeed provide a way to go about assessing any proposed extension. One
can see clearly whether the extension is as general as it could be; one can test its
soundness (for example: how many of the theorems proved in the Commentary
remain true in the presence of the extension?); in many ways one can replace in-
conclusive argument with conclusive analysis, and this leads to firmer agreement
to accept an extension.

Instances of this kind of investigation are already occurring. One example is
to do with the abstraction declaration which was part of David MacQueen’s
original proposal for Modules. Rightly or wrongly, this form of declaration is
not included in the Definition. But with the help of the semantic theory several
things can be immediately seen about it; in particular, that there are alternative
programming styles which can achieve the effect of abstraction but perhaps not
so conveniently, and that there is at least one natural generalisation of the notion
which may be preferable.3 Therefore, even if it turns out that abstraction itself
is indeed the preferred extension, the choice will have been made on the basis of
much firmer understanding than if it had been included at the outset.

2When we refer to the Definition we shall do so using square brackets, e.g. [Sec 4.8, p 21] for
“Section 4.8, page 21” or [App B, Fig 22, p 73] for “Appendix B, Figure 22, page 73”. References
like Chapter 3, or Section 6.1, or page 45, or Theorem 3.4 (or combinations of such) refer to
the Commentary itself. But inference rules in the Definition will be referred to as e.g. rule 57,
without square brackets.

3See the discussion in Section 8.4.

viii

The link with research

We finish this discussion by reflecting briefly on the way in which the specialised
theory of ML can contribute to broader research on language design and semantics.
Here, we are aware of a conflict of purpose. In this Commentary we are trying to
enlighten a real working language, and such languages tend to combine features
which, though each theoretically tractable in isolation, become less so when com-
bined. (Example: the combination of polymorphic types with exception-handling;
see Section 4.5.) On the one hand, therefore, we have to juggle with many inter-
actions at once, because we insist on providing an instance of a full-size language
whose design has been, in a sense, mathematically ratified. On the other hand, in
scientific development one normally studies one feature at a time, or at most one
interaction at a time, not all at once; this is the only way to isolate the source of
each difficulty.

The conflict is this: If we study one interaction at a time we may succeed,
but we may have scant evidence as to which interactions – which combinations
of language features – are the right ones to study; we therefore lack directed
motivation. If on the other hand we deal with all features at once, in order to
test in the field the effect of combining these features in a mathematically ratified
language, then we may simply fail; either the analysis is too large to do, or when
done it is too large to be generally intelligible.

We claim that this conflict has been resolved in the case of ML; the language
is large enough to be a working language, but just small enough to allow us
to succeed to a large extent in ratifying it mathematically. This achievement is
relevant to general language research in more than one way. First, by observing the
experience with ML in the field, we can try to assess how much the user community
gains from the fact that the design of a language has been mathematically tested.
(Among these benefits, we hope, is a much smaller variation in behaviour between
different implementations.) This approach – treating the language and its use
as an experiment to learn from – should help us to assess the value of semantic
research and semantically based design.

But we also suggest that the content of research in semantics and language
design can be guided by this kind of case-study in analysing a working language,
even though the study itself may be a bit too large for a theoretician’s comfort.
In fact, from the study one hopes to abstract results, principles and methods
which can be applied generally, not just to a single language. (A simple example
is Theorem 2.4, which asserts that evaluation is determinate.) Furthermore, as
the language develops new semantic problems will arise. These problems can be
formulated within the present semantic framework; then it will be easy to abstract
them into a simpler theoretical framework (e.g. the semantics of a much reduced
language) where their solution can first be attempted.

We can already give two examples where this process should be fruitful. One is
to do with adding the evaluation function eval, as in LISP, and with introducing

ix

dynamically-typed values (values whose types can be analysed at run-time).4 The
other is the question of adding higher-order functors to ML; see Section 8.5. In
both these cases it is easy to come up with design proposals and tentative semantic
definitions. One can then study their soundness in an abstract setting, and finally
try to show that the proof of their soundness scales up to the full language.

How to read the Commentary

We imagine that most readers will not be already familiar with the Definition. So
the immediate question is how to tackle both texts; which should come first, or
should they be interleaved in some way? (We are assuming at least some familiarity
with ML, there are good textbooks on how to program in the language.)

The first thing to do is to get a perspective by reading the preface and intro-
duction to the Definition, as well as the present preface. After that, Chapter 1 is
designed with some care to lead you into the semantic method, and to give some
feel for the whole topic without dwelling on subtleties. If you are unfamiliar with
using inference trees to represent execution of programs, then it will be a very
good investment not only to read Chapter 1 but also to build some inference trees
as suggested in the exercises there. At that point, little mystery should remain
about the way programs are executed at the top level, as defined in [Sec 8, p 63].

Beyond this point, a good strategy is to let each Commentary chapter direct
you to the relevant sections and subsections of the Definition; the Commentary
tries to maintain a decent pedagogic sequence, and while following that sequence
it should become clear when to devote solid attention – as opposed to just making
reference – to a part of the Definition. Some paragraphs are in small print; these
can safely be omitted on a first reading.

In deciding your path though the Commentary, first note that the static and
dynamic semantics can be studied independently of one another. We dealt with the
static semantics first in the Definition [Sec 4,5], and have emphasised the indepen-
dence by dealing with the dynamic semantics first in the Commentary. Thus you
can start either with Chapters 2 and 3 on dynamic semantics, or with Chapters 4–
8 on the static semantics. As far as static semantics is concerned, Chapters 4 and
5 deal with the Core Language, while Chapters 6, 7 and 8 give a good overview
for the Modules.

The final three chapters, Chapters 9–11, are concerned with the fine detail
of signatures and signature matching in ML. Appendix A contains the complete
proof of the most important theorem which underlies the use of signatures in ML.

In Appendix B we supply some rules to determine the class to which each
occurrence of an identifier belongs (this the only place where we discuss the syntax
of ML). Solutions to all exercises are in Appendix C. In Appendix D we list the

4A recent paper Dynamic typing in a statically-typed language, by M.Abadi et al, Proceedings
of 16th ACM POPL Conference, gives a good lead in this direction.

x

mistakes and ambiguities in the Definition. Last, but not least, we have compiled
a detailed index.

Acknowledgements

First we wish to acknowledge the pioneering work of David MacQueen, in his
original design of ML Modules; thereby we also acknowledge the work of Rod
Burstall and his group in Edinburgh at the beginning of the 1980s, from which
these design ideas were distilled. We have found much satisfaction in refining these
ideas, we hope without distortion, into a completely detailed language design and
specialised theory.

We have special debts to Simon Finn and to Don Sannella. Simon Finn pointed
out to us in mid-1989 a few important problems about signatures. Due to his
insight we were able to correct the treatment of principal signatures, and were
prompted to do the full proof of this correctness, before the Definition was pub-
lished. Don Sannella has been a creative and detailed critic, most especially in
his thorough reading of the whole of this text; many important improvements of
presentation are due to him.

We would like to thank Marie Virginia Aponte, Dave Berry, Mike Fourman,
Renaud Marlet, David Matthews, Nick Rothwell and David Turner for their read-
ing of parts of this manuscript and for their helpful comments on it, or for their
contribution through conversations about the language.

We pay tribute to Donald Knuth and Leslie Lamport for inventing TeX and
LaTeX, in which all our text preparation has been done – including diagrams
– both here and in the Definition. For really complex text of this kind, the
elimination of the whole phase of type-setting and subsequent proof-correction
has been of great value.

Mads Tofte wishes to thank the University of Nigeria for granting him leave
of absence to complete the book, and the Laboratory for Foundations of Com-
puter Science at the University of Edinburgh for all the support they have given.
Robin Milner wishes to thank the University of Edinburgh for granting him sab-
batical leave to write the book, and the Computer Laboratory at the University
of Cambridge for their hospitality while much of the writing was done. We both
acknowledge financial support from the Science and Engineering Research Council
for the Standard ML project, of which this Commentary is a part.

Last but not least we want to thank our wives, Lucy and Joan, for their
continual encouragement and tolerance.

Robin Milner
Mads Tofte

University of Edinburgh, July 1990

xi

xii

1

1 Executing a simple program

There are two kinds of difficulty in mastering the ML Definition; the understanding
of new concepts, and the management of detail. To begin with, we should like
to help readers with the second difficulty. By following the execution of a simple
program we hope to introduce them at the same time to the structure both of the
language and of the Definition document.

Here is the program:

structure ARITH =

struct

datatype NAT = Zero | Succ of NAT

fun twice(Zero) = Zero

| twice(Succ x) = Succ(Succ(twice x))

end ;

open ARITH ;

val two = Succ(Succ Zero) ;

twice two ;

1.1 Execution

In the Introduction [Sec 1, p 1] we learn that there are three phases in execution:
parsing, elaboration (type- and structure-checking), and evaluation. We also learn
that [Sec 8] deals with all three of these at the level of programs. In [Sec 8, p 63]
we discover that a program is a sequence of top-level declarations, so that our
program is of the form

program1 = topdec1 ; topdec2 ; topdec3 ; topdec4 ;

where

topdec1 = structure ···
topdec2 = open ···
topdec3 = val ···
topdec4 = twice two

We also learn the following:

• The execution of a program is expressed as a sentence of the form

s, B ` program ⇒ B′, s′

2 1 EXECUTING A SIMPLE PROGRAM

where B is the basis – all the declared information – and s the state before
execution, while B′ and s′ are the basis and the state after execution. (We
shall not be concerned with the state in this example.)

• A basis B is a pair BSTAT, BDYN – a static and a dynamic basis. The static
basis contains all type and structure information provided by previous decla-
rations and is relevant to future elaboration; the dynamic basis contains all
associations of identifiers with values, resulting from previous declarations,
and is relevant to future evaluation.

• Rule 196 [p 64] tells us that, since our program takes the form

program1 = topdec1 ; program2

its execution should normally consist of the following parts:

BSTAT `STAT topdec1 ⇒ B′STAT −the elaboration of topdec1;

s, BDYN `DYN topdec1 ⇒ B′DYN, s
′ −the evaluation of topdec1;

s′, B⊕B′ ` program2 ⇒ B′′, s′′ −the execution of program2.

(However, abnormal execution of topdec1 would be dealt with by rule 194 or
195.)

This is our first visit to an inference rule, and we shall now explain rules and their
use. Every one of the 196 rules in the Definition is in fact a schema, containing
meta-variables which range over either syntactic objects (e.g. topdec) or semantic
objects (e.g. BDYN or s′). Execution is built out of instances of rules. As another
example, leaping from the very top to the very bottom of the language, in rule 1
[p 23]

C ` scon ⇒ type(scon)

C ranges over contexts (a kind of cut-down basis, containing various sets and
environment components), while scon ranges over special constants. A typical
instance of the rule is

(∅, ∅, ({}, {}, {}, {})) ` 3.1415⇒ real

where C has been instantiated to the simplest context there is, with all components
empty.5

Rules are built from two ingredients; sentences of the general form

A ` phrase ⇒ A′

53.1415 is a phrase in the language, i.e. a numeral as opposed to a number; real is a semantic
object, a so-called type name.

1.1 Execution 3

where A and A′ are semantic objects and phrase is a phrase of ML, and side-
conditions. The conclusion of the rule (below the line) must be a sentence; each
hypothesis (above the line) may be either a sentence or a side-condition. In a
sentence, the turnstile (`) and the arrow (⇒) have intuitive significance; as is
common in formal logic, we put semantic objects that can be thought of as “given”
on the left-hand side of the turnstile, while the arrow (⇒) suggests that execution
is a process which results in the object on the right-hand side of the arrow. Note
that rule 1 has no premises; on the other hand rule 196 has three premises which
are sentences, and one which is a side-condition. More precisely, rule 196 really
consists of two rules, as explained in the remark about options [p 23] – one in
which everything between angle brackets 〈 〉 is excluded, and one in which it is all
included.

We shall use the term inference to mean a rule instance which contains no
meta-variables, and whose side-conditions are true; side-conditions are no longer
part of an inference. By fitting inferences on top of each other so that every
premise is the conclusion of some other inference we can form inference trees.
Thus an inference tree represents the elaboration and/or evaluation of a specific
phrase. When it uses only the static rules 1–102, we call it an elaboration (tree);
when it uses only the dynamic rules 103–193, we call it an evaluation (tree). We
shall see examples of both, later in this section.

There are two ways of interpreting a sentence of the form A ` phrase ⇒ A′. In
the cumulative interpretation, A′ is the result of modifying A by phrase, typically
by adding bindings to A. In the incremental interpretation, A′ is the semantic
representation of phrase when elaborated (or evaluated) in A. In many cases it
is obvious which interpretation is intended; for example, if A and A′ are not the
same kind of object, A ` phrase ⇒ A′ must be interpreted incrementally. Also all
declarations, including top-level declarations, are interpreted incrementally. Thus
the elaboration of

val a = 3 val x = "Monday"

results in the environment E = {a 7→ int, x 7→ string}, regardless of the basis
in which the elaboration takes place. As described in Section 4.1, the incremental
interpretation is ideal when bindings are to have local scope; the cumulative inter-
pretation is not appropriate in this case, as it does not distinguish between those
parts of A′ that stem from A and those parts that stem from phrase. The cumu-
lative interpretation is only used in the rules for programs, and in the dynamic
semantics, where the evolution of the state is cumulative although environments
are formed incrementally.

Let us return to rule 196; what does⊕mean? B⊕B′ is the result of superimpos-
ing the information in B′ upon that in B; for example, if B′ contains information
about a variable var or a type ty, then any information about var or ty in B is
overwritten. Note that the result of elaborating or evaluating a topdec is an incre-
mental basis B′STAT or B′DYN, and rule 196 superimposes (using ⊕) this increment

4 1 EXECUTING A SIMPLE PROGRAM

upon the total basis. B⊕B′ can also be expressed BSTAT⊕B′STAT, BDYN⊕B′DYN;
in fact static and dynamic information accumulate separately, and this allows us
to treat elaboration and evaluation completely independently below the level of
programs. The only way in which they interact is enshrined in rules 194 and 195.
Rule 194 says that if a topdec fails to elaborate then its evaluation is skipped,
while rule 195 says that if a topdec evaluates to an exception packet p – i.e. if it
raises an exception – then its elaboration is forgotten.

For this reason, and because all the topdecs in our program will execute nor-
mally, we can conveniently concentrate first upon the elaboration of our whole
program, and then upon its evaluation.

1.2 Elaboration

We shall now drop the subscript STAT, understanding that we are dealing only
with a static basis and with elaboration. So we look for elaborations of our four
topdecs:

B1 ` topdec1 ⇒ B′1
B2 = B1⊕B′1, B2 ` topdec2 ⇒ B′2
B3 = B2⊕B′2, B3 ` topdec3 ⇒ B′3
B4 = B3⊕B′3, B4 ` topdec4 ⇒ B′4

Visiting the rules for the semantics of Modules [Sec 5], we find that the elaboration
of topdec1 must be inferred by the inference tree shown in Figure 1, which is
decorated with the numbers of the rules used. In this inference tree, and often in
later ones, side-conditions are omitted (e.g. the side-condition on rule 100); but
remember that the inference is not valid unless side-conditions are satisfied. The
root (conclusion) of the tree is at the bottom; we have omitted the Core part of
the elaboration at the top.

One can understand elaboration better, perhaps, as the process of generating
such a tree. In this process one does not simply start at the root and work
upwards, or start at the leaves and work downwards. Instead, roughly speaking,
one proceeds from the root upwards filling in the left-hand part of each sentence
(up to ⇒); then upon reaching each leaf one can proceed downwards filling in the
right-hand parts, the results of elaboration.

To understand the inference tree in detail, we must consider the form of the
various semantic objects, with the help of [Fig 11, Sec 5, p 31]. Of the four com-
ponents N,F,G,E of a (static) basis B, only N and E need concern us in the
example (F and G record functor and signature information). In fact, in the ba-
sis B′1 to which topdec1 elaborates, only these two components – the name set
names(E ′) and the environment E ′ – are non-empty (the injection function “in
Basis” pads out the basis B′1 with empty functor and signature environments);
here E ′ is the environment to which the strdec

structure ARITH = ···

1.2 Elaboration 5

C of B1 ` datatype ··· ⇒ E1 C of (B1⊕E1) ` fun ··· ⇒ E2

B1 ` datatype ··· ⇒ E1 B1 ⊕ E1 ` fun ··· ⇒ E2

B1 ` datatype ··· fun ··· ⇒ E1+E2︸ ︷︷ ︸
E

B1 ` struct datatype ··· fun ··· end ⇒ (mARITH, E)︸ ︷︷ ︸
S

B1 ` ARITH = struct ··· end ⇒ {ARITH 7→ S}︸ ︷︷ ︸
SE

B1 ` structure ARITH = ··· ⇒ SE in Env︸ ︷︷ ︸
E ′

B1 ` structure ARITH = ··· ⇒ (namesE ′, E ′) in Basis︸ ︷︷ ︸
B′1

......

?
(57)

......

?
(57)

@
@R

�
�	

(61)

?
(53)

?
(62)

?
(58)

?
(100)

Figure 1: Part of the elaboration of topdec1

6 1 EXECUTING A SIMPLE PROGRAM

elaborates, and namesE ′ records the structure names and type names generated
by this strdec.

Proceeding up the tree, we now need to learn from [Fig 10, Sec 4, p 17] that the
four components SE, TE, VE,EE of an environment E contain information about
structures, types, variables and exceptions respectively. Here, E ′ = SE, {}, {}, {},
where SE is the structure environment to which our strbind

ARITH = struct ··· end

elaborates. Now in general a structure environment is a finite map from structure
identifiers to structures, and here it is a singleton; it maps only ARITH to the
structure S to which our strexp

struct datatype ··· fun ··· end

elaborates. And what is a structure? Just an environment paired with a unique
structure name; so S = (mARITH, E), where E = E1 +E2 is the superposition of
the two environments to which our two decs elaborate. (A dec is a Core language
declaration.)

The Modules part of the inference tree is complete, and the Core part is sup-
plied by the rules for the static semantics for the Core [Sec 4]. Let us first discover
the environment E1 to which the datatype declaration elaborates. E1 will have
a non-empty type environment TE1 because a type has been declared, and also a
non-empty variable environment VE1 (we shall soon see why). In fact

E1 = {}, TE1, VE1, {}

where
TE1 = {NAT 7→ (tNAT, CE1)}

and
VE1 = CE1 = {Zero 7→ tNAT, Succ 7→ tNAT→tNAT}

In general, a type environment maps type constructors to type structures (here
TE1 is a singleton map), and the type structure for a data-type constructor such
as NAT contains two components:

1. a unique type name – here written tNAT – which distinguishes the type de-
clared by this particular elaboration from all others;

2. a constructor environment – here CE1 – which maps each value constructor
of the data-type to its type scheme. (A type scheme is more general than
a type, since it records the polymorphism of an object; but here there is no
polymorphism.) The value constructor information is recorded again in the
variable environment – here VE1; by this means the declaration of a value
constructor overrides the declaration of a variable with the same identifier,
as it should do.

1.2 Elaboration 7

Exercise 1.1 Guided by the preceding remarks, complete the elaboration tree
for the datatype declaration. You will need rules 19, 29, 30 and 49.

Next, let us discover the environment E2 to which the fun declaration elaborates.
The first thing to notice is that fun ··· is a derived form of value declaration,
whose bare form is

val rec twice = fn Zero => Zero

| Succ x => Succ(Succ(twice x))

(See [Sec 1, p 1–2] for the distinction between bare and derived forms, and [App A,
p 66] for all the derived forms.) So, since we have a value declaration, only the
variable environment of E2 will be non-empty. As we have already seen, a variable
environment has the same form as a constructor environment; in fact

E2 = {}, {}, VE2, {}

where
VE2 = {twice 7→ tNAT→tNAT}

Exercise 1.2 Complete the elaboration tree for the fun declaration. You will
need rules 17, 27, 26, 42, 35, 14, 15, 16, 36, 9, 3, 43, 10, 2 and 7. You may
find it helpful to look first at the elaboration of topdec3 which is described
below in detail.

Finally, knowing E1 and E2, we know the right-hand sides of all sentences involved
in the elaboration of topdec1. Note in particular that two names have been gener-
ated: the structure name mARITH and the type name tNAT. So the first component
of the resulting basis B′1 is the name set {mARITH, tNAT}.

Let us proceed more quickly with the elaboration of the three remaining
topdecs.

For topdec2, namely

B2 ` open ARITH ⇒ B′2

recall that B2 = B1⊕B′1 contains the structure environment

{ARITH 7→ (mARITH, E)}

where E records the declarations of NAT, Zero, Succ and twice. Now, via
rules 100, 57 and 23, open just extracts the environment E; thus

B′2 = (namesE,E) in Basis

This allows the ensuing declarations to refer directly to NAT, Zero, Succ and twice.

8 1 EXECUTING A SIMPLE PROGRAM

C3(Succ) � tNAT→tNAT

C3 ` Succ ⇒ tNAT→tNAT C3 ` Succ Zero ⇒ tNAT

C3 ` two ⇒ ({two 7→ tNAT}, tNAT)

C3 ` Succ(Succ Zero) ⇒ tNAT

C3 ` two = Succ(Succ Zero) ⇒ {two 7→ tNAT}︸ ︷︷ ︸
VE ′

C3︷ ︸︸ ︷
C of B3 ` val two = ··· ⇒ {}, {}, VE ′, {}︸ ︷︷ ︸

E ′

B3 ` val two = ··· ⇒ E ′

B3 ` val two = ··· ⇒ (namesE ′, E ′) in Basis︸ ︷︷ ︸
B′3

...

...
?(9)
(3)

@
@R

�
�	

(10)

?

(35)
(42)

@
@R

�
�
�
��(26)

?
(17)

?
(57)

?
(100)

Figure 2: Part of the elaboration of topdec3

1.3 Evaluation 9

For topdec3, namely

B3 ` val two = Succ (Succ Zero) ⇒ B′3

the result basis B′3 will just contain the variable environment {two 7→ tNAT}; see
Figure 2.

Finally, topdec4 = twice two is a derived form [Fig 18, p 68], whose bare form
is

val it = twice two

so its elaboration will produce a basis which contains the variable environment
{it 7→ tNAT}. This represents the special treatment of it , the variable which
always records the type and value of the last expression executed at top level.

1.3 Evaluation

Analogous to elaboration, we now look for evaluations of our four topdecs:

B1 ` topdec1 ⇒ B′1
B2 = B1⊕B′1, B2 ` topdec2 ⇒ B′2
B3 = B2⊕B′2, B3 ` topdec3 ⇒ B′3
B4 = B3⊕B′3, B4 ` topdec4 ⇒ B′4

where we now understand B1, B′1, . . . to be dynamic bases, and where we have
dropped the subscript DYN.

The evaluation is inferred by the inference tree shown in Figure 3. The lower
part of the tree uses the rules for dynamic semantics for Modules [Sec 7], while the
upper half uses rules for dynamic semantics for the Core [Sec 6]. Without going
into details,6 the datatype declaration evaluates to the environment

E ′1 = {Zero 7→ Zero, Succ 7→ Succ} in Env

The lower half of the tree closely parallels that for elaboration of topdec1 in
Figure 1. We only remark that, as we learn from [Sec 6.3, p 47], there is no
difference in the dynamic basis between an environment E and a structure. This
is because the unique name m which labels a static structure has no relevance to
evaluation.

This upper part of the tree illustrates an interesting point about function
declarations. Note that, by rule 123, a fnmatch expression evaluates to a closure
(match, E, {}) [Sec 6.6, p 49]. Here match is the body, or code, of the function
while E is the environment in which it will be evaluated. The third component –

6As explained in Section 2.7, an inference rule concerning datatype declarations is missing in
the Definition.

10 1 EXECUTING A SIMPLE PROGRAM

E2, v ` twice ⇒ {twice 7→ v}

E2 `

fn match︷ ︸︸ ︷
fn Zero => ··· | ··· ⇒ (match, E2, {})︸ ︷︷ ︸

v
E2, v ` twice ⇒ {twice 7→ v}

E2 ` twice = fn ··· ⇒ {twice 7→ (match, E2, {})}︸ ︷︷ ︸
VE

E2 ` rec twice = ··· ⇒ {twice 7→ (match, E2, VE)}︸ ︷︷ ︸
RecVE

E2︷ ︸︸ ︷
E of (B1+E ′1) ` val rec twice = ··· ⇒ RecVE in Env︸ ︷︷ ︸

E ′2

B1 ` datatype ··· ⇒ E ′1

B2︷ ︸︸ ︷
B1 + E ′1 ` val rec twice = ··· ⇒ E ′2

B1 ` datatype ··· val rec ··· ⇒ E ′1 + E ′2︸ ︷︷ ︸
E ′

B1 ` struct datatype ··· end ⇒ E ′

B1 ` ARITH = struct ··· end ⇒ {ARITH 7→ E ′}︸ ︷︷ ︸
SE ′

B1 ` structure ARITH = ··· ⇒ SE ′ in Basis︸ ︷︷ ︸
B′1

?(143)

?
(153)

?
(123)

@
@
@
@
@R

(135)
�
��	

?
(137)

?
(129)

............
?

(164)

@
@@R

�
��	

(168)

?
(160)

?
(169)

?

(165)
(191)

Figure 3: The evaluation of topdec1

1.3 Evaluation 11

here {} – is a variable environment, but what is the point of it? The answer has
to do with recursion. The non-recursive value-binding

twice = fn match

evaluates by rule 135 to

VE = {twice 7→ (match, E1, {})}

Now the effect of the qualifier rec is to fold this variable environment inside itself,
so that VE itself replaces the empty third component of the closure:

RecVE = {twice 7→ (match, E1, VE)}

We shall soon see how this enables twice to unroll its recursion as far as it needs
to, in any application.

We can now summarise the evaluations of topdec2 and topdec3 quite briefly.
For topdec2, namely

B2 ` open ARITH ⇒ B′2

we obtain via rules 191, 164 and 132 that the resulting basis B′2 has just one non-
empty environment component, namely E ′ as defined in Figure 3. This allows the
ensuing topdecs to refer directly to twice.

For topdec3, namely

B3 ` val two = Succ (Succ Zero) ⇒ B′3

the evaluation uses rules 191, 164, 129, 135, 112, 111, 109, 105, 153 and 143; the
only non-empty component in the result basis B′3 is the variable environment

{two 7→ (Succ, (Succ, Zero))}

which is therefore incorporated into B4 for future evaluations. The main point
of interest here is that, despite the fact that the declaration of value constructors
such as Zero and Succ is recorded in the basis, they evaluate to themselves
without reference to the basis (see rule 105).

Finally, let us see how recursive evaluation works in topdec4, in inferring the
sentence

B4 ` val it = twice two ⇒ B′4 (1)

Having followed previous inference trees, the reader should have no difficulty in
discovering that the inference tree must contain the following sentence:

E4 ` twice two ⇒ v (2)

12 1 EXECUTING A SIMPLE PROGRAM

Here E4 = E of B4, and we expect to find that

v = (Succ, (Succ, (Succ, (Succ, Zero))))

To infer (1) from (2) requires rules 191, 164, 129, 135, 153 and 143.
Now in the inference of (2), twice will evaluate in E4 to the closure which we

have met already; in fact we can infer

E4 ` twice ⇒ (match, E1, VE) (3)

from rules 111 and 104. Hence rule 117 must be used, with sentence (3) as its first
hypothesis, to infer (2) above. The second hypothesis for this inference, namely

E4 ` two ⇒ (Succ, (Succ, Zero)) (4)

is also deduced by rules 111 and 104. Now the third hypothesis for rule 117 must
take the form

E1+RecVE , (Succ, (Succ, Zero)) ` match ⇒ v (5)

It is this use of the ‘folding’ operator Rec which ensures that, when the evaluation
of twice is again required in the inference tree for sentence (5), it will once more
evaluate to the closure (match, E1, VE).

The assiduous reader will no doubt be able to complete the inference tree
for (5), using the rules 124–128 for matches, and the rules 140–159 for patterns.
Working up the tree, he will find that (5) must be inferred by rule 126, and will
then understand how the failure of a pattern-matching evaluation (yielding the
special result FAIL) is handled. Once this is understood, all the points which the
present example illustrates have been explored.

13

2 Dynamic Semantics for the Core

As we remarked in Section 1.1, static and dynamic semantics are independent of
one another below the level of programs; this means that they can be presented
independently. There is, in fact, a sense in which the static semantics takes prece-
dence; elaboration “occurs before” evaluation, because part of its purpose is to
reject certain top-level declarations as unacceptable. (The “prior occurrence” is
reflected by rule 194 for programs, which makes no use of the evaluation of any
topdec whose elaboration fails.) This is why the static semantics is presented first
in the Definition. Readers who prefer to study it first can safely skip to Chapter 4.

Nevertheless, there are good reasons for discussing dynamic semantics first,
as we shall do here. First, it is simpler in many ways than the static semantics;
second, it deals with ideas which are more familiar to many people; third, by
putting it first we actually reinforce our claim that it is truly independent. We shall
find that type-checking and signature-checking really do not have to be understood
when we assess the way in which evaluation is accomplished. Indeed, in [Sec 6.1,
p 46] we stipulate that for the dynamic semantics we delete from the program text
everything to do with types (though this stipulation needs minor modification; see
Section 2.7 below).

2.1 Semantic objects

We shall begin with a few remarks about semantic objects [Fig 12, p 46; Fig 13,
p 47]. In both static and dynamic semantics, all objects are built from simpler
ones by four means: disjoint union (∪), cartesian product (×), finite subsets

(Fin) and finite maps (
fin→), and the identity of two objects is defined as usual

for these constructions. Note particularly that records are maps, not lists; the
order of components in a record does not affect its identity. This illustrates that
our semantic definition is not fully concrete; it leaves to the implementer how to
represent such objects.

Semantic objects are of course manipulated freely in the rules; they are com-
bined or changed, and components are extracted. This is the essence of evaluation,
and convenient notations are essential. These are all defined in the section on static
Core semantics [Sec 4.3, p 18], but are used throughout the whole Definition.

An essential feature of operational – as opposed to denotational – semantics is
that user-defined functions are not represented as abstract objects in a domain but,
more dirtily, by the code which computes them, together with the environment in
which that code should run; this is why the object class Closure, the user-defined
functions, is built from the syntax class Match. The latter is the only compound
syntax class which finds its way into the semantics, but of course many identifier
classes appear in the semantic objects (e.g. Lab appears in Record).

14 2 DYNAMIC SEMANTICS FOR THE CORE

2.2 The initial dynamic basis

In ML, as in most languages, there are many pre-defined objects. These are values
and exception constructors which cannot, or cannot efficiently, be defined within
ML itself, and they are known as the basic values BasVal and the basic exceptions
BasExName [Sec 6.4,6.5, p 48]. Their meanings are fully described in [App D,
p 77] which details the initial dynamic basis, B0; for those basic values b which
are functions, this determines the value APPLY(b, v) (for appropriate values v),
which is used in rule 116 [p 52]. The name used for each b in the semantics [Sec 6.4,
p 48] is chosen to be the same as the identifier to which it is bound in the initial
dynamic basis B0; but this is a mere convenience, and the user can overwrite these
bindings by subsequent declarations.

The basic values b which are not concerned with input and output are all
functions, and are fully described on [p 77–79] – some by means of ML declarations
(but likely to be implemented more efficiently), others in normal mathematical
notation. These functions have no side-effect upon the memory, but many of them
(and also of the input/output functions) are capable of raising basic exceptions.

The basic values concerned with input and output are mostly functions, and
are described [p 80] in terms of the simple notion of an infinite character stream;
these streams constitute two basic ML types instream and outstream. Apart
from the top-level dialogue, streams are the only defined interaction between ML
and its environment. The standard input stream std in (of type instream) and
the standard output stream std out (of type outstream), are among the basic
values; by means of the basic stream functions the programmer can create other
streams.

Most of the basic exceptions are raised by one or more of the standard func-
tions; but the exceptions Match and Bind are raised by rules 118 [p 52] and 136
[p 54] as a result of the failure of pattern-matching in function application and in
declarations, while the exception Interrupt is raised by user intervention.

There is no need to comment on most of the basic values, but we discuss the
meaning of the equality function = briefly. It is a polymorphic predicate, and its
effect upon the type system is dealt with in Section 5.2; here we are concerned with
its evaluation. The brief description on [p 79] says that two objects are equal (=) if
and only if they are identical. We have defined the identity of objects above, so the
definition is precise, but we wish to draw attention to two points. First, the type
system will ensure that two function values – whether user-defined functions or
basic functions – are never tested for equality; this avoids arbitrary and unnatural
decisions about what such a test should mean. Second, since a reference a is a
value, two different reference values are always unequal – even if they “point to”
equal values in the memory. In terms of LISP, this makes ML’s = more like eq

than like equal; for example

ref 1 = ref 1

2.3 Evaluation order 15

evaluates to false (because each application of the constructor ref creates a new
address). The advantage of this choice is that an implementation of = never has
to proceed beyond an address to analyse the value addressed, and this avoids the
complication of having to detect the cycles which can exist via addresses.

2.3 Evaluation order

Phrases in ML are evaluated from left to right. In a pure functional language,
i.e. one without the imperative features of exceptions and assignment, this need
not be stipulated – the great advantage of the absence of imperative features is
that evaluation order need not be fully specified and yet the result of evaluation
can be fully determined. But ML incorporates both exceptions and reference
values (with assignment), which bring their own advantages for expressiveness;
with these imperative features, we can only ensure determinacy by fully specifying
the evaluation order. We indeed wish to ensure determinacy, so that there can be
no doubt about the order in which side-effects occur.

This has led to two conventions in presenting the evaluation rules, namely
the state convention and the exception convention [Sec 6.7, p 49–50]; by means of
them the discipline of left-to-right evaluation is represented in a schematic way
for all those rules which are not concerned directly with the imperative features.
To clarify these conventions, let us take a simple example of applying them to a
rule. Consider rule 112 for applying a constructor (omitting the side-condition for
convenience):

E ` exp ⇒ con E ` atexp ⇒ v

E ` exp atexp ⇒ (con, v)

In this rule, the result of the first evaluation is not needed for the second (contrast
rule 108), so if exp and atexp could cause no side-effects no order constraint would
be needed. But to achieve determinacy, ML must specify when the side-effects in
the two sub-evaluations occur. In fact, the state convention dictates that the full
form of rule 112 is

s, E ` exp ⇒ con, s′ s′, E ` atexp ⇒ v , s′′

s, E ` exp atexp ⇒ (con, v), s′′

i.e. the side-effects (state-change) of the left sub-evaluation occur first. But this
still does not take account of the fact that a sub-evaluation may raise an exception,
which should preclude later sub-evaluations; thus the exception convention decrees
that rule 112 be augmented by two further rules – representing the two cases in
which an exception is raised by a sub-evaluation:

s, E ` exp ⇒ p, s′

s, E ` exp atexp ⇒ p, s′

s, E ` exp ⇒ con, s′ s′, E ` atexp ⇒ p, s′′

s, E ` exp atexp ⇒ p, s′′

16 2 DYNAMIC SEMANTICS FOR THE CORE

2.4 Function application

The heart of a functional programming semantics is the application of a func-
tion to arguments. The first thing to note is that ML is an eager, not a lazy,
functional language, i.e. it evaluates the function argument before executing the
function body. One reason for this is that the imperative features – exceptions
and assignment to references – are confusing in a lazy language.

The activity of function application is represented by the seven rules 112–118.
They evaluate the phrase exp atexp when exp evaluates to any of the following:

con en ref := b (match, E, V E)

These have quite different effects.
The first two, con and en, are both constructor-like (an exception name en is a

kind of dynamic constructor - see Section 2.6 below), and in these cases application
merely performs a construction, i.e. it pairs the constructor with its argument as
shown in rules 112 and 113. Pairing is the simplest way of composing two objects
into one in such a way that the components can be recovered; of course it can be
implemented in many ways.

The rules for ref and := are, together with rule 158 for matching a reference
value, the only rules which represent the use of references and assignment in ML.
Rule 114 treats ref as a special sort of constructor; the pair (a, v) – where a is
a new address – is constructed, just as rule 112 constructs the pair (con, v), but
the construction (a, v) is kept in a special place; it becomes an element a 7→ v
in the memory component mem of the state s, where it can submit to change.
In rule 115, one may be confused by seeing that the argument of the assignment
function := is expected to be a record; but note that the type of 2-tuples in ML
is just the type of records whose fields are labelled 1 and 2 [App A, Fig 15, p 67].
These 2-tuples may be called pairs, but at a higher level; they are not the same
kind of pair as (con, v), by which our semantics represents the application of a
constructor. Another point to note is that := really is (the notation for) a value –
let us call it the “assigner” ; in the initial dynamic basis [App D, p 77] the identifier
:= is bound to the assigner, but one can bind it to other values – and indeed bind
other identifiers to the assigner!

Rule 116 is the means of incorporating the meaning of basic function values b,
using APPLY. This has already been discussed.

Rules 117 and 118 define the application of user-defined functions; an example
was given in Section 1.3 showing how the environment components of the closure
are used. Note that the result depends upon whether or not the argument v of the
application succeeds in matching one of the patterns in the match – i.e. whether or
not the function has been defined on v. When match contains no pattern matched
by v, then the result of evaluating it is the special semantic object FAIL, which is
not a value. According to the second restriction in [Sec 4.11, p 30], the match in a
function expression fn match should be exhaustive, i.e. every value (of the right

2.5 Pattern matching 17

type) should match at least one of its patterns; the compiler – or the elaborator
– is supposed to issue a warning if this restriction is not met, but the elaboration
is not to be failed on that account. Thus a program which has not evoked such
a warning should never raise the exception Match when it is evaluated. But of
course the evaluator, having no knowledge of types, cannot know whether a match
is exhaustive. Evaluation is like a railway locomotive which is perfectly well built,
but cannot know that the benevolent railway designer has built a track which
never runs into the sand.

There is, a priori, another way in which the evaluation could be inadequate;
for there are values to which exp may evaluate – such as special values sv ∈ SCon
[Sec 2.2, p 3] – although no rule defines how to apply them as functions. Why do
we not have a rule such as

E ` exp ⇒ sv

E ` exp atexp ⇒ [Wrong]

so that the user can detect such bad applications and recover from them, by
handling the exception Wrong? Again, the answer is that such a bad application
has to be the consequence of a badly typed expression, such as 4.6(true) , which
will have been rejected by elaboration. In fact we believe the following to be true,
though we have not proved it:7

Every program which does not compute infinitely, and which elaborates
successfully, also evaluates successfully.

When stated formally, this implies that there are no cases of evaluation within a
well-typed program which are not covered by the existing rules.

2.5 Pattern matching

If function application is the heart of evaluation, perhaps pattern matching is its
life-blood; in every application of a user-defined function, the argument is to be
tested against all patterns in the match – perhaps simultaneously – and the mrule
selected is the left-most successful one. This is the work of rules 124–126 [p 53]
for matches. Much of the the remarkable efficiency recently gained for functional
programming is due to good algorithms for matching of a value to several patterns
at once. And we are free to juggle with the order in which patterns are matched
just because pattern matching has no side-effects. This latter fact is perhaps
obvious; for, given a pattern pat, an environment E and a value v to be matched,
there is no expression evaluation involved in the evaluation

E, v ` pat ⇒ . . .

7An analogous result for a fragment of ML was proved in A theory of type polymorphism in
programming languages by R.Milner, J. Comp. Sys. Sci., Vol 17, 1978, pp348–375.

18 2 DYNAMIC SEMANTICS FOR THE CORE

All that has to be done is to pick v apart, as dictated by the structure of pat,
collecting along the way a binding for each variable in pat. This is the work of
rules 140–159 [p 54–56]. We can formulate this “no side-effects” property neatly,
and the proof is straightforward:

Theorem 2.1 (Pattern matching) Let E, v and pat be any environment, value
and pattern. Suppose that

s, E, v ` pat ⇒ r, s′

can be inferred for states s, s′ and result r. Then r is either a value environment
VE, or else the special result FAIL – it cannot be an exception packet p. Moreover,
s = s′.

Proof First one must expand all the rules 140–159 according to the state and ex-
ception conventions. Then the proof proceeds easily by structural induction
on pat.

The presence of either kind of side-effect – exception-raising or assignment – would
invalidate simultaneous pattern matching, because the order of matching could
affect the result.

It is worth noting that the environment E and the state s play only a small
part in pattern matching; E is only needed in rules 156 and 157 to look up the
exception name bound to an exception constructor, while s is only needed in
rule 158 to look up a reference.

Before leaving patterns we should mention the restriction that no variable
should occur more than once in a pattern [Sec 2.9, p 9]. There is no semantic
barrier to relaxing this restriction, for values whose types admit equality [Sec 4.4,
p 18]; to relax it completely would allow us to test equality of all values – even
functions! – by declaring

fun equal(x,x) = true

| equal _ = false

However, the effect of repeated variables on efficient simultaneous matching needs
investigation.

2.6 Exceptions

An exception packet p = [e] has as its content an exception value e ∈ ExVal, i.e.
an exception name en possibly paired with a value; that is, e = en or e = (en, v).
We shall use the term “exception” to mean an exception value e, not a packet [e].
As indicated in [Fig 13, p 47] exceptions are indeed a kind of value; they can be
treated in computation just like any other value (passed as function arguments,
bound to identifiers etc.). In fact they constitute a type exn, one of the basic
types of ML [App C, p 74].

2.6 Exceptions 19

The distinguishing feature of exceptions (among values) is just that they, and
only they, can be enveloped in packets and raised, by rule 122, and subsequently
handled by rules 120 and 121. Note, however, that a packet p = [e] is not a value;
its tag or envelope, [], serves to distinguish it and allow it to be treated specially
by the rules introduced by the exception convention (see Section 2.3 above), thus
aborting evaluations appropriately.

Exception constructors excon behave in some ways just like value constructors
con; when an exception e is handled by rule 120 or 121 it is analysed by the
match exactly as datatype values are analysed in function application. (Indeed, as
we said above, exceptions themselves can be function arguments.) But there are
important differences. First, the quasi-datatype exn is extensible; its constructors
are not given once and for all, but new constructors can be declared at any time
by the exception declaration, rule 130 [p 53]. Second, there may be two different
declarations of the same exception constructor, and a way has to be found to avoid
a confusion which may result.8 Consider a skeletal example:

exception E ;

fun f() = let exception E in raise E end ;

f() handle E => 3

| _ => 4

If the result were 3, it would mean that the first mrule of the match was suc-
cessful, and this would imply that a user at top-level could accidentally handle
an exception whose constructor was defined locally inside a function-body and
should therefore be inaccessible outside. In fact the result is 4, because the ex-
ception raised uses the inner declaration of E, while the pattern E in the handling
expression corresponds to the outer declaration. To achieve this, an exception
constructor E is not represented semantically just by itself (as are value construc-
tors, cf. rule 105 [p 51]), but by a newly generated exception name en, see rule 138
[p 54]. The side-condition in that rule, en /∈ ens of s , shows why the state s must
contain a component ens representing the exception names previously generated.

Because new exception constructors can be declared anywhere, and exceptions
treated as normal values, the type exn has all the qualities of a general type: a
type into which one can inject the values of any type at all. We can think of such
general types as extensible datatypes, and can imagine a more general feature in
ML which would allow the user to define his own extensible datatypes at will. It is
not clear how much more valuable this would be than having just one such type.
As it stands, ML can perhaps be criticized for providing a general type as a by-
product of its exception mechanism, rather than directly; but a better alternative
is not obvious. The combination of the two concepts may turn out to be more
natural than it seems at first.

8No confusion can result from two declarations of the same value constructor, because
they must have different types — and also because value constructors in any case evaluate
to themselves.

20 2 DYNAMIC SEMANTICS FOR THE CORE

Given the general nature of the type exn, the reader will hardly be surprised
to find that equality is not defined on exceptions [App C, p 74].

2.7 Constructors versus variables

In this section we clarify the distinction between variable identifiers and construc-
tor identifiers, and also correct a mistake in the Core dynamic semantics which is
relevant to the distinction (though the mistake only shows up in Modules, with
the use of signatures).

The fourth rule concerning the status of identifiers [p 5] implies that an iden-
tifier which is introduced as a value constructor or exception constructor cannot
be used as a variable. Thus, after

datatype T = A | B | C

an attempt to re-use A as a variable, e.g. to redeclare it by val A = . . . or to use
it as a formal parameter by fn A => . . . will fail.9 With one exception, if the
above declaration is at top level then no ensuing topdecs of the Core language can
remove A’s status as a value constructor. Note in particular that if we redeclare T

by

datatype T = C | D | E

then A and B will still be constructors belonging to the hidden type T.
The single exception is the use of the open declaration. Suppose a structure

S contains a variable component A (i.e. S.A is a long variable), say with value 1.
Now consider

datatype T = A ;

open S ; (*1*)

A ; (*2*)

val A = "Monday" ;

At point (*1*) the identifier A has acquired variable status, and moreover denotes
a new value, 1, which is printed at (*2*). Further, the rebinding of A to "Monday"

will succeed.
The above example shows that, as far as the Core language is concerned,

the only way of removing constructor status from an identifier A is to unpack a
packaged declaration of A. But another phenomenon arises in Modules, which is
best considered at this point. If the declaration datatype T=A occurs inside a
structure, then it is possible – by ascribing a certain signature to that structure –
to cause A to change its status from constructor to variable without changing its

9The phrase may be valid without having the intended meaning; for example val A = A will
have no effect at all, because the pattern A contains no variables, but just consists of a single
constructor.

2.8 Evaluation theorems 21

meaning (i.e. the value which it denotes). Because of this, the remark in [Sec 6.1,
p 46] – that datatype declarations can be ignored during evaluation – is not quite
correct. For, in order to prepare for the possible status-change just mentioned, a
datatype declaration must generate a suitable variable environment. (This does
not affect the fact that, while an identifier still preserves its constructor status,
it does indeed evaluate to itself by rule 105 [p 51], without use of the variable
environment.)

To formulate the appropriate rule for evaluating datatype declarations, suppose
that a datatype binding datbind introduces the value constructors con1, . . . , conk.
Let VEdatbind = {con1 7→ con1, . . . , conk 7→ conk}. We then add a new rule for
declarations, whose natural place is between rules 129 and 130 [p 53]:

E ` datatype datbind ⇒ VEdatbind in Env

Note that the result does not depend upon E. The use of this rule is illustrated
by Exercise 3.1 in Chapter 3. A small change is also needed in rule 130, to allow
status-change also for exception constructors; the rule should now read

E ` exbind ⇒ EE VE = EE

E ` exception exbind ⇒ (VE,EE) in Env
(130)

However, abstype declarations can still be ignored during evaluation; the reason
is that no structure can provide access to the constructors of an abstract type.

These corrections bring the dynamic semantics into accord with rules 19 and 21
[p 25] in the static semantics of datatype and exception declarations, and with
rules 73 and 74 for the corresponding specifications, all of which generate a VE
component.

2.8 Evaluation theorems

In this section we collect a few theorems which represent interesting properties of
evaluation. They also serve to introduce the proof technique of induction on the
depth of inference trees, which is one of the advantages of an operational semantic
definition. We should point out that Theorem 2.1 was particularly simple; it could
be proved by structural induction on patterns because in the pattern-matching
rules the pattern in a hypothesis is always a subpattern of that in the conclusion.
This structural property is not true for the phrases in all rules, cf. rule 117 or 118.

For those not interested in proof, the results themselves, and the fact that their
proofs are not hard, should give some confidence in the semantic method.

We begin with a few properties of states s = (mem, ens) which are by no
means obvious from the inference rules, though they may be properties which one
would either expect or hope for. First, it is quite easy to prove that, throughout
evaluation, the state always increases. Since the property holds for the whole
language, not just for the Core, we state it generally. As usual, for every finite
map f , we denote the domain of f by Dom(f) [Sec 4.2, p 17].

22 2 DYNAMIC SEMANTICS FOR THE CORE

Theorem 2.2 For any phrase, let the sentence

s, A ` phrase ⇒ A′, s′ (∗)

be inferred, where s = (mem, ens) and s′ = (mem ′, ens ′) and A, A′ are semantic
objects. Then

Dom(mem) ⊆ Dom(mem ′) and ens ⊆ ens ′

Proof The proof is by induction on the depth of inference of the inferred sentence
(∗). Since it is an evaluation, the inference must conclude with one of the
rules 103–159 for the Core, 160–193 for Modules or 194–196 for programs
(in its full form according to the state convention), or else with one of the
rules added according to the exception convention. Whichever rule is used,
the hypotheses have shorter proofs, so we can assume the theorem for those
proofs.

Now for any rule expanded by the state convention it is easy to see that
the required result for the conclusion follows from the assumed result for the
hypotheses. See for example the full form of rule 112 displayed in Section 2.3
above, or the general form at the top of [Sec 6.7, p 50]. For if there are no
hypotheses at all in the rule by which (∗) is inferred, then s = s′; if there is
only one then s and s′ are the same in the conclusion as in the hypothesis;
if there are two or more – as for rule 112 – then the result follows simply by
transitivity of ⊆. A glance at the rules added for rule 112 by the exception
convention, displayed at the end of Section 2.3, shows that the result is easy
for such rules also.

It remains to deal with rules 114, 115, 138, 158 and 194–196 to which
the state convention does not apply, and with their companions added by
the exception convention. In each case, a simple check yields the required
result. Take for example rule 114:

s, E ` exp ⇒ ref, s′ s′, E ` atexp ⇒ v, s′′ a /∈ Dom(mem of s ′′)

s, E ` exp atexp ⇒ a, s′′+{a 7→ v}

By applying induction to the two hypotheses of the rule, and then using
transitivity, we get

Dom(mem of s) ⊆ Dom(mem of s ′′)

and a fortiori

Dom(mem of s) ⊆ Dom(mem of s ′′+{a 7→ v})

as required. The result for ens is even more direct.

The import of this simple theorem is that the semantic definition does not cater
for garbage collection; the state is always growing, even though some addresses

2.8 Evaluation theorems 23

and some exception names may become inaccessible because all uses of them have
been erased from the basis by the superposition of new declarations. Of course
implementers will take advantage of this inaccessibility to re-use memory locations.

Another fact, with a similar proof, is that no attempt is ever made to look up
a memory address which is not in the domain of the current memory – i.e. which
is not currently associated with a value – or to raise an exception whose name is
not recorded in the current state. Unlike the previous result, we would be greatly
concerned if this were not true, or not easily deducible from the rules.

Let us express the property precisely, and in a form which is amenable to
inductive proof. We need to assume that, if the evaluation takes place against
semantic background (s, A), then any address a which occurs anywhere in the
background – including, perhaps, in a value stored in s – is itself bound to a value
in s. A similar assumption must be made about exception names. To express
this assumption, let Addrs(A) and Ens(A) be the addresses and exception names
occurring anywhere in a semantic object A.

Theorem 2.3 (No Dangling References) For any phrase, let the sentence

s, A ` phrase ⇒ A′, s′

be inferred, where s = (mem, ens) and s′ = (mem ′, ens ′), and A, A′ are semantic
objects. Assume also that Addrs(s, A) ⊆ Dom(mem) and Ens(s, A) ⊆ ens. Then

Addrs(s′, A′) ⊆ Dom(mem ′) and Ens(A′, s′) ⊆ ens ′

Proof The structure of the proof is very similar to the previous one, and we shall
only look at one interesting case, rule 158:

s(a) = v s, E, v ` atpat ⇒ VE/FAIL, s

s, E, a ` ref atpat ⇒ VE/FAIL, s

We assume Addrs(s, E, a) ⊆ Dom(mem of s) and Ens(s, E, a) ⊆ ens of s . So
in particular, since v occurs in s, we have Addrs(v) ⊆ Dom(mem of s) and
Ens(v) ⊆ ens of s ; hence

Addrs(s, E, v) ⊆ Dom(mem of s) and Ens(s ,E , v) ⊆ ens of s

Hence we can apply induction to the hypothesis, and the required result is
immediate.

We conclude with a theorem about determinacy. A guiding principle of the Def-
inition is that the effect of each program should be completely determined, so
that there is no chance for different implementations to make different arbitrary
choices of interpretation when the language definition admits freedom of choice.
True, we have violated this principle in one or two cases. One case is that the

24 2 DYNAMIC SEMANTICS FOR THE CORE

range of integers, and the range and precision of reals, have not been specified;
another is that the precise points at which a program may be interrupted (by a
user-generated Interrupt) is not indicated.

Notwithstanding these few shortcomings, the dynamic semantics is determi-
nate in (informally) the following sense: for each phrase, s and appropriate A
there is at most one pair (A′, s′) such that the sentence

s, A ` phrase ⇒ A′, s′

can be inferred. This is slightly inaccurate, because a new address a, or a new
exception name en, may be chosen arbitrarily in rule 114 or 138. A completely
accurate statement, therefore, is as follows:

Theorem 2.4 (Determinacy) Let the two sentences

s, A ` phrase ⇒ A′, s′ s, A ` phrase ⇒ A′′, s′′

both be inferred. Then (A′′, s′′) only differs from (A′, s′) by a one-to-one change of
addresses and exception names which do not occur in (s, A).

Proof Again, the proof is a long induction which is almost straightforward.
However, one needs first to prove an auxiliary theorem (perhaps it has some
interest its own right) which asserts that if s, A ` phrase ⇒ A′, s′ can be in-
ferred, and we change the addresses and exception names occurring in (s, A)
in a one-to-one manner, the sentence can still be inferred with appropriate
one-to-one change of names in (A′, s′).

This theorem complements the result stated informally at the end of Section 2.4 –
that there are enough rules to ensure that evaluation is always successful. Together
they assert that (at least for terminating programs) there is exactly one evaluation.

One important theorem, which we do not formulate here, concerns evaluation
and elaboration together. It asserts that if a program is executed successfully then
it yields a sound basis B, in the sense that the value bound to any variable in BDYN

does indeed possess the type bound to the variable in BSTAT. This theorem has
been formulated and proved for a smaller language including imperative features.10

We should emphasize that all the theorems in this section hold for the entire
language, not just for the Core.

10M. Tofte, Type inference for polymorphic references, to appear in Information and Compu-
tation, 1990.

25

3 Dynamic Semantics for the Modules

In the Core, evaluation is separated from type checking, and consequently type
information in ML programs can be erased from Core programs [Sec 6.1, p 46]
before evaluation (with the exception of datatype declarations, see Section 2.7).
The dynamic semantics of Modules is done in the same spirit. In this chapter we
proceed by pursuing the goal of separating out evaluation from elaboration; by
discovering what static information is required for evaluation, for there is some,
one grasps the idea of Modules more clearly than by a rule-by-rule commentary.

We begin in Section 3.1 by discussing the basic design underlying Modules.
In Section 3.2 we treat structures by themselves without signatures or functors.
In Section 3.3 we deal with interfaces – the aspect of signatures which affects
evaluation. In Section 3.4 we extend the discussion to functors. Finally, in Sec-
tion 3.5 we look at an alternative meaning for signatures in structure and functor
declarations.

3.1 Structures and signatures

It is well known from practical programming that, especially when large programs
are developed, a major part of the development effort lies in deciding “what goes
where”. It is also common experience that one wishes to encapsulate one or more
types and operations on those types so that they can be regarded as a single unit.
Finally, it is desirable that manipulation of such units can be expressed in the
programming language itself, so that it becomes subject to automatic checking.

This raises the interesting question: What kind of thing is such a unit? It
is not a type in the usual sense, for it contains values. Nor is it a value in the
usual sense, for it contains types. The ML term for such a hybrid object is a
structure. A structure results from executing a declaration and encapsulating the
environment so obtained, and one can name this structure by means of a structure
declaration. A very simple example is

structure lamp =

struct

datatype bulb = ON | OFF

fun switch(ON) = OFF | switch(OFF) = ON

end

Having encapsulated this pair of declarations as a structure, one can then (or
later) decapsulate it using the open declaration

open lamp

and the effect is just that the components of the structure, here bulb and switch,
become directly available.

26 3 DYNAMIC SEMANTICS FOR THE MODULES

One way of viewing structures is provided by theories of dependent types.11

From this point of view, one can think of the above structure as a pair 〈bulb, cl〉
of a type and a value, here a (particular) type bulb and a closure cl for switch.
(Let us ignore the constructors just now.) Moreover, still from the point of view
of dependent types, the type of the lamp structure is something like

[bulb : TYPE, switch : bulb→bulb]

Here TYPE is not a type itself, but a kind. (Kinds classify types, whereas types
classify values.) Also note that bulb is now a variable over types, rather than the
name of a particular type, and that the type of switch depends on bulb.

In ML, structure types are called signatures; in the above example, a signature
for bulb is declared by

signature APPLIANCE =

sig

type bulb

val switch : bulb -> bulb

end

The above example, trivial though it is, shows that the concept of structure
type is important. First, a signature summarises the contents of a structure with-
out all its detail. But more importantly, a signature is an abstract description
of all structures whether written or yet to be written, that match the signature;
hence APPLIANCE is a signature for all things that have at least a bulb and a switch.
(As we shall see later, a structure is allowed to have more than just a lamp and a
switch and still match the signature.) This opens up possibilities for information
hiding in various ways; for example, ML allows one to curtail a structure by a
signature, thereby creating a view of the structure in which only what is specified
by the signature is accessible.

We have seen that structures are a hybrid form of values and types, and that
signatures are somewhat unusual types in that the value part of a signature can
depend on its type part. Since structures can contain both values and types, if
we are not careful the distinction between elaboration and evaluation could be
lost. This phase distinction12 is at the heart of efficient execution for any typed
language. Certainly, one would not happily depart from the principle that the
type of an expression has to be deduced just once. In the Core we have seen that

11See for example D. MacQueen, Using dependent types to express modular structure: ex-
perience with Pebble and ML, Proc. 13th Annual ACM Symp. on Principles of Programming
Languages, 1986; also J. Mitchell and R. Harper, The essence of ML, Proc. 15th Annual ACM
Symp. on Principles of Programming Languages, 1988.

12This term is taken from R. Harper, J. Mitchell and E. Moggi, Higher-order modules and the
phase distinction, Proc. 17th Annual ACM Symp. on Principles of Programming Languages,
1990.

3.2 Structures only 27

it is sufficient to elaborate every expression just once, and this is the consequence
of two properties. The first is the phase distinction which ensures that the type of
an expression never depends on any dynamic object; the second is the existence
of principal types, which will be discussed later.

The design of the Modules lifts these two basic principles to the higher level
of structures and signatures. The phase distinction is manifest in the inference
rules of the Definition, simply because dynamic and static objects are treated
separately. Also, by analogy with types, the existence of principal signatures is
proved in this Commentary.

Essentially the same kind of lifting works for other languages as well;13 The
lifting does, however, rely on a slight redundancy between the semantic objects
of evaluation and elaboration. Evaluation involves interfaces, which are stripped-
down versions of signatures in the sense that they are concerned solely with the
shape of objects, not with their kinds or types; see Section 3.3.14

Let us finish this section with an example of the kind of language construct
that would destroy the phase distinction. Suppose we could write

structure A1 = struct val x = 3 end

and A2 = struct val x = "Monday" end

fun f(b: bool) =

let (if b then open A1 else open A2)

in x

end

Then it would not be clear where the last occurrence of x is bound, nor indeed what
type it has. In fact, ML preserves the phase distinction by forbidding conditional
declarations.

3.2 Structures only

Already in the Core dynamic semantics there is a need for a structure environment,
but only for the purpose of looking up long identifiers and for evaluating the open

declaration, rule 132 [p 53]. A structure environment maps structure identifiers to
structures, and as far as evaluation is concerned a structure is just an environment
E = (SE, VE,EE), whose first component SE is again a structure environment.
Thus the definitions of Env and StrEnv in [Fig 13, p 47] are mutually recursive.
We tend to use the term “structure” for an environment when we are concerned
with encapsulating it or naming it.

13see D.T. Sannella and L. Wallen, A calculus for the construction of modular Prolog programs,
Proc 1987 IEEE Symp. on Logic Programming, San Francisco, 1987, 368–378; to appear in
Journal of Logic Programming.

14Interfaces are not needed in the afore-mentioned type-theoretic treatments of modules, ap-
parently because those accounts are not concerned with variations in shape.

28 3 DYNAMIC SEMANTICS FOR THE MODULES

We shall begin by studying a first approximation to Modules, which provides
nothing more than the ability to encapsulate and name environments. This en-
tails a sublanguage containing essentially just structure expressions and structure
declarations. If this were all that Modules provided, it would still be of some
use. The relevant evaluation rules would be as shown in Figure 4; these are the
rules 160–169 [p 59,60] but with rule 162 omitted (since we have omitted functors),
and with rule 169 simplified (since we have omitted signatures). In reading the
rules, first note that in the full semantics [Fig 14, p 57] a basis B contains both
functors and signatures, but since we are omitting these we can for now think of
B as just an environment.

It is worth exhibiting the very close parallel between these rules for structures
and a subset of the rules for Core language expressions; we can then see that, for
structures alone, there are hardly any new questions to discuss about dynamic
semantics. Rules 160,161 and 163 correspond closely to rules 109, 104 and 108
[p 50,51] for expressions. Rule 164 represents the only link between the Core and
the Modules evaluation; thus we see that a Core declaration dec – yielding an
environment – is atomic from the Modules viewpoint. This indicates that, at
least for evaluation, it is clear how ML Modules could sit above any programming
language. Rules 165–168 are exactly parallel to rules 129, 131, 133 and 134 for
Core declarations [p 53], while the simplified rule 169 is exactly what rule 135
for value bindings would become if a single value binding took the simple form
var => exp (rather than the more general pat => exp).

3.3 Signatures and interfaces

To see the effect of an explicit signature in a structure binding, consider the
following program:

structure A: sig val x: int end

= struct val x = 3 and y = true end ;

A.y

What will happen? ML’s answer is that the execution will fail. The reason is that
the explicit signature sig val x: int end curtails the view, seen through A, of
the structure generated by the struct. . . end expression. In fact the elaboration
of the topdec A.y will fail; thus, by rule 194 [p 64], its evaluation will not even
be attempted.

It is tempting to try to preserve the simplified rule 169, Figure 4, as the dy-
namic semantics for structure bindings; in other words, we would like to delete
all mention of signatures from a program for the purpose of evaluation. To jus-
tify defining Modules evaluation in this way, completely ignoring the effect of
structure-curtailment, one would claim that the only cases which would be im-
properly handled are those where elaboration fails, as in the above example, and
that these cases can therefore be ignored.

3.3 Signatures and interfaces 29

Structure Expressions B ` strexp ⇒ E/p

B ` strdec ⇒ E

B ` struct strdec end⇒ E
(160)

B(longstrid) = E

B ` longstrid ⇒ E
(161)

(omitted) (162)

B ` strdec ⇒ E B + E ` strexp ⇒ E′

B ` let strdec in strexp end⇒ E′
(163)

Structure-level Declarations B ` strdec ⇒ E/p

E of B ` dec ⇒ E′

B ` dec ⇒ E′
(164)

B ` strbind ⇒ SE

B ` structure strbind ⇒ SE in Env
(165)

B ` strdec1 ⇒ E1 B + E1 ` strdec2 ⇒ E2

B ` local strdec1 in strdec2 end⇒ E2
(166)

B ` ⇒ {} in Env
(167)

B ` strdec1 ⇒ E1 B + E1 ` strdec2 ⇒ E2

B ` strdec1 〈;〉 strdec2 ⇒ E1 + E2
(168)

Structure Bindings B ` strbind ⇒ SE/p

(simplified)
B ` strexp ⇒ E 〈B ` strbind ⇒ SE〉

B ` strid = strexp 〈and strbind〉 ⇒ {strid 7→ E} 〈+ SE〉
(169)

Figure 4: Simplified rules for structures only

30 3 DYNAMIC SEMANTICS FOR THE MODULES

Unfortunately the claim is false, but only because of the open declaration. A
simple example – using the same structure declaration as above – shows why:

val y = false ;

structure A: sig val x: int end

= struct val x = 3 and y = true end ;

open A ;

y ;

If the signature here had no curtailing effect, then the evaluation of y at the
end would return true, because the y in A would supersede the y previously
declared. But in fact the evaluation should return false, since the curtailment
should exclude y from A. Note particularly that the program elaborates perfectly
well.

This leads to the notion of interface, introduced in [Sec 7.2, p 57,58]. See also
the semantic object classes [Fig 14, p 57]. An interface is a kind of shape for an en-
vironment, and signature expressions evaluate to interfaces. While an environment
is a triple E = (SE, VE,EE), an interface is a triple I = (IE, vars , excons). An in-
terface environment IE maps structure identifiers to interfaces. We could say that
E conforms to I if DomSE ⊇ Dom IE, DomVE ⊇ vars , and DomEE ⊇ excons ,
and recursively each environment in SE conforms to the corresponding interface
(if existent) in IE.

Now the shape of the signature ascribed to A in our example is

I = ({}, {x}, {})

– no structures, one variable x, no exceptions. On the other hand the structure
expression for A evaluates to the environment

E = ({}, {x 7→ 3, y 7→ true}, {})

which clearly conforms to the shape. The operator ↓ [p 58], which curtails an
environment by an interface, can then be applied to yield

E ↓ I = ({}, {x 7→ 3}, {})

and this is the result of evaluating the structure declaration according to the full
rule for structure bindings. The full rule is therefore

B ` strexp ⇒ E 〈InterB ` sigexp ⇒ I〉
〈〈B ` strbind ⇒ SE〉〉

B ` strid 〈: sigexp〉 = strexp 〈〈and strbind〉〉 ⇒
{strid 7→ E〈↓ I〉} 〈〈+ SE〉〉

(169)

Note that there is no side-condition in the rule to ensure conformity, i.e. to ensure
that the environment E has enough components; but this will already have been

3.3 Signatures and interfaces 31

ensured by the corresponding elaboration rule 62 [p 39] in the static semantics,
by its side-condition concerning enrichment ≺ [Sec 5.11, p 34]. This remark about
static semantics can be ignored on first reading; however, it is in the same spirit
as some of our remarks in the previous chapter, where we pointed out that some
aspects of good behaviour of Core programs need not be checked by the evaluation
rules.

We shall now illustrate how a signature can change the status of an identifier
from constructor to variable. Consider

structure S: sig type T val A: T end

= struct datatype T = A | B end

If the signature expression were absent, then the identifier A would have construc-
tor status after this declaration. But the signature gives it variable status instead;
thus it cannot be used (as a constructor) in a pattern, but still retains its meaning
– it still denotes the constructor A. We pointed out in Section 2.7 that, for this
reason, datatype declarations cannot be completely ignored in the dynamic se-
mantics of the Core, as was wrongly stated in [Sec 6.1, p 46]; the following exercise
shows the need for the new rule defined in Section 2.7.

Exercise 3.1 What environment E does the structure expression (after =) eval-
uate to, in the above example, using the new rule? What interface I does
the signature expression evaluate to? What environment becomes bound to
S?

Rules 170–186 [p 60, 61] are entirely to do with evaluating a signature expres-
sion to an interface. After the above discussion, there is little need for further
comment on them. Note that the signature environment G of the dynamic basis
binds each declared signature identifier to an interface I. Note also that a signa-
ture expression is not evaluated in a basis B, but in an abstraction of B which is
an interface basis IB; if B = (F,G,E) then IB = (G, IE of (InterE)), where Inter
abstracts an environment to its shape. Finally note the reduced syntax described
in [Sec 7.1, p 57]; not only has all mention of types been removed before evaluation,
but also all mention of sharing; this means that evaluation does not depend at all
on the identity of structures, but only upon their contents: values, exceptions and
other structures.

Exercise 3.2 The include specification need not have been defined indepen-
dently, since it can be defined in terms of local and open. In fact

include sigid1 ··· sigidn

is exactly equivalent to

local structure strid1:sigid1 and ··· and stridn:sigidn
in open strid1 ··· stridn end

32 3 DYNAMIC SEMANTICS FOR THE MODULES

Prove this equivalence as far as evaluation is concerned; that is, prove that
for any IB and I the former phrase evaluates to I in IB if and only if the
latter does. (See also Exercise 6.1 for the analogous equivalence in the static
semantics.)

3.4 Functors

A functor is a mapping from structures to structures. Syntactically, functors
are declared by functor declarations and applied by functor applications. Unlike
functions, functors are always named. The declaration of a single functor funid in
its bare form is written

functor funid (strid: sigexp)〈: sigexp ′〉 = strexp (∗)

where the structure identifier strid is the formal argument (of funid), sigexp is the
argument signature and strexp is the body of the functor. When present, sigexp ′

is the result signature of funid.
The bare form of functor application is the structure expression

funid (strexp)

where strexp is the actual argument to funid.15

In many ways functors resemble functions. For example, a functor declaration
is elaborated once, namely when the functor is declared, in the basis in force at
the time of declaration.

Suppose that the functor declaration (∗) is to be evaluated in a basis B. What
should be the effect when later

funid (strexp ′)

is evaluated in another basis B′? The answer is quite natural, now that we have
discussed interfaces: Evaluate strexp ′ in B′, yielding E ′; cut E ′ down according
to the argument signature sigexp, and bind strid to it; evaluate strexp in B aug-
mented by this new binding, yielding E; finally cut E down according to the result
signature sigexp ′ if present.

So, by analogy with function closures [Sec 6.6, p 49], the evaluation of (∗) results
in binding funid to a functor closure (strid : I, strexp〈: I ′〉, B) [Fig 14, p 57]. The B
component is the basis in which the functor is declared; this basis is used when the
functor is applied in accordance with the principle that functors, like functions,
are statically scoped. Similarly, I and the optional I ′ are the results of evaluating

15For the full grammar for functor declarations and applications, see [Fig 6, p 12], [Fig 8, p 14]
and the derived forms in [Fig 18, p 68], which provide convenient syntax to make it look as if
functors can also take values, exceptions and types as arguments.

3.4 Functors 33

sigexp and sigexp ′ at declaration time (i.e. in the basis B). It is helpful to see
rule 187 for functor bindings [p 61] without its second option:

InterB ` sigexp ⇒ I 〈InterB + {strid 7→ I} ` sigexp ′ ⇒ I ′〉
B ` funid (strid: sigexp)〈: sigexp ′〉 = strexp ⇒

{funid 7→ (strid : I, strexp〈: I ′〉, B)}

Note in particular that sigexp ′ can be evaluated at declaration time, even though
it may refer to strid for which no actual parameter structure is presently available;
this is because the only knowledge of the actual parameter it needs is its shape –
and this shape I is provided by the evaluation of sigexp. We can now see how the
functor closure provides the right information, and no more, for the functor to be
applied to an actual structure using rule 162:

B(funid) = (strid : I, strexp ′〈: I ′〉, B′)
B ` strexp ⇒ E B′ + {strid 7→ E ↓ I} ` strexp ′ ⇒ E ′

B ` funid (strexp)⇒ E ′〈↓ I ′〉
(162)

It is interesting to note that signature ascription – at least in a top-level struc-
ture declaration – can be defined in terms of functor application. For, given any
sigexp, we can define the corresponding “curtailing” functor:

functor F(X: sigexp) = X

Thereafter, wherever we write

structure A: sigexp = strexp

we can get exactly the same effect by writing instead

structure A = F(strexp)

Exercise 3.3 Assume that sigexp evaluates to the interface I. Let B be the basis
resulting from the declaration of F. What is the functor closure bound to F

in B? Now suppose that strexp evaluates in B to the environment E. What
structure is bound to A after each of the above structure declarations?

Of course, to justify the claim that two phrases are equivalent we have to show
that they have the same static semantics too. This is true here; in particular,
elaboration will fail for the signature ascription in exactly the same cases as it will
fail the functor application.

34 3 DYNAMIC SEMANTICS FOR THE MODULES

3.5 Alternative semantics

To put the treatment of signatures in perspective, we finish this chapter by look-
ing at an alternative meaning for signature ascription. One could decide that
signature ascription should have no curtailing effect, but should merely act as
a conformity test (we defined conformity above). Recalling that conformity will
always be ensured by elaboration, we might then expect that interfaces would
be unnecessary, and that we could indeed take the simple course of ignoring all
mention of signatures as far as evaluation is concerned. Certainly this would work
for the example in Section 3.3 above. But if the argument signature of a functor
were to have no curtailing effect, then we would meet a strange phenomenon in
using the open declaration inside a functor. Consider

functor F(A: sig end) =

struct open A

val y = x

end

What will happen in an application F (strexp) ? If (the structure denoted by)
strexp has a value component named x, then the y component of the result struc-
ture will have the value of this x; otherwise it will have the value of some other x
non-local to F. But this dynamic variation of variable reference is foreign to ML.
Indeed, it would cause severe difficulty in elaboration; intuitively, the type checker
would not know which x was meant. So a language which adopts the alternative
semantics can take two courses. Either it can give a curtailing effect to a signature
when it is ascribed to a functor argument, but not elsewhere; or it can change the
open declaration to mention a signature explicitly, e.g. open strid to sigexp , and
give a curtailing effect only to signatures in this open context. Whichever choice
is made, it does not seem to be possible to eliminate interfaces from evaluation.

This alternative semantics, though not chosen, was a serious candidate for
ML. It has considerable utility. For example, if the argument signature has no
curtailing effect, one can define the identity functor

functor Id(X: sig end) = X

since the empty signature will be matched by every structure. In a future language,
we may be able to get the best of both worlds by including curtailment as a
separate operation, rather than as an effect of signature ascription.

Exercise 3.4 How would you alter the dynamic semantics, if signature ascrip-
tions were merely to act as conformity tests when ascribed to structure bind-
ings or to the result in a functor binding, but were to retain their curtailing
effect in functor arguments?

35

4 Static Semantics for the Core

This chapter and the next concern the static semantics for the Core [Sec 4]. In
Chapter 1 we saw roughly how elaboration works; here we begin to discuss its finer
details. In particular, in this chapter we discuss types versus type schemes, the
closure operation on types and environments, explicit type variables, polymorphic
references and exceptions.

It is good to begin with an exercise:

Exercise 4.1 Construct an elaboration tree for the atomic expression

{mother = "Elisabeth", age = 27}

starting from an arbitrary context C. Use the index of the Definition to find
out – or recall – the meaning of common notations such as 〈 〉 and +.

While doing the above exercise, the reader will probably have noticed the difference
between writing, for example {mother = "Elisabeth"} and {mother 7→ string}.
The former is a phrase in ML but the latter denotes a finite map. We are free
write either {mother 7→ string, age 7→ int} or {age 7→ int, mother 7→ string}
for they denote the same map. One is not always free to permute the fields of
an expression row, since they are evaluated from left to right and this can be
significant when the expressions have side-effects.

4.1 Contexts, environments and scope

The Definition does not contain an explicit definition of the scope of identifiers
(except for certain occurrences of explicit type variables, cf. [Sec 4.6]). However,
the scope rules of the language are implicitly defined by the elaboration rules. Let
program be a program and let o be an occurrence of some phrase phrase occurring in
program; also let P be an elaboration tree whose conclusion is B ` program ⇒ B′,
for some B, B′. Corresponding to o there will be precisely one occurrence in P of
a sentence of the form C ` phrase ⇒ A, for some context C and semantic object
A. Moreover, the identifiers that are in scope at the occurrence o are precisely the
identifiers that can be accessed in C, although of course not all such identifiers
need occur free in phrase.

A context C is a triple T, U,E [Fig 10, p 17]. Here T is a set of type names,
the meaning of which will be explained later. U is a set of type variables; intu-
itively speaking, it contains those explicit type variables that are in scope at the
occurrence o. Finally, E is an environment (SE, TE, VE,EE) consisting of four
components: a structure environment (SE), a type environment (TE), a variable
environment (VE) and an exception environment (EE) [Fig 10, p 17]. A (perhaps
long) identifier of either of these four kinds is in scope precisely if it can be looked
up in E.

36 4 STATIC SEMANTICS FOR THE CORE

New environment components TE, VE and EE are created by the rules for
bindings, rules 26–32 [p 26,27]; these are converted into environments E by the
rules for declarations, rules 17–25 [p 25,26]. Environments thus built from decla-
rations are increments, to be incorporated later in a context C – e.g. by rule 22.

There are just two operations for modifying the context, namely the + and the
⊕ operations defined in [Sec 4.3, p 18]. C + E is C extended with the bindings of
E; thus (C +E)(id) is E(id), if this is defined, and C(id) otherwise. C⊕E is the
same as C + E except for its T -component; in fact T of (C + E) = T of C, while
T of (C ⊕ E) = T of C ∪ tynamesE [Sec 4.3, p 18]. A typical use of ⊕ is in rule 6
(which is displayed below); it ensures that any types declared inside exp will be
kept distinct not only from those in C but also from those declared in dec. This
point is discussed further in Section 5.1.

The rules that are interesting to look at, as far as scope is concerned, are those
where different contexts occur before the turnstile. The following two rules are
representative.

• Rule 6, the rule for let expressions:

C ` dec ⇒ E C ⊕ E ` exp ⇒ τ

C ` let dec in exp end⇒ τ

Loosely speaking, the scope of the identifiers declared by dec is exp.

• Rule 27, the rule for recursive value bindings:

C + VE ` valbind ⇒ VE

C ` rec valbind⇒ VE

Notice the VE on the left-hand side of the turnstile. It expresses that any
variable declared by valbind is itself in scope within valbind.
Example: rec fac = fn n => if n=0 then 1 else n * fac(n-1).

4.2 Types and type schemes

The purpose of this section is to clarify the distinction between types and type
schemes, a distinction which may at first seem technical but in fact is essential for
an understanding of what one can and cannot do with ML polymorphism.

The simplest kind of types are monotypes, i.e. types that contain no type vari-
ables. An example of a monotyped function is the successor function fn x => x+1

which has type int→int. In general, types can contain type variables; then they
may be called polytypes. To obtain a type scheme σ, one can take a type τ and
universally quantify zero or more type variables; the result is written in the form
∀α(k).τ , where α(k) is a tuple of k distinct type variables (k ≥ 0). (Note the differ-
ence between ’a, which is a type variable, and α which ranges over type variables.)

4.2 Types and type schemes 37

The quantified variables are often referred to as the bound variables of σ.16 Also,
τ is sometimes referred to as the body of σ. An example of a function which has
a type scheme is

fun end_cons [] x = [x]

| end_cons (y::ys) x = y :: end_cons ys x

Its type scheme is ∀’a .’a list→ ’a→ ’a list. This type scheme is closed, i.e.
of the form ∀α(k).τ where every type variable occurring in τ occurs in α(k). All
values declared by a top-level declaration will have a closed type scheme (even the
successor function does, namely ∀().int→int).

A type scheme can be regarded as a compact notation for a perhaps infinite set
of types. For instance, the type scheme for end cons expresses that the function
has type τ list→ τ → τ list, for any type τ . Thus we are permitted to use
end cons first with τ = int list and then with τ = bool list, as in

(end cons [5,7] 9, end cons [true,false] true)

A type scheme σ generalises a type τ , written σ � τ , if τ can be obtained
from the body of σ by substituting types for the bound type variables of σ (see
[Sec 4.5, p 19] for the precise definition).17 Notice that generalisation acts on bound
type variables only so for example ∀().’a→’a only generalises one type, namely
’a→’a.

While the inference rules allow one to instantiate bound type variables in
certain places, they never allow one to substitute types for free type variables.
Hence, if some variable f has been inferred to have the type scheme ∀().’a→’a

we cannot in that context apply f to an integer, for ’a and int are different.
The more closed a type scheme of a variable is, the more usages of that variable

become typable. It turns out that one cannot simply close all types completely
without destroying the soundness of the type inference system. The precise tran-
sition from types to type schemes is defined by the Clos operation ([Sec 4.8, p 21]),
which we will return to later on. However, a few basic facts about elaboration give
an overview of the power of polymorphism in ML. Let us say that a type scheme
is simple if it has no bound type variables, and general if it is not simple.

An important point is that any type can be regarded as a (simple) type scheme,
but only simple type schemes can be regarded as types. This is a consequence of
the definition of the set Type [Sec 4.2, p 17], which does not admit inner quantifi-
cation in types. For example

(∀’a .’a→’a)→int

16In the literature these are also referred to as generic type variables.
17In the literature one also sees the terminology ”τ is a (generic) instance of σ” for “σ gener-

alises τ”.

38 4 STATIC SEMANTICS FOR THE CORE

is neither a type nor a type scheme in ML. Consequently, the parameter to a
function cannot have a general type scheme; this means that a formal parameter
of a function must have the same type at each of its occurrences within the function
body.

A variable environment VE maps variables to type schemes (as opposed to
types) [Fig 10, p 17]. However, in some cases the variable environments that occur
in the elaboration rules always contain simple type schemes only:

Theorem 4.1 If C ` pat ⇒ (VE, τ) or C ` valbind ⇒ VE then VE(var) is
simple, for all var ∈ Dom(VE).

Proof An easy induction on the depth of the elaboration tree, applied to the
inference rules 26, 27 and 33–46. The base cases include the case of rule 35,
from which we see that a variable occurring as an atomic pattern always
elaborates to a simple type scheme.

This result immediately reveals the language constructs that bind variables to
simple type schemes only. Rule 16 [p 25] thus tells us that any variable bound in
a match (be it in a fn or a handle expression) must have a simple type scheme.

Exercise 4.2 Which of the following expressions elaborate?

(1) fn (length, s, n) => 1 + n + length s

(2) fn (length, s) => 1 + length s + length [1,3]

(3) fn (length, s) => 1 + length s + length [1,3] + length [true]

(4) case s of x as [] => 0::x::x | other => [0]::other

A recursive function can never be used as a polymorphic function within its own
body. This is seen from rule 27,

C + VE ` valbind ⇒ VE

C ` rec valbind⇒ VE

for by the theorem VE contains simple type schemes only.

Exercise 4.3 Which of the following declarations elaborate?

(1) fun g [] = 1

| g (x::xs) = 1 + g(xs)

(2) fun h [] = 1

| h (x::xs) = h(xs) + h [7,9]

(3) fun k [] = 1

| k (x::xs) = 1 + k [7,9] + k [true]

4.3 Closure of variable environments 39

4.3 Closure of variable environments

We saw in the previous section that the power of polymorphism arises from general
type schemes rather than types. As can be seen from rules 9–14, all expressions
elaborate to types, not type schemes. However, types can be turned into type
schemes by the closure operation Clos defined in [Sec 4.8, p 21]. The act of forming
a type scheme ∀α(k).τ from a type τ is known as quantification. In the present
section we shall discuss the closure operation in some detail (matters related to
polymorphic references and exceptions are deferred to Section 4.5).

Value variables are bound to type schemes at precisely one point in the rules,
namely in rule 17:

C + U ` valbind ⇒ VE VE ′ = ClosC,valbindVE U ∩ tyvarsVE ′ = ∅
C ` valU valbind⇒ VE in Env

Here VE is a variable environment mapping variables to simple type schemes,
and VE ′ maps the same variables to type schemes that are obtained from VE by
closing every type τ in the range of VE to get a type scheme ∀α(k).τ , k ≥ 0, where
the α(k) is determined by the Clos operation.

Example 4.1 Consider the expression

fn x => let val g = (fn y => y x) in g end

It is of course equivalent to fn x => (fn y => y x) , but we wish to il-
lustrate the closure operation in elaborating the val declaration. If the
expression is elaborated in the initial context C0 = C of B0, then the val

declaration will be elaborated in C = C0+{x 7→ ’a}, where ’a is a free type
variable. Here is the relevant part of the elaboration:

C ` g = (fn y => y x) ⇒ {g 7→ (’a→’b)→’b}︸ ︷︷ ︸
VE

C ` val g = (fn y => y x) ⇒
ClosCVE︷ ︸︸ ︷

{g 7→ ∀’b.(’a→’b)→’b} in Env

......

?

(17)

Note how closure has quantified ’b, but not ’a since it is free in C.

One cannot in general simply quantify all the type variables that occur free in VE.
This would lead to unsound elaborations.

40 4 STATIC SEMANTICS FOR THE CORE

Exercise 4.4 Assuming that we näıvely obtain VE ′ from VE by closing VE com-
pletely, show that, for any context C and type τ , we would be able to elab-
orate the following nonsensical expression to τ in C:

e0 =

let val f = fn x => let val y = x in y 5 end︸ ︷︷ ︸

e1
in f 3

end

Exercise 4.4 illustrates that a type variable which occurs in VE can be quantified
only if it does not occur free in C. This is ensured by the definition of Clos in
[Sec 4.8, p 21].

However, because of polymorphic references and exceptions the converse is not
true. That is, sometimes it is unsound to quantify a type variable which occurs
in VE even though it does not occur free in C. This is explained in more detail
in Section 4.5.

Exception declarations never give rise to quantification of type variables. For
example,

exception e of ’ a

does not mean that e has type ∀’ a .’ a→ exn. This would in fact destroy the
soundness of the type inference system.

Example 4.2 Consider for example the expression

let exception e of ’_a

in (raise e(5)) handle e(f) => f(7)

end

Were e to get type ∀’ a .’ a→ exn, the above expression would elaborate
despite the fact that, if evaluated, it would attempt to use 5 as a function.

Therefore, although the type of an exception can contain type variables, a static
exception environment EE maps exception constructors to types, not type schemes
[Sec 4.2, p 17].

4.4 Explicit type variables

Explicit type variables are scoped according to the syntactical rules given in
[Sec 4.6, p 20]. These rules define how one can “decorate” every occurrence of
a value declaration val valbind by a set U of type variables, namely the set of type
variables that are scoped at that occurrence. Hence the subscript U in rule 17.

The one principle that programmers need to keep in mind is that in any well-
typed program, the value declaration at which an explicit type variable is syntacti-
cally scoped is precisely the point where it becomes quantified. Thus the inference
rules must ensure that

4.5 Polymorphic references and exceptions 41

(a) if a type variable α is explicitly scoped at some occurrence o of valU valbind
then α really can be quantified at o

(b) if α is a type variable that occurs unguarded in valbind and α is quantified
by the closure operation at o, then α really is scoped at o (i.e. α does not
occur unguarded in any larger value declaration containing o).

Neither of these conditions is automatically met, without the presence of a side-
condition in rule 17. The first would be violated by the expression

(fn x => let val{’a} y :’a = x in y y end) 5

which would elaborate were we to allow quantification of ’a at the point it is
syntactically scoped, although of course evaluating this expression would lead to
a sad attempt to apply 5 to itself. Therefore, rule 17 contains the side-condition
U∩tyvarsVE ′ = ∅; it ensures that, once the closure operation has been performed,
none of the explicit type variables scoped at that occurrence has been left free.

The second condition (b) prevents us from quantifying α if it is scoped further
out, even in cases where quantification would be perfectly sound. An example is

val{’a} x = (let val∅ Id :’a -> ’a = fn z=>z in Id Id end,

fn z => z :’a)

This does not elaborate although it would have been semantically sound to quan-
tify ’a at the inner value declaration. To prevent quantification in such cases, the
context C contains a component U , which is (so to speak) the set of explicit type
variables scoped further out. As these now occur free in C, the closure operation
will not quantify them.

Exercise 4.5 In the above declaration, what happens if we remove the type
constraint from Id? What happens if we instead remove the constraint from
z?

4.5 Polymorphic references and exceptions

To ensure the soundness of the type inference rules in the presence of references
and exceptions requires certain constraints on the rules. We shall first explain why
that is so and then explain the particular constraints adopted in the Definition.

Let us first show that the type inference rules which work for a purely functional
language break down in the presence of references. To this end, assume that the
function ref, which creates a new reference, has the type ∀’a .’a→’a ref, that
the assignment operator, :=, has type ∀’a .’a ref * ’a→ unit and that !, the
de-referencing function, has type ∀’a .’a ref→ ’a. Now consider the following
expression exp:

let val r = ref []

in r:= [7]; !r

end

42 4 STATIC SEMANTICS FOR THE CORE

let val (e’,f) =
let exception e of ’a
in (e, fn g => g() handle e(x) => x)
end

val X = f(fn () => raise e’(7))
in

X(2)+3
end

Figure 5: Unsound use of polymorphic exceptions

This expression evaluates to the value [7] so it should elaborate to one and just
one type, namely int list. Nevertheless, if we use unconstrained polymorphic
type inference, then in fact exp elaborates to the type τ list, for any type τ . In
particular, it elaborates to bool list, so we will be able to infer a type for the
expression

map not exp

even though evaluation of this expression presumably would lead to a run-time
error.

The important parts of the elaboration tree by which one “proves” that exp
elaborates to τ list, are shown in Figure 6. We assume that C is closed, i.e.
contains no free type variables. We write C ′ for C + {r 7→ ∀’a .’a list ref}.

The crucial step is the one at A, where we quantify ’a on the grounds that
it does not occur free in C. Then the type scheme ∀’a .’a list ref can be
instantiated as shown at B and C, leading to the false conclusion.

But why is it wrong to quantify ’a in this example? To understand this, we
need to note that when references are values, the type of a value depends not just
on the types of the values in the context C but also on the types of the values in
the memory. If the memory contains the value [7] at some address, a, then then
type of a must be int list ref.

Imagine a dynamic environment whose values have been tagged with types
according to the static context. Moreover, we could type the memory by a memory
typing which maps every address in the memory to the type of the value it contains.
Thus a type variable may occur free in the static context or the memory typing. In
either case it would be wrong to quantify ’a. But ’a may occur free in the memory
typing without occurring free in the context. In such a case, closing with respect
to the context alone will result in an unsound quantification. This is precisely
what happened in our example above. The expression ref [] evaluates to an
address a to which we can ascribe the type ’a list ref, since we can elaborate
the expression ref [] to that type. Thus the memory typing after the creation
of the reference will contain ’a free, and it becomes unsound to quantify ’a.

4.5 Polymorphic references and exceptions 43

Similar observations apply to exceptions. Recall that a state consists of a
memory and a set of exception names [Fig 13, p 47]; so a state typing would consist
of a memory typing and an exception typing. If we type the exception names as
they are generated during evaluation, there is still a place where type variables
can occur free.

In Example 4.2 we showed why the type scheme to which an exception con-
structor is bound is always simple. We now illustrate how, even so, to achieve
soundness special care must be taken when any type variable occurring in this
simple type scheme is quantified by the elaboration of some outer val declara-
tion.
Consider the expression in Figure 5. By quantifying type variables at the first
value declaration, e’ gets type scheme ∀’a .’a→ exn and f gets type scheme
∀’a .(unit→ ’a)→ ’a. This makes it possible to give X whatever type we like,
for example int→ int. However, X turns out to be 7, which of course is not a
function.

How can we prevent these faulty quantifications? Unfortunately, we cannot type
addresses and exception names statically, for they are generated dynamically. In
other words, one cannot elaborate state typings. But we can use elaboration to
distinguish between the type variables that may occur in a state typing and type
variables that will definitely not occur free in the state typing.18 Corresponding to
these two possibilities we have two syntactically disjoint classes of type variables,
namely the imperative and the applicative type variables [Sec 2.4, p 4].

Suppose that we have an elaboration with conclusion

C ` exp ⇒ τ

for some exp, C and τ and that we want to find out whether it is sound to quantify
some type variable α which occurs free in τ . There are two cases:

α is applicative. Then α will definitely not occur free in the state typing, since state
typings by definition cannot contain applicative type variables. Therefore,
the usual rules for quantification apply.

α is imperative. If we are certain that the evaluation of exp generates neither an
address nor an exception name, then the set of type variables occurring in
the state typing is not increased by the evaluation of exp, so again the rules
for the purely applicative language apply. If, however, the evaluation may
generate a new reference or exception then we disallow quantification of α,
because α might be in the state typing after the evaluation.

To avoid sophisticated analysis of precisely when the evaluation of exp may gener-
ate new addresses or exceptions, we simply define that exp is non-expansive (mean-
ing that the evaluation of exp will definitely not create a reference or an exception)

18It is to be expected that elaboration only gives an approximation of the set of the type
variables that do definitely not occur free in the state typing, but the approximation is safe as
long as it does not claim, for some type variable that can actually occur in the state typing, that
it will definitely not so occur.

44 4 STATIC SEMANTICS FOR THE CORE

............

C ` ref [] ⇒ ’a list ref

(26)

C ` r = ref [] ⇒ {r 7→ ’a list ref}

(17)

C ` val r = ref [] ⇒ {r 7→ ∀’a.’a list ref} A

C ′(r) � int list ref B

(2)

C ′ ` r ⇒ int list ref
............

............

(10)

C ′ ` r := [7] ⇒ unit

C ′(r) � τ list ref C

(2)

C ′ ` r ⇒ τ list ref
............

............

(10)

C ′ ` !r ⇒ τ list
............

............

(10)

C ′ ` r:=[7]; !r ⇒ τ list

(6)

C ` let var r = ref [] in r:=[7]; !r end ⇒ τ list

Figure 6: Unsound type inference with references

4.5 Polymorphic references and exceptions 45

if it is a variable, a constructor, or a fn expression, possibly constrained by one or
more type expressions. All other expressions are called expansive [Sec 4.7, p 20].
Of course, a wider class of expressions could easily be defined as non-expansive,
but we have chosen a simple class which should be easy to remember.

To sum up, the rules for quantification are as for the purely applicative lan-
guage, except that quantification is forbidden in the case that exp is expansive
and α is imperative.

This scheme does not affect programs that do not use references and use mono-
typed exceptions only. But in general, imperative type variables enter elaboration
in two ways. First, the type of the constructor ref is ∀’ a.’ a→’ a ref [App C,
p 75]. (The types of ! and := do not contain imperative type variables, since they
cannot extend the state typing with new type variables.) Second, applicative type
variables are banned from the types of exceptions [rule 31, p 27].

Finally, free imperative type variables are not allowed to propagate to the top-
level [rules 100–102, p 44] so that all type variables that are reported to the user at
top-level are implicitly quantified. For example val r = ref []; is not a valid
program.

Example 4.3 The following tail recursive implementation of a function for fast
reversal of long lists

fun reverse l =

let val res = ref []

fun loop [] = !res

| loop (hd::tl) =

(res:= hd::(!res); loop tl)

in loop l

end

has type ∀’ a .’ a list→ ’ a list. (The underbar () in ‘ a indicates
that ‘ a is imperative [Sec 2.4, p 4].)

Exercise 4.6 Mr Reno Vator, objecting to the garbage created by reverse (one
new reference for each call), suggested the following variant

val reverse =

let val res = ref []

in fn l =>

(res:= [];

let fun loop [] = ! res

| loop (hd::tl) =

(res:= hd::(!res); loop tl)

in loop l

end)

end

46 4 STATIC SEMANTICS FOR THE CORE

but he soon had second thoughts. Why?

Example 4.4 The declaration

fun Id x = let val r = ref x in !r end

elaborates to {Id 7→ ∀’ a .’ a → ’ a}. Given this declaration of Id we
have that the declaration val Id’ = Id Id elaborates to {Id’ 7→ τ → τ}
for any imperative type τ , but the same declaration does not elaborate to
{Id’ 7→ ∀’ a .’ a→’ a} since the expression Id Id is expansive. However,
we do have that

C ` fun Id’ x = Id Id x ⇒ {Id’ 7→ ∀’ a .’ a→’ a}

because fn x=> Id Id x is non-expansive.

This last trick, known as η-conversion, is often very useful to obtain polymorphism
when using references. However, there is no way of getting rid of the imperative
type variables altogether. This can cause some inconvenience in connection with
Modules. The type scheme ∀’a .’a→’a generalises the type scheme ∀’ a .’ a→
’ a, but not the other way around. Thus a function which has the latter type
cannot match a value specification with the former type. Consequently, one will
have to modify the signature containing the specification if one insists on using
side-effects in the implementation.

47

5 Type Declarations and Principality

In this chapter we continue discussing the static semantics of the Core. We con-
sider type and datatype declarations, type functions and type structures, types
which admit the equality predicate, and the notion of principal or “most general”
environment.

5.1 Types, datatypes and type functions

It is important to distinguish between type constructors and type names. The
former are identifiers which can denote the latter. Two type constructors that in
some context are bound to the same type name can be used interchangeably in
that context. A datatype declaration creates “new” datatypes in the sense that
the type constructors declared by the declaration are bound to type names which,
in a sense which is made precise by the semantics, are distinct and fresh.

Example 5.1 Consider the following declaration

datatype ’a tree = LEAF of ’a

| TIP of ’a * ’a tree * ’a tree

type ’a heap = ’a tree

type intheap = int heap

It introduces three type constructors, namely tree, heap, and intheap, but
it only generates one type name, t say, which is bound first to tree and then
to heap.

Every type name t has an arity k ≥ 0, and also possesses an equality attribute.
For example, the arity of int is 0 and the arity of list is 1. See Section 5.2 for
discussion of equality attributes.

It is not in general enough to bind type constructors simply to type names. For
a datatype constructor, we need also to know its value constructors and their types.
(This is necessary in order to determine whether the datatype admits equality
[Sec 4.9, p 21]; it is also necessary in order to enable checking of consistency [Sec 5.2,
p 32].) Moreover, for a type constructor which is not a datatype constructor, the
semantic value may in general be a function from types to types, rather than just
a type name. Such a function is called a type function; θ is used to range over
type functions [Fig 10, p 17]. For example, consider the declaration

type ’a pair = ’a * ’a

Here θ is
Λ’a.’a ∗ ’a

48 5 TYPE DECLARATIONS AND PRINCIPALITY

The capital Λ is used rather than the more conventional λ as a reminder that type
functions map types to types, not values to values. The general form of a type
function is

Λα(k).τ

where τ as usual is a type, k is the arity of the type function and α(k) is a sequence
of k type variables.

All type constructors, regardless of whether they are introduced by datatype,
abstype or type declarations, are mapped to the same kind of semantic object,
called a type structure. A type structure is a pair

(θ, CE)

of a type function and a constructor environment [Fig 10, p 17]. In the case of
a type declaration, CE is always the empty map. In the case of a datatype

declaration, CE is always non-empty and θ is of the particular form

Λ(α1, ···, αk).(α1, ···, αk) t

for some type name t with arity k and some type variables α1, . . . , αk. Such a
special type function is identified with the type name t [Sec 4.4, p 19], so that we
can think of the semantic value of a datatype as being a pair

(t, CE), CE 6= {}

In the case of a datatype declaration which declares constructors con1, . . . , conn,
the non-empty constructor environment is of the form

{con1 7→ σ1, . . . , conn 7→ σn}

where σi is either t, if coni is a constant, or otherwise of the form ∀α(k).(τ→α(k)t).
Let us say that two type structures share if they have the same type function

(up to renaming of the bound type variables). Two such type structures need
not have identical constructor environments, but if both are non-empty then they
must at least have the same domain (cf. the definition of consistency, [Sec 5.2,
p 32]). The type structures bound to tree and heap in the example above share
but they are different: the former has a non-empty constructor environment, but
the latter has an empty constructor environment.

A type environment, TE, is a finite map from type constructors to type struc-
tures [Fig 10, p 17]. Elaboration of type bindings and datatype bindings produces
type environments, see rule 28 and 29 [p 27]. We can now see what it means to
create a “new” datatype. A context C contains a component, T , which is a set
of type names [Fig 10, p 17]. Intuitively, T is the set of type names that are al-
ready used; we shall call them the rigid type names. A new datatype is created by
choosing a type name t which is not a member of T . It will always be the case that

5.2 Equality 49

any type name occurring in the other components of C is in T (so that T records
at least all the currently accessible type names) but by keeping T explicitly in
the basis we make sure that the chosen t is new also with respect to type names
that (perhaps temporarily) have disappeared from the context. This explains the
side-condition ∀(t, CE) ∈ RanTE, t /∈ T of C, found in rules 19 and 20 [p 25].

Exercise 5.1 Consider the declaration from Example 5.1. Write down type
structures to which the type constructors are bound as a result of elabo-
ration. (Ignore the side-condition of rule 19 that concerns equality.)

We have already seen that a variable environment VE maps variables to type
schemes. In addition, variable environments map value constructors and excep-
tion constructors to their types [Fig 10, p 17]. A datatype declaration elaborates
to a pair (VE, TE) [rule 19, p 25], where VE subsequently can be added to the
context, for example with rule 25 [p 26]. (The reason for including constructors
in the variable environment, as well as in the type environment, is explained in
Section 2.7. For the purpose of +, an identifier which is a constructor is not distin-
guished from the same identifier used as a variable, so a binding of a constructor
can overwrite a binding of a variable.) There is no requirement that a constructor
can occur in at most one datatype declaration. For example, the declaration

datatype options = YES | NO

datatype positive = YES

datatype options = MAYBE

does elaborate.

Exercise 5.2 To what? After these declarations, which of the following expres-
sions elaborate? (a) YES, (b) NO, (c) if true then YES else NO.

5.2 Equality

In the dynamic semantics the equality predicate can be applied to special values
(i.e. values denoted by special constants [Sec 6.2, p 46]), constants (i.e. nullary
constructors), and addresses. Moreover, equality can be applied to constructed
values if it can be applied to the values out of which they are constructed, and
to records provided it can be applied to the component values. Equality cannot
be applied in any other cases; in particular, one cannot test closures (i.e. function
values) for equality.

In ML, it is impossible to elaborate an invalid application of the equality
predicate, i.e. type-correct programs can never contain such invalid applications.
The subclass EtyVar of TyVar, the equality type variables, consists of those type
variables that start with two or more primes [Sec 2.4, p 4]. An equality type
variable ranges over types that admit equality. For example, the type scheme of

50 5 TYPE DECLARATIONS AND PRINCIPALITY

= is ∀’’a.’’a ∗ ’’a→ bool. Moreover, every type name possesses an equality
attribute [Sec 4.1, p 16]. For example, the equality attribute of list is true. This
means that if a type τ admits equality then τ list admits equality. The notion
of equality type is defined in [Sec 4.4, pp 18–19].

Exercise 5.3 Is equality defined on exceptions (i.e. does the type exn admit
equality)?

Exercise 5.4 Which of the following expressions elaborate?

(1) {a = [], b = false} = {a = [1,2], b = true}

(2) (fn x => x + 1) = succ

(3) ref(fn x => x + 1) = ref(fn x => x + 1)

We shall now discuss how the equality properties of type constructors declared by
type, datatype or abstype are determined.

A type declaration
type typbind

introduces no new type names, so the equality attribute of each type constructor so
declared is a function of the equality attributes of the type names in terms of which
it is declared. More precisely, recall from Section 5.1 that every type constructor
will be bound to a type structure of the form (θ, {}), where the type function θ is
of the form Λα(k).τ . By definition, θ admits equality if τ admits equality when the
type variables α(k) have been chosen to be equality type variables [Sec 4.4, p 19].

Exercise 5.5 Which of (the type functions corresponding to) the following type
constructors admit equality?

(1) type ’a intmap = ’a -> int

(2) and ’a pair = ’a * ’a

(3) type ’a intmap store = ’a intmap list ref

Exercise 5.6 What is the difference between the following two declarations?

(1) type ’a pair = ’a * ’a

(2) type ’’a pair = ’’a * ’’a

However, a declaration of the form

datatype datbind

or
abstype datbind with dec end

does introduce new type names, one for each type constructor it declares. We shall
now explain how the equality attributes of these new type names are determined.

5.2 Equality 51

First, recall from Section 5.1 that the elaboration of datbind results in a type
environment where every type constructor is bound to a type structure of the
special form (t, CE), where t is a type name and CE is a non-empty constructor
environment. Now the first criterion for t to admit equality is that the arguments
to which each constructor con in CE is applied will always be of a type which
admits equality. If a type structure (t, CE) satisfies this criterion, it is said to
respect equality; formally, this means that if t admits equality, then either t =
ref19 or, for each CE(con) of the form ∀α(k).(τ→α(k)t), the type function Λα(k).τ
also admits equality. Further, a type environment TE respects equality if all its
type structures do so [Sec 4.9, p 21].

But it is not enough simply to demand that each type structure should respect
equality. Consider

datatype T = C of T | D

It gives rise to a type structure of the form (t, {C 7→ t→ t, D 7→ t}). Now this
clearly respects equality, whether or not t possesses the equality attribute. In other
words, “TE respects equality” does not uniquely determine equality attributes
(this is due to the recursive nature of a datbind). But we want to be able to
use equality whenever it is safe to do so, and therefore we want as many type
names as possible to have the equality attribute. Formally then, let TE be a type
environment, and let T be the set of type names t such that (t, CE) occurs in
TE for some CE 6= {}. Then TE is said to maximise equality if (a) TE respects
equality, and also (b) if any larger subset of T were to admit equality (without any
change in the equality attribute of any type names not in T) then TE would cease
to respect equality [Sec 4.9, p 21]. This condition is required for TE in rules 19
and 20 [p 25] for datatype and abstype declarations.

The side-condition “TE maximises equality” really does determine uniquely the
equality attribute of each of the chosen type names. This can be seen as follows.
Let T be defined as above. Let us say that a subset T0 of T is nice if, whenever
the type names in T0 are chosen to admit equality and the type names in T \ T0

are chosen not to admit equality, then TE respects equality. Thus TE maximises
equality if and only if the set of type names in T that are chosen to admit equality
is maximal (with respect to set inclusion) among the nice sets. It is easy to check
that a union of nice sets is nice. There is at least one nice set, namely the empty
set. Thus we can define Teq ⊆ T to be the union of all nice sets and Teq is nice.
Teq is therefore uniquely maximal among the nice sets, hence giving a TE which
maximises equality.

19This condition can be ignored in the Core; it applies only to type structures which appear
in signatures. See the discussion in Section 11.4

52 5 TYPE DECLARATIONS AND PRINCIPALITY

The set of new type names that admit equality can be computed from datbind
by an iterative process as the maximum fixed point of a monotonic operator.
One starts out by assuming that all the new type names admit equality. In
each iteration, we consider all the type structures of the type environment in
question. If the CE component of a type structure (t, CE) reveals that t cannot
admit equality, we change the equality attribute of t to false. This process is
repeated till a fixed point is reached.

Finally, note the discussion at the end of [Sec 4.9] about rule 20 [p 25] for abstype;
a datatype declared by abstype is deprived of both its constructors and its equal-
ity attributes, for use outside the abstype expression. The abstype declaration
was introduced into ML before the Modules part of the language was designed;
with Modules, its effect can be achieved to some extent by the use of signatures.
For example, see how datatype constructors can be hidden by using a signature
in a structure declaration in Example 6.3. More of this effect, e.g. hiding the
equality attribute, could be achieved if the abstraction declaration proposed
by MacQueen were introduced; see Section 8.4. Despite this overlap abstype

has been preserved in the language, partly because its use is not restricted to
structure-level, and partly because it provides a useful abstraction mechanism in
the Core language without the considerable extra implementation effort required
for the Modules.

Exercise 5.7 Consider the two declarations

abstype T = A with dec end

and
local datatype T = A in type T = T; dec end

Is their effect the same?

5.3 Principal types and environments

Given a context C and an expression exp, there may be zero, one or even infinitely
many types τ such that

C ` exp⇒ τ

Considered as a kind of computation whose input is C and exp and whose output
is τ , elaboration is therefore not determinate. Formally this shows up at several
places in the inference rules, where one is often faced with having to make choices
when constructing the inference tree. For example the rules require one to “guess”
the type of any variable occurring in a pattern.

The non-procedural nature of the inference rules is convenient for the purpose
of semantic definition, especially because one expression can have many types.
However, the pragmatic significance of the particular set of inference rules for

5.3 Principal types and environments 53

elaboration lies in the fact that there exists a type-checking algorithm (or type
checker) which, given any C and exp, returns FAIL if the set T defined by

T
def
= {τ | C ` exp ⇒ τ}

is empty, and returns a type scheme σ such that

T = {τ | σ � τ}

if T is non-empty. In the latter case, σ is said to be a principal type scheme for
exp in C. Conceptually, the type checker works by applying substitutions to type
variables that occur free in some incomplete elaboration tree. (A substitution is a
map µ from type variables to types such that for all α, if α is imperative, then µ(α)
is imperative20 and if α is an equality type variable then µ(α) admits equality.)
For example the type checking of

fn x => x + 1

proceeds as follows: first the pattern x is given type ’a, assuming ’a is a fresh type
variable. In this context, the argument to +, i.e. the pair (x,1) has type ’a ∗ int
and since the type of + is int * int→ int (conveniently ignoring overloading
at this point), the algorithm employs the well-known unification algorithm to
deduce that ’a ought to be int. It therefore substitutes int for ’a in the entire
elaboration tree constructed so far. The reason this is valid is that, provided we
ignore explicit type variables for the moment, the following theorem holds for all
contexts C, phrases phrase and semantic objects A:

Theorem 5.1 (Substitution) Let C ` phrase ⇒ A, where phrase contains no
type variables in explicit type constraints. Then µ(C) ` phrase ⇒ µ(A).

Explicit type variables [Sec 4.6, p 20] pose a slight problem for the theorem,
because their elaboration is strict in the sense that if α occurs explicitly in phrase
then α elaborates to α and not to anything else (see [p 25, comment (11)]).

However, they can be dealt with as follows. For any substitution µ, let the
support of µ, written Supp(µ), be the set {α | µ(α) 6= α}; also let the yield
of µ, written Yield(µ), be the set of type variables occurring in any µ(α) such
that α ∈ Supp(µ). For any value declaration valU valbind the valU can be
viewed as a binding operator, so the usual notions of free and bound occurrences
(including the notion of renaming bound variables) apply to explicit type vari-
ables in phrase. To get a more general substitution theorem we now impose the
following constraints on µ, C and phrase. First, we require that Supp(µ) be
disjoint from U of C, for a substitution should not affect explicit type variables
already in scope. With this requirement, if we write C in the form T,U,E, then
µ(C) means simply T,U, µ(E). Second, we must demand that Supp(µ) is disjoint

20A type is imperative if it contains no applicative type variables [Sec 4.4, p 19].

54 5 TYPE DECLARATIONS AND PRINCIPALITY

from tyvars(phrase), the set of explicit type variables that occur free in phrase.
This is needed because of the above-mentioned strictness of elaboration of type
expressions. The theorem can then be generalised as follows:

Let C ` phrase ⇒ A. Assume also that Supp(µ)∩ (U of C ∪ tyvars(phrase)) = ∅,
and that (perhaps as a result of renaming) no explicit type variable occurring
bound in phrase is a member of Yield(µ). Then µ(C) ` phrase ⇒ µ(A).

In proving this theorem, rules 11, 31, 45–47 and notably rule 17 are crucial.

The existence of principal types relies on the existence of most general unifying
substitutions for types. The well-known unification result for first-order terms is
that if two terms can be unified then there is a most general unifying substitution
through which all other unifying substitutions can be factored. Although our
notion of substitution to do with equality types and imperative types is slightly
specialised, a similar result still holds.

A few obstacles to principality are caused by overloading. The first is that
several pervasive arithmetic operators and relations [App C, p 75] have two possible
types. Clearly the expression op + does not have a single principal type scheme, so
the user has to put type constraints to guide the type checker, when necessary, in
whatever way the implementer requires. The second is the typing of the wildcard
pattern row (...) which may also require an explicit type constraint to achieve a
principal type within the existing scheme of types and substitutions.

The aim of these explicit type constraints is to ensure that overloading is
resolved, in the following precise sense. Given a phrase phrase and a context C,
we say that overloading in phrase is resolved for C if

1. For every occurrence of one of the pervasive operators * + - < > <= >= ~

abs there is at most one type which can be inferred for that occurrence,
and

2. For every occurrence of a pattern row, there is at most one set {lab1, . . . , labn}
of record labels21 such that a type of the form {lab1 : ty1, . . . , labn : tyn} can
be inferred for that occurrence

in a successful elaboration of phrase in C.
It is only required that overloading be resolved in each topdec. But imple-

menters may find it reasonable to require it to be resolved in some smaller textual
unit. For example, a natural choice is to require it to be resolved in every valbind ;
in that case, the topdec

21Recent work by Rémy, following ideas of Wand, indicate that one can retain principal typing
in a richer type system where a pattern row can match records with a different number of fields
on different occasions. See M. Wand, Corrigendum: Complete type inference for simple objects,
Proc. of the Third Symposium on Logic in Computer Science, l988 and D. Rémy, Typecheck-
ing records and variants in a natural extension of ML, Sixteenth Annual ACM Symposium on
Principles of Programming Languages, Texas, 1989.

5.3 Principal types and environments 55

val x = let fun plus x y = x + y

in plus 3 4

end

would be rejected even though the topdec contains enough information to resolve
the overloading of +.

We can now state the theorem asserting the existence of principal environ-
ments. The theorem is asserted for environments rather than for type schemes,
because it is only at the interface between the Core and the Modules – namely
when a dec is parsed as strdec so that rule 57 [p 38] is invoked – that principality
is required, to secure the uniqueness of the elaboration of any strdec.

Let C be a context and dec a declaration. We say that an environment E
is principal for dec in C if C ` dec ⇒ E and moreover, for all E ′ for which
C ` dec ⇒ E ′ , we have ClosCE � E ′. (We must point out that the definition of
principality of E [Sec 4.12, p 30] wrongly used “E � E ′ ” in place of “ClosCE �
E ′ ”.22)

Theorem 5.2 (Principal Environments) Assume that overloading in dec is
resolved for C. Let C ` dec ⇒ E ′ . Then there exists an principal environment
for dec in C.

The proof relies upon Theorem 5.1; in the proof one establishes a similar, but
more general, property for all core language phrases.

Example 5.2 Let dec be the declaration val g = (fn y =>y x) considered
in Example 4.1, and C the context considered in that example. Then the
environment {g 7→ ∀’b.(’a→ ’b)→ ’b} is principal for dec in C. An
example of a non-principal environment for dec in C is {g 7→ (’a→int)→
int} .

22The point is slightly subtle. The environment E required by rule 57 to be principal will be
almost closed but not quite; it may still contain free imperative type variables left unquantified
by rule 17 [p 25]. (See also the discussion in Section 4.5.) The relevant example is dec = val
x = ref [] ; this will elaborate to E = {x 7→ ’ a list ref}, for any ’ a, where ’ a is still
free because ref [] is expansive. This E will later be rejected by rule 100 [p 44], but it is
cleaner to ensure that a principal environment exists even in this case, and the slight adjustment
achieves this while leaving unaffected the cases in which E is already closed.

56 6 STATIC SEMANTICS FOR THE MODULES

6 Static Semantics for the Modules

This and the following chapters concern the static semantics for the Modules
[Sec 5]. The static semantics for Modules will be described in more detail than
was done for the static semantics of the Core.

The principal concepts are structures, signatures and functors, which have
no parallel in many other programming languages. The rationale underlying the
Modules was discussed in Section 3.1. In the present chapter we introduce struc-
tures and signatures by small programming examples. Readers who already know
structures and signatures may still want to read this introductory chapter, because
it explains the semantic objects. In Chapter 7 we comment on the definition of
signature matching. Functors are discussed in Chapter 8.

In order to explain the more refined technical details, we then proceed to
discuss the notion of admissibility, which underlies the Modules semantics (Chap-
ter 9). The inference rules for signature expressions and specifications are treated
in Chapter 10.

Just as the static semantics of the Core rests on a theory of principal types,
so the static semantics of Modules rests on a theory of principal signatures. This
theory is explained in Chapter 11. Finally, for the theoretically minded reader,
we present rigorously in Appendix A the full proof that principal signatures exist;
this theorem underlies the theory of Chapter 11, and to have a detailed proof has
greatly increased our confidence in the design and the semantics.

6.1 Structures

In the static semantics, a structure is an environment stamped with a unique
name, which distinguishes it from other structures; that is, it is a pair

(m,E)

where m is a structure name (the stamp) and E is an environment [Fig 10, p 17].
Structures can be declared using structure declarations, whose simplest form is

structure strid = struct dec end

where strid is a structure identifier and dec is a (Core) declaration. Figure 7
shows two structure declarations. Structure names enable us to distinguish be-
tween structures that are different, even though the static environments they con-
tain are identical. For example, consider the structures in Figure 7. The two
structures that result from the elaboration will have the same static environments
but different structure names. Dynamically, the two structures will of course be
different. Like type names, structure names play a role in the static semantics
only. In the dynamic semantics, as we saw in Chapter 3, the concepts of structure
and environment coincide. Indeed, implementers often choose to represent both
structures and environments as record values at run-time.

6.1 Structures 57

structure OrdItem =

struct

type item = int

val leq(i: item, j: item) = i<=j

end

structure InvOrdItem =

struct

type item = int

val leq(i: item, j: item) = j<=i

end

Figure 7: Declaring two different structures

The phrases that denote structures are called structure expressions. A structure-
level declaration, strdec, can declare the same kinds of objects as a Core declaration
dec, but in addition it can declare structures [Fig 6, p 12]. Thus structures can be
used as substructures in other structures, resulting in a hierarchy of structures.
Figure 8 shows the declaration of a structure Pair which subsequently is incorpo-
rated as a substructure of structure Complex.

A generative structure expression is a structure expression of the form

struct strdec end

It is called generative because the elaboration of it results in a structure with a
fresh name, see rule 53 [p 37].

Once a structure has been declared, its components can be referred to individ-
ually using qualified identifiers, such as P.pair and P.mk pair in Figure 8 [Sec 2.4,
p 4]. The general form of a qualified identifier is

strid1.···.stridk.id (k ≥ 1)

Since structures can contain substructures, a (static) environment E is actually a
quadruple

(SE, TE, VE,EE)

where SE is a structure environment, i.e. a finite map from structure identifiers
to structures [Fig 10, p 17].

Example 6.1 The sequential structure declaration from Figure 8 elaborates to
the following environment, where we have omitted empty environment com-

58 6 STATIC SEMANTICS FOR THE MODULES

structure Pair =

struct

type ’a pair = ’a * ’a

fun fst(x,y) = x

fun snd(x,y) = y

fun mk pair p = p

end

structure Complex =

struct

structure P = Pair

type complex = real P.pair

fun mk complex p = P.mk pair p

fun plus(c,c’): complex =

P.mk pair(P.fst c + P.fst c’, P.snd c + P.snd c’)

end

Figure 8: Declaring a structure with a substructure

ponents:{
Pair 7→ S ,

Complex 7→
(
m2, { P 7→ S },

{ complex 7→ (Λ().real ∗ real, {}) },
{ mk complex 7→ ∀’a.’a→’a ,

plus 7→ ty }
) }

where
ty = (real ∗ real) ∗ (real ∗ real)→real ∗ real

and
S = (m1, { pair 7→ (Λ’a.’a ∗ ’a, {})},

{ fst 7→ ∀’a’b.’a ∗ ’b→’a ,
snd 7→ ∀’a’b.’a ∗ ’b→’b ,
mk pair 7→ ∀’a.’a→’a })

(Empty environment components which have been omitted include, for ex-
ample, the SE and EE components of the environment of S. We shall con-
sistently omit empty environment components from now on.)
Note that although Complex is expressed indirectly in terms of P, the struc-
ture to which Complex elaborates in no way hides the true identity of the
types; for example, plus gets type (real∗real)∗(real∗real)→real∗real
(real is a type name here!). The structure names m1 and m2 stem from the

6.2 Signatures 59

elaboration of the two generative structure expressions, so m1 and m2 must
be chosen to be fresh, i.e. must be generated, in a sense made precise by the
semantic rules.

Figure 9 shows part of the elaboration of the declarations from Figure 8. The
reader is encouraged to use the figure as a guided tour of the inference rules for
Modules. Notice that at a certain point, the elaboration reduces to elaboration of
Core declarations.

6.2 Signatures

Intuitively, a signature is a structure type.23 Whereas a structure expression
declares a structure, a signature expression specifies a structure (or rather: a class
of structures). For almost every kind of structure-level declaration strdec there is a
corresponding kind of specification spec (compare the grammar for structure level
declarations [Fig 6, p 12 and Fig 3, p 8] with that for specifications [Fig 7, p 13]).
Moreover, corresponding to the generative structure expression

struct strdec end

we have the signature expression

sig spec end

which, for lack of a better name, is called the generative signature expression,
although it does not generate any new structures or types.

Signatures are objects in their own right; they can be bound to signature
identifiers and included in other signatures to form larger signatures. Figure 10
shows the declaration of two signatures (compare with Figure 8).

A signature is not the type of any particular structure, but rather of a whole
class of structures, namely all the structures that match the signature. For ex-
ample, PAIR can be matched by any structure which has at least a type pair (of
arity one) and functions fst, snd, and mk pair with the specified types.

How can we represent a signature semantically? A first attempt might be to
elaborate a signature expression to exactly the same kind of object as a structure
expression, i.e. to a structure. However, it would not be obvious how to choose
the names occurring in this structure, for we can easily have two structures that
both match the signature although they have different names. The point is that
some of the structure and type names that occur in the signature are “generic”
(or “flexible”) names that range over “real” (or “rigid”) names or type functions
that occur in structures. Thus we take a signature to be an object of the form

(N)S

23We shall use this analogy between signature and type, to avoid too much pedantry. But
there is a more precise analogy in which the three entities signature, static structure and dynamic
structure correspond respectively to type scheme, type and value.

60 6 STATIC SEMANTICS FOR THE MODULES

.......

C of B `
type ’a pair =···
···
fun mk pair = ··· ⇒

{pair 7→ (Λ’a.’a ∗ ’a, {})},
{mk pair 7→ ∀’b.’b→’b, . . .}︸ ︷︷ ︸

E1(57)

B `
type ’a pair =···
···
fun mk pair = ···

⇒ E1

(53)

B ` struct ··· end ⇒ (m1, E1)︸ ︷︷ ︸
S1(62)

B ` Pair = struct ··· end ⇒ {Pair 7→ S1}︸ ︷︷ ︸
SE1(58)

B ` structure Pair = ··· ⇒ SE1 in Env︸ ︷︷ ︸
E3

.......

.......

B ⊕ E3 ` structure Complex = ··· ⇒ SE2 in Env︸ ︷︷ ︸
E4

(61)

B `
structure Pair = ···
structure Complex = ··· ⇒ E3 + E4

(100)

B `
structure Pair = ···
structure Complex = ··· ⇒ ({m1, m2}, E3 + E4) in Basis

Figure 9: Elaboration of a structure-level declaration

6.2 Signatures 61

signature PAIR =

sig

type ’a pair

val fst: ’a pair -> ’a

val snd: ’a pair -> ’a

val mk pair: ’a * ’a -> ’a pair

end

signature COMPLEX =

sig

structure P: PAIR

type complex

val mk complex: real P.pair -> complex

val plus: complex * complex -> complex

end

Figure 10: Declaring two simple signatures

where S is a structure, N is a pair (M,T), where M is a set of structure names and
T a set of type names, and the parenthesis-pair () is a binding operator. To avoid
too many brackets we mix M and T together and write e.g. {m, m’, t}S instead of
(({m, m’}, {t}))S. A name which occurs in S is bound (by N in (N)S) if it occurs
in N and it is free otherwise. The bound names will be called flexible and the
free names rigid. The reason behind this terminology is that flexible names can be
instantiated every time one matches a structure against the signature, whereas the
free names in the signature must be matched exactly by names in the structure,
see Chapter 7. We use Σ to range over signatures [Sec 5.1, p 31].

A signature is closed, if it contains no free names. This means that it depends
upon no structure or type defined elsewhere. (Informally, we can relax this defi-
nition slightly, and say that a signature is closed if every name that occurs free in
it also occurs free in the initial static basis. In this sense, a signature is closed if
it does not depend on any user-defined structure or type.) One can view closed
signatures as living at a level which lies properly above the level of structures. In
designing a large program, it can be useful to work with closed signatures only,
in order to resist the temptation to rely on particular structures.24 One can re-
strict oneself to closed signatures by adhering to the closure restrictions given
in [Sec 3.6,p 14]. However, the language does not preclude the use of non-closed
signatures.

24D.B. MacQueen, Modules for Standard ML, Proc. Symp. on Lisp and Functional Program-
ming, Austin, Texas, 1984, pp 198–207, ACM, New York.

62 6 STATIC SEMANTICS FOR THE MODULES

Example 6.2 The declaration of PAIR in Figure 10 elaborates to the signature
environment {G = PAIR 7→ Σ}, where Σ is the signature

{m, t}
(
m,{pair 7→ (t, {})},
{fst 7→ ∀’a.’a t→’a,
snd 7→ ∀’a.’a t→’a,

mk pair 7→ ∀’a.’a ∗ ’a→’a t}
)

Incidentally, Σ is closed. If we had the additional specification

val lth: ’a pair * ’a pair -> bool

in PAIR, we would have to add

lth 7→ ∀’a.’a t ∗ ’a t→bool

to Σ, which would no longer be closed, because of the free type name bool.
Similarly, the declaration of COMPLEX yields a signature

{m, m’, t, t’}
(
m’,{P 7→ (m,{pair 7→ (t, {})},

{fst 7→ ∀’a.’a t→’a,
snd 7→ ∀’a.’a t→’a,
mk pair 7→ ∀’a.’a ∗ ’a→’a t})},

{complex 7→ (t’, {})},
{mk complex 7→ real t→t’,

plus 7→ t’ ∗ t’→t’}
)

Figure 11 shows part of the elaboration of the signature declaration from Figure 10.
Once again, the figure is intended to give the reader an opportunity to take a look
at some of the inference rules. Notice the strong similarity with the elaboration in
Figure 9. However a significant difference is that, in the elaboration of signature
expressions, the only use of the Core rules is to elaborate type expressions. The
rules for the various kinds of descriptions [rules 82–87, p 41–42] are used during the
elaboration of specifications to obtain the same kind of information as is obtained
from the rules for Core declarations in the case of elaboration of structure-level
declarations.

Exercise 6.1 In Exercise 3.2 you were asked to show that, as far as evaluation
is concerned, the include specification

include sigid1 ··· sigidn

is equivalent to

local structure strid1:sigid1 and ··· and stridn:sigidn
in open strid1 ··· stridn end

6.3 Sharing 63

Now show that the same holds for elaboration; that is, prove that for any B
and E the former phrase elaborates to E in B if and only if the latter does.
These two exercises together justify the claim that the include specification
could have been given in the Definition as a derived form.

At first, one might be surprised to find that structure expressions elaborate to
structures, not signatures. However, every structure S can be regarded as the
trivial signature Σ = (∅)S. If strexp elaborates to S in B then Σ is so to speak
the most precise signature which the structure matches. (To talk about the most
precise signature is justified by the fact that elaboration of structure expressions
is deterministic up to the choice of generative names.) Since all names in Σ are
rigid, only a structure which has the same structure names and type functions
as S can match Σ. Values are represented by their types in S, so S is not to
be confused with some dynamic structure to which strexp evaluates; S is merely
a convenient shorthand for a signature in which the identity of all type and
structure names is fully determined. In short, it represents strexp without any
loss of information.

6.3 Sharing

We say that two structures share, if they have the same name. Similarly, two type
structures share if they have the same type function.

Continuing the above example, we can even specify that the structure P is
supposed to share with the Pair structure using a sharing specification:

signature COMPLEX_Pair =

sig

structure P: PAIR

sharing P = Pair

type complex

val mk_complex: real P.pair -> complex

val plus: complex * complex -> complex

end

This will yield the following more specific signature

{m’, t’}
(
m’,{P 7→ (m1,{pair 7→ (Λ’a.’a ∗ ’a, {})},

{fst 7→ ∀’a.’a ∗ ’a→’a,
snd 7→ ∀’a.’a ∗ ’a→’a,
mk pair 7→ ∀’a.’a ∗ ’a→’a ∗ ’a})},

{complex 7→ (t’, {})},
{mk complex 7→ real ∗ real→t’,

plus 7→ t’ ∗ t’→t’}
)

64 6 STATIC SEMANTICS FOR THE MODULES

.......

B `
type ’a pair

···
val mk pair: ··· ⇒

{pair 7→ (t, {})},
{mk pair 7→ ∀’a.’a ∗ ’a→’a t, . . .}︸ ︷︷ ︸

E1(63)

B ` sig ··· end ⇒ (m, E1)︸ ︷︷ ︸
S1(65)

B ` sig ··· end ⇒ {m, t}S1︸ ︷︷ ︸
Σ1

(69)

B ` PAIR = sig ··· end ⇒ {PAIR 7→ Σ1}︸ ︷︷ ︸
G1

(66)

B ` signature PAIR = ··· ⇒ G1

.......

.......

B +G1 ` signature COMPLEX = ··· ⇒ G2

(68)

B `
signature PAIR = ···
signature COMPLEX = ··· ⇒ G1 +G2

(101)

B `
signature PAIR = ···
signature COMPLEX = ··· ⇒ (G1 +G2) in Basis

Figure 11: Elaboration of a signature declaration

6.3 Sharing 65

The sharing constraint forces the structure and type names of P to be instantiated
to the corresponding names and type functions in Pair. Thus m was instantiated
to m1 and t was instantiated to the type function Λ’a.’a ∗ ’a. Notice that this
instantiation gives more specific type schemes for fst, snd and mk pair than those
actually inferred for Pair itself.

Sharing which is specified with an existing structure (or type, see below) is said
to be external. Sharing can also be internal to the signature, as in the following
(which might be part of an ML implementation):

signature FRONT_END =

sig

structure Parser:

sig structure TV: TYVAR (* type variables *)

......

end

structure Elaborator:

sig structure TV: TYVAR

(* the Elaborator also knows about type variables*)

......

end

sharing Parser.TV = Elaborator.TV

end}

Assuming that TYVAR is bound to the signature (N0)S0, FRONT END becomes

(N)
(
m1, {Parser 7→ (m2, {TV 7→ S0, . . .}, . . .),

Elaborator 7→ (m3, {TV 7→ S0, . . .}, . . .)}
)

where N is N0 ∪ {m1, m2, m3}, assuming that N0 ∩ {m1, m2, m3} = ∅. Note that the
sharing is represented by the two occurrences of the structure S0.

The expression for FRONT END suggests a different approach to sharing, taken
in other languages, namely sharing by parameterisation. For example, in the
above signature we could introduce a structure variable s of type S0 and form
the parameterised signature[
M,T, s : S0

](
m1, {Parser 7→ (m2, {TV 7→ s}),

Elaborator 7→ (m3, {TV 7→ s})}
)

where the square brackets indicate a new binding operator.

Finally, one can have sharing equations of type constructors, as in the following
example:

66 6 STATIC SEMANTICS FOR THE MODULES

signature FRONT_END =

sig

structure Parser:

sig type tyvar (* type variables *)

......

end

structure Elaborator:

sig type tyvar

(* the Elaborator also knows about type variables*)

......

end

sharing type Parser.tyvar = Elaborator.tyvar

end

Sharing can be specified between structures or between types, but not between
values or exceptions, since such sharing cannot be decided at elaboration time.

One might expect to find a mechanism for type abbreviation in signatures, just
as declarations like

type ’a t = int * ’a list

provide schematic abbreviation for all types of the form int * ty list . But
to allow such abbreviatory specifications, even using a type constructor of arity
0, causes embarrassment in the presence of sharing. Consider

type ’a t
type u = int t
sharing type u = int

The effect is to demand that t be bound to a type function θ such that int θ =
int . But there are two type functions θ which will work, namely Λ’a.’a and
Λ’a.int; which should be chosen? (Similar problems are discussed at the end of
Section 9.1 to do with consistency, and in Section 7.7 to do with type explication;
in each case the attempt to find a “most general” meaning for a type constructor
would involve second-order unification.) This difficulty also arises if, instead, we
allow sharing equations to contain arbitrary type expressions. Indeed, if we did
so then abbreviatory type specifications would be derived forms; for example,
the above case would be equivalent to

type ’a t
type u sharing type u = int t
sharing type u = int

This explains why type-sharing equations have been limited to type constructors.

6.4 Coercive signature constraints 67

Nonetheless there is some incentive, in an extension of ML, to allow a re-
stricted class of type expressions to occur in sharing equations. One possibility
is to admit a non-atomic type expression in a sharing equation only on con-
dition that it contains no flexible type constructors, i.e. no type constructor
which is specified at an earlier point in the current signature expression. (Thus
int t above violates the condition, because t is specified just previously in the
same signature.) If this extension were found to be sufficiently useful it would
still need careful checking, to ensure that it does not invalidate the proof of
principal signatures in Appendix A.

6.4 Coercive signature constraints

It is possible to constrain an existing structure by a signature, provided the struc-
ture matches the signature, and the effect is to obtain a special view of the struc-
ture where only the components specified in the signature are visible. (In Sec-
tion 3.3 we called this the curtailment effect of a signature, when ascribed to a
structure declaration.) Moreover, the semantic names in the (perhaps restricted)
view will be exactly the names of the corresponding components in the existing
structure, i.e. the restricted view shares with the un-restricted view.

Example 6.3 Consider the following program

signature VIEW1 = sig type t val x: t and y: t end

and VIEW2 = sig type t val p: t * t end

structure A =

struct

datatype t = BLUE | RED

val x = BLUE and y = RED

val p = (x,y)

end

structure A1: VIEW1 = A

and A2: VIEW2 = A;

As a result of the constraint of A1 to VIEW1, only the components specified
in VIEW1 are accessible via A1. Hence neither A1.p nor A1.RED is accessible.
However, the structure and type components that are in view maintain their
structure and type names. For instance A.t and A2.t are bound to different
type structures, because the former has two constructors and the latter none,
but both type structures have the same type name. Hence, when used in
type expressions, A.t , A1.t and A2.t can all be used interchangably. For
example, A.RED: A1.t elaborates, despite the fact that RED is not in VIEW1.

68 6 STATIC SEMANTICS FOR THE MODULES

Similarly,

if true then A.RED else A1.y

elaborates; in fact even if A.RED = A1.y then 5 else 7 elaborates, for
A.t admits equality and equality is an attribute of type names, so A1.t

admits equality.

Exercise 6.2 Guess the structure environment resulting from elaborating the
structure declarations in the above example.

6.5 Principal Signatures

Whenever a signature expression sigexp elaborates to a signature (N)S in B, (N)S
is going to be what is called equality-principal for sigexp in B. The definitions of
equality principality and the more primitive notion of principality are discussed
in Chapter 11. Suffice it to say that if (N)S is principal for sigexp in B then
S has exactly the components and sharing which any structure which matches
sigexp must have and moreover N is as large as possible, so that a name in S is
flexible if it can be. Thus, a principal signature is as general as possible in the
sense that it is not going to exclude any real structures that match sigexp. But at
the same time, a principal signature is as informative as possible in the sense that
it contains all the components and sharing which any structure which matches
sigexp must have. To illustrate the latter point, consider the following sigexp:

sig

structure A : sig structure C: sig end end

and B : sig structure C: sig end end

sharing A = B

end

The signature (N)S which is principal for sigexp is such that S(A) and S(B) share
and moreover S(A.C) and S(B.C) share, since this must be the case in any real
structure which matches sigexp.

6.6 Summary

A structure may match different signatures of varying generality. For example,
the structure

struct type t = int; val x = 3 end

matches all of the following signatures, which are listed in the order of strictly
descending generality:

6.6 Summary 69

(a) sig end

(b) sig type t end

(c) sig type t val x: t end

(d) sig type t val x: int end

(e) sig type t sharing type t = int val x: t end

Exercise 6.3 For each of (b)–(e) above, give an example of a structure which
does not match the specification, but matches the previous one.

Conversely, a signature may of course be matched by many structures. Also, a
(semantic) structure S may be obtained from many different structure expressions
and a (semantic) signature Σ may be obtained from many different signature ex-
pressions. Sometimes, a semantic structure or signature may even contain free
names that are not reachable by looking up a long structure identifier or type
constructor in the current basis, in which case printing a sensible textual repre-
sentation of the semantic object becomes harder.

However it can be proved that, given a basis B and a structure expression
strexp, there is at most one semantic structure S, such that strexp elaborates to S
in B, up to renaming of generative names in S.

Moreover, given a basis B and a signature expression sigexp, there is at most
one semantic signature (N)S, such that sigexp elaborates to (N)S in B, up to
renaming of the bound names N , namely the equality-principal signature for sigexp
in B.

70 7 SIGNATURE MATCHING

7 Signature Matching

In this chapter we discuss what it is for a structure to match a signature. We
first describe how matching is a combination of instantiation and enrichment.
In doing so, we shall introduce the crucial concept of a realisation. Finally, we
prove a theorem which states that, informally speaking, for every structure S and
signature Σ, if Σ is what is called type-explicit, then there is at most one way in
which S can match Σ.

7.1 Matching

A structure S matches a signature Σ if, for some S−, S enriches S− and S− is an
instance of Σ [Sec 5.12, p 35]. This of course leaves us with defining enrichment
and instantiation. Write Σ in the form (N1)S1. Recall that the names in N1

are flexible and that the free names are rigid. Roughly speaking, instantiation is
concerned with mapping the flexible names in Σ to the actual names in S, and
enrichment is concerned with the fact that S may have more components and
more polymorphism than specified in Σ.

7.2 Realisation

In order to be able to instantiate flexible names to rigid names, we need the
notion of realisation. A type realisation is a map ϕTy mapping type names to
type functions such that t and ϕTyt have the same arity, and if t admits equality
then so does ϕTyt [Sec 5.6, p 33]. We can say that a structure realisation is a
map ϕStr from structure names to structure names. Then a realisation, ϕ, is a
pair (ϕTy, ϕStr) of a type realisation and a structure realisation [Sec 5.7, p 33]. In
instantiating a signature (N1)S1, we want realisation to act on the bound names
only. For any realisation ϕ we define the support of ϕ, Suppϕ, to be the set of
names n for which ϕn 6= n [Sec 5.7, p 33].

7.3 Instantiation

Then we say that S− is an instance of (N1)S1, written (N1)S1 ≥ S−, if there
exists a realisation ϕ which affects flexible names only (i.e. Suppϕ ⊆ N1) such
that ϕ(S1) = S− [Sec 5.9, p 34].

Notice that two different names in S1 may be mapped to the same name (or
type function) in S−. Thus there may be sharing in S− which was not specified
in S1. On the other hand, different occurrences of the same name in S1 will of
course be mapped to the same name (or type function) by ϕ, so S− must have
at least as much sharing as specified by S1. Also note that, by the definition of
type realisation, if a flexible type name in the signature admits equality then it
can only be realised by a type function that admits equality. Finally, since ϕ may

7.4 Enrichment 71

change names, but never affects the domain of any kind of environment, (N1)S1

and S− have exactly the same “shape”, i.e. for any kind of long identifier, longid,
S−(longid) exists if and only if S1(longid) exists.

Exercise 7.1 Recall the declarations in Example 6.3. What is the signature to
which VIEW1 elaborates? Give a structure to which A elaborates. Does there
exist an instance of VIEW1 which agrees with the structure and type names
used in A?

To digress from matching for a moment, note that in [Sec 5.9] the relation of
instantiation between two signatures, Σ1 ≥ Σ2, is defined in terms of instantiation
between a signature and a structure. It is easy to show that Σ1 ≥ Σ2 and Σ2 ≥ Σ1

if and only if Σ1 and Σ2 are identical after renaming of bound names, and removal
of any unused bound names from their prefixes. We shall say in this case that Σ1

and Σ2 are identical. This is relevant to the results about principal signatures in
Chapter 11.

7.4 Enrichment

The other half of signature matching, enrichment, allows the actual structure S to
have more components and more polymorphism than the signature instance S−,
but S and S− must agree on the names of structure and type components that are
present in S−. The precise definition of the enrichment relation S1 � S2 is found
in [Sec 5.11, p 34].

Several points are worth noting about this definition.

1. It depends, via the requirement VE1(id) � VE2(id) for example, upon the
relation of generalisation between type schemes [Sec 4.5, p 19], which is also
denoted by �.

2. In the clause dealing with exception environments you might expect to
see the condition EE1(excon) � EE2(excon) instead of EE1(excon) =
EE2(excon) . But recall that EE(tycon) is always a type, not an arbitrary
type scheme; between types, enrichment (�) coincides with equality.

3. For two different reasons, in the clause dealing with constructor environ-
ments you may be surprised at the strictness of the condition that CE1 =
CE2 or CE2 = {}. First, why not Dom(CE1) ⊇ Dom(CE2) and . . . , as
in the earlier clauses? The reason is that when a datatype is specified by
a type structure (θ2, CE2) for which CE2 6= {}, for example in the argu-
ment signature of a functor, then we wish to retain the validity of the check
for exhaustiveness [Sec 4.11, p 30] of any match which occurs in the functor

72 7 SIGNATURE MATCHING

body; this check would be worthless if a datatype with extra constructors
were allowed to match the specifying type structure.25

4. Second, you may still be surprised that we have not merely required that
CE1(con) � CE2(con) for each con, i.e. generalisation rather than equality
of type schemes. However, the type schemes which appear in a constructor
environment are so special that enrichment between two of them actually
implies equality, as the following exercise illustrates.

Exercise 7.2 Let σ1 � σ2, where σ1 = ∀’a’b. τ1 → (’a, ’b)t1 and σ2 =
∀’a’b. τ2 → (’a, ’b)t2 , and where ’a and ’b are the only type variables
occurring in τ1 and τ2 (see the third restriction in [Sec 2.9, p 9]). Prove that
σ1 = σ2.

The two conditions of enrichment – more components, more polymorphism – are
really closely related. For we can think of a polymorphic function f : σ as a family
of functions f : τ , one for each monotype τ such that σ � τ . Now if σ � σ′, then
each member of the family f : σ′ is also a member of the family f : σ; this is just
another case of “more components”.

7.5 Discussion of matching

The definition of matching in terms of enrichment and instantiation is, formally:

S matches (N1)S1 if, for some S−, (N1)S1 ≥ S− ≺ S

Exercise 7.3 Recall the structures Pair and Complex from Section 6.1 and the
signatures PAIR and COMPLEX from Section 6.2. Prove that the structures
match the signatures, by exhibiting the required realisations. Are these
realisations uniquely determined by the structures and the signatures? Are
there value components which are more polymorphic in the actual structure
than in the signature instance?

Exercise 7.4 In the following, does structure A match SIG? Does B?

structure A = struct datatype t = C | D of int end

structure B = struct datatype ’a t = C | D of ’a end

signature SIG = sig datatype ’a t = C | D of int end

25The reader may like to reflect upon the two levels of matching in ML. There is some analogy
between them, but large differences. Matching a structure to a signature is done entirely at
elaboration time, and no alternatives are provided; matching a value to a pattern is done at
evaluation time, and a set of alternative patterns is provided (see Section 2.5). But in the latter
case there is still certainty, before evaluation time, that the value will fit the match; this is
provided partly by the type discipline and partly by the exhaustiveness check (which ensures
that the value will fit at least one pattern in the match).

7.6 Equality type specifications 73

As an example of the use of matching in the inference rules, consider rule 62 [p 39]
concerning structure bindings, omitting the second option:

B ` strexp ⇒ S 〈B ` sigexp ⇒ Σ , Σ ≥ S ′ ≺ S〉
B ` strid 〈: sigexp〉 = strexp ⇒ {strid 7→ S〈′〉}

Read operationally, this rule says that we first elaborate the structure expression
to get S and then elaborate the signature expression (assuming it is present) to
get a signature Σ and then match S against Σ. If the match is successful, it is the
signature instance S ′ which becomes the view bound to the structure identifier.

By simply dropping 〈′〉 from rule 62, we would lose the coerciveness of signa-
ture matching, as described in Section 6.4; the signature in a structure binding
would become merely a condition to be satisfied by the structure – that it should
possess at least the components (and at least the sharing) mentioned in the sigexp.
There is a perfectly sound alternative semantics for ML in which signatures are
uniformly treated as conditions, not as coercions. (We also discussed this in the
context of dynamic semantics, Section 3.5, using the word “curtailment” in place
of “coercion”.) Remarkably few – but important – other changes have to be made
to the present static semantics; for example, rule 99 [p 44] for functor bindings
needs a similar adjustment. Perhaps we can look forward to a future language in
which signatures are used both as coercions and as conditions; for the present, it is
important to find out exactly when discomfort is caused by only having coercions.

7.6 Equality type specifications

To specify a type constructor t which has arity k and admits equality, one writes
specifications such as

eqtype t (if k = 0)
eqtype ’a t (if k = 1)
eqtype (’a,’b,’c)t (if k = 3)

By the definition of type realisation [Sec 5.6, p 33], such a type can only be realised
by a type function which also has arity k and admits equality.

Example 7.1 In the following, List1 matches LIST, but List2 does not:

signature LIST =

sig

eqtype item

val is_in: item * item list -> bool

end

structure List1 =

struct

datatype item = A | B of item

74 7 SIGNATURE MATCHING

fun is_in(_,[]) = false

| is_in(i, hd::tl) = i=hd orelse is_in(i,tl)

end

structure List2 =

struct

type item = int -> int

fun is_in(_,[]) = false

| is_in(i, hd::tl) = i=hd orelse is_in(i,tl)

end

As a point of language design, it is interesting to consider an alternative to eqtype.
The specification eqtype ’a t does two different things; it specifies that a
(unary) type constructor t should exist, and it specifies that t should admit equal-
ity. The first of these things is already done by type ’a t . One can therefore
imagine a different primitive, say

equality t

which does only the second thing; like sharing, it specifies an additional property
for entities which exist already. Then eqtype ’a t would be a derived form,
equivalent to

type ’a t equality t

Moreover equality would be convenient in such a situation as

sig structure S: SIG equality S.t end

effectively strengthening SIG by an extra requirement. This can be done using
eqtype, but only messily, as follows:

sig structure S: SIG

local eqtype ’a u in sharing type S.t=u end

end

7.7 Type explication

Given a structure S and a signature (N1)S1, we would like it to be the case that
there is at most one structure S− such that (N1)S1 ≥ S− ≺ S, for S− is supposed
to be the result of “cutting down” S by (N1)S1. For the purpose of functor
application (explained later), we actually want a stronger property, namely that
there exist at most one realisation ϕ such that Suppϕ ⊆ N1 and ϕ(S1) ≺ S.

Unless special care is taken this will not hold, as the following example shows:

Example 7.2 Consider the signature

signature SIG = sig type ’a t val x: int t type t end

7.7 Type explication 75

and the structure

structure Str = struct val x = (3,4) type t = bool end

The second specification of t in SIG overwrites the first, so SIG elaborates to

{m1, t1, t2}(m1, {t 7→ (t2, {})},
{x 7→ int t1})

whereas Str elaborates to

(m3, {t 7→ (bool, {})},
{x 7→ int ∗ int})

Now there are four different realisations ϕ of t1 which satisfy (int)(ϕ(t1)) =
int∗int, namely θ = Λ’a.’a∗’a, θ = Λ’a.’a∗int, θ = Λ’a.int∗’a, θ =
Λ’a.int∗int. The problem is that, by comparing the type functions of the
specified type constructors with the type functions in the actual structure,
we can determine the value of ϕ(t2) but not of ϕ(t1).

We therefore define that a signature (N1)S1 is type-explicit if, whenever t ∈ N1

occurs free in S1, then some substructure of S1 contains a type environment TE
such that TE(tycon) = (t, CE) for some tycon and some CE [Sec 5.8, p 33]. Before a
signature is accepted as the result of an elaboration, i.e. at the point of application
of rule 65, it is checked whether the signature really is type-explicit. This will rule
out the declaration of SIG above.

For any structure S and signature (N1)S1 and realisation ϕ, we say that S
matches (N1)S1 via ϕ, if Suppϕ ⊆ N1 and ϕS1 ≺ S [Sec 5.12, p 35]. In the state-
ment of Theorem 7.1 we refer to the notion of well-formed signature, which will
be discussed in Section 9.2. However, the only property of well-formed signatures
that is used in the proof is that if (N)S is well-formed then N ⊆ namesS.

Theorem 7.1 (Type Explication) For any structure S and signature Σ, if Σ
is type-explicit and well-formed, then there is at most one realisation ϕ such that
S matches Σ via ϕ.

Proof Write Σ in the form (N1)S1. Let S match Σ via two realisations ϕ and ϕ′,
and let n ∈ N1. Since Σ is well-formed, we have n ∈ namesS1. Therefore
if n is a structure name, S1 contains a substructure (n,E) for some E; on
the other hand if n is a type name then, since Σ is type-explicit, S1 contains
a type structure (n,CE) for some CE. In either case ϕn = ϕ′n, by the
definition of enrichment, since S enriches both ϕS1 and ϕ′S1. Hence ϕ and
ϕ′ agree for all names in N1. But Suppϕ, Suppϕ′ ⊆ N1, so ϕ = ϕ′.

76 8 ELABORATION OF FUNCTORS

8 Elaboration of Functors

In this chapter we shall comment on the static semantics of functors. In Section 8.1
we review the concept of functor itself; see also Section 3.4. In Sections 8.2 and 8.3
we then comment on the rules for functor declaration and application, respectively.
In Section 8.4 we look at some alternative meanings for signature ascriptions.
Finally, in Section 8.5 we comment on the possibility of admitting higher-order
functors.

8.1 Discussion

The static semantic object corresponding to a functor is called a functor signature
[Fig 11, p 31]. As a result of elaborating a functor declaration

functor funid (strid: sigexp)〈: sigexp ′〉 = strexp

a functor signature is bound to funid and entered into the basis. A functor signa-
ture is analogous to a signature, but has two parts (argument and result) in place
of one; it takes the form (N)(S, (N ′)S ′), where (N)S represents the argument
signature while (N ′)S ′ – loosely speaking – is a signature for the result structure.
A functor is elaborated just once, and the elaboration takes place at the time of
declaration; the principle of static scoping for functors makes this possible.

The elaboration of an application of funid consists of first checking that the
actual argument structure matches (N)S, and then deriving the result from (N ′)S ′

in a manner that will be described later. Elaboration of a functor application
does not require the re-elaboration of the functor body, despite the fact that the
argument signature may specify types, whose true identity does not become known
until the functor is applied.

When a functor declaration is elaborated, the body of the functor is elaborated
in a basis in which strid has been bound to a formal structure which matches
sigexp and has all the sharing, the polymorphism, the equality attributes and the
components that any structure which matches sigexp must have, but no more.
This is achieved by elaborating sigexp to an equality-principal signature (N)S
and then using S as the formal structure. We emphasise the practical significance
of principality at this point; if there were no natural choice of “best” elaboration
for the argument signature, then one would indeed be faced with either recording
some (possibly infinite!) set of “good” results, one for each “good” elaboration
of sigexp, or else requiring re-elaboration of the functor body for each functor
application. It is helpful here to recall the dynamic semantics of functors from
Section 3.4, and then to compare both with the treatment of functions in the
Core. In the dynamic semantics, function and functor closures both contain code
to be evaluated at each application; in the static semantics, both function types
and functor signatures are truly abstract objects which summarise all possible
applications.

8.1 Discussion 77

In writing the functor body strexp, one can consider strid as a kind of abstract
structure or abstract datatype. If the body relies on properties of the argument
that are not specified in the formal argument signature, the elaboration of the
body will fail. Conversely, if a functor declaration does elaborate, then one is
certain that the body of the functor would also elaborate if one were to replace
the formal structure by an actual structure, provided of course that the actual
structure matches the formal argument signature and is cut down to contain just
the components mentioned in the signature.

Functors need not be closed [Sec 3.6, p 14]; besides referring to the formal
argument structure and its components, the body and the result signature can also
refer to identifiers declared outside the functor. Of course, if a functor is closed –
except perhaps for non-local signature identifiers, and reference to standard types
and values – then the functor declaration can be executed (i.e. both elaborated and
evaluated) in the initial basis, perhaps augmented just by a signature environment.
This leads to the possibility of independent compilation of functors. But in a
body of a functor f one often needs to refer non-locally to another functor g
say; one cannot abstract this reference by making g a parameter of f because
functors cannot take functor parameters (see Section 8.5 for the possibility of
relaxing this restriction). This is why a scheme is proposed in [Sec 3.6, p 15] in
which functors could refer non-locally only to signatures and to other functors; a
separately compilable module would then include specifications of the free functor
identifiers, in the form of functor signature expressions, whose semantics is given
by rule 95 [p 43]. These suggested closure restrictions are very near those in
MacQueen’s original proposal for Modules; but it was encouraging to find no
semantic complication at all in treating the fully general case in the Definition.

In the Core, the most common reason for abstracting an expression to form
a function is perhaps that one wishes to apply the function at least twice. Some
functors are written with the purpose of being applied more than once, but the
most important use of functors is probably to act as an abstraction mechanism. In
that case, the formal argument signature serves as an interface, and the elaboration
of the functor body is such that the body can only use what the interface specifies.
Furthermore, the compiler or elaborator checks that any actual structure to which
the functor is applied really does satisfy the interface. The reader will recall from
Section 3.3 that the term interface has an exact meaning in the dynamic semantics;
there, it represents all that is relevant at run-time about an argument signature,
i.e. simply the names of a structure’s components.

In some ways, functors are less general than functions. Functors can only be
declared at top level; since they cannot be declared inside structures, they cannot
be returned as results from functors. Also, as we saw above, functors cannot be
parameterised on functors. Functors are not recursive, neither by themselves nor
by mutual recursion. Last but not least, a functor’s result structure cannot be
made to depend in an arbitrary way upon the values in its argument structure;
in particular, there is no conditional form at the level of structures which would

78 8 ELABORATION OF FUNCTORS

allow one to write

if A.x = 0 then strexp1 else strexp2

8.2 Functor declaration

Consider a functor declaration fundec of the form

functor funid (strid :sigexp) = strexp

(Empty and sequential functor declarations present no added difficulty, nor do
functor bindings that bind more than one functor identifier. Result signatures are
more interesting and will be treated separately below.) We can see the effect of
such a functor declaration more clearly if we combine rules 96 [p 43] and 99 [p 44]
into a single rule

(P1) B ` sigexp ⇒ (N)S
(P2) B ⊕ {strid 7→ S} ` strexp ⇒ S ′

(P3) N ′ = namesS ′ \ ((N of B) ∪N)

B ` fundec ⇒ {funid 7→ (N)(S, (N ′)S ′)}

The result of the elaboration is a functor environment, i.e. a finite map from
functor identifiers to functor signatures [Fig 11, p 31]. In the functor signature
(N)(S, (N ′)S ′), N and S are obtained by elaborating the argument signature, see
(P1), and S ′ is obtained by elaborating the body of the functor, see (P2); N ′

is the set of names occurring in S ′ that are “new”, i.e. that stem neither from
the basis B nor from the formal argument structure S (in fact they stem from
generative structure expressions or datatype declarations occurring in the body,
or else occurring in the body of another functor invoked by the body). These
names are called the generative names of the functor signature.

Now let us consider the three premises one at a time. At (P1) we elaborate
sigexp to a signature. This can only happen via rule 65, so we know that (N)S is
equality-principal for sigexp in B. Hence S contains as many components and as
much sharing and equality as any structure which matches sigexp must contain.
Moreover, according to the definition of principality [Sec 5.14, p 35] we can assume
that the bound names N have been chosen to be disjoint from the names occurring
free in B.

At (P2) we then bind S to strid and add the binding to the basis before
elaborating the functor body. Since N is chosen disjoint from B, we do not thereby
assume any sharing between S and B which does not already exist between (N)S
and B. By dropping the name prefix (N) from (N)S within the body, we have
in effect introduced the names in N as new constant type and structure names
whose scope is the functor body. That is why ⊕ is used: all names in S should be
treated as rigid within the body. In terms of Section 10.1, the functor body will

8.2 Functor declaration 79

be elaborated in a rigid basis. In particular therefore, the elaboration of the body
cannot retrospectively identify names that are different in S.

Example 8.1 Consider the following functors:

functor F(S: sig type u and t

val x: u and y: t

end) =

struct

fun choice b = if b then S.x else S.y

end

functor G(S: sig type t val x:t and y:t end)=

struct

val b = (S.x = S.y)

end

functor H(S: sig datatype t = C | D

val x: t

end) =

struct

val b = (S.x = S.C)

end

The declaration of F will not elaborate, for within the functor body, t and
u are different rigid types, just as different as t and int, say. Similarly, the
declaration of G will not elaborate, because t was not specified as an eqtype.
However, H will elaborate, because the type name for t in the equality-
principal signature will admit equality. Moreover, G would also elaborate if
eqtype were to replace type in its argument signature.

Finally, at (P3) we take N ′ to be the set of names that were freshly generated by
the elaboration of the body. The reason for giving these names a special status
is that each time the functor is applied, they must be replaced by names that are
fresh with respect to the basis in which the application takes place. For example,
every time the functor

functor J(S: sig type t end) =

struct

datatype u = C of S.t | D

end

is applied, u will be given a fresh type name, as indeed is necessary, since t may
vary from application to application.

80 8 ELABORATION OF FUNCTORS

We now see why a functor signature is of the form (N)(S, (N ′)S ′) and not, say,
((N)S, (N ′)S ′) or (N)(S, S ′) or (N∪N ′)(S, S ′). The generative names N ′ pertain
strictly to the body of the functor, so the scope of the binding (N ′) should be S ′,
rather than (S, S ′). On the other hand, the result of the functor may well share
with the formal argument S, as indeed in functor J above, where the type of C
in the result signature contains the type name of S.t. Therefore, (N) binds over
both S and (N ′)S ′. This implies that if we rename the names in N we will in
general have to rename names that occur free in (N ′)S ′. More importantly, if we
instantiate the names in N to names in an actual structure to which the functor
is applied then we must also instantiate names that are free in (N ′)S ′ and occur
in N .

Exercise 8.1 What is the functor signature of J?

Now let us consider the case of a functor declaration fundec with a result
signature:

functor funid (strid :sigexp) :sigexp ′ = strexp

for which we can combine rules 96 and 99 into the single rule

(P1) B ` sigexp ⇒ (N)S
(P2) B ⊕ {strid 7→ S} ` strexp ⇒ S ′

(P3) B ⊕ {strid 7→ S} ` sigexp ′ ⇒ Σ′

(P4) Σ′ ≥ S ′′ ≺ S ′

(P5) N ′ = namesS ′′ \ ((N of B) ∪N)

B ` fundec ⇒ {funid 7→ (N)(S, (N ′)S ′′)}

Here (P1) and (P2) are as in the case of no result signature described above. At
(P3) we elaborate the result signature in the same basis as we elaborate the functor
body. In particular, the result signature can refer to the argument structure, but
no sharing specification in the result signature can retrospectively impose sharing
which was not met in B ⊕ {strid 7→ S}. For example, the following functor
declaration does not elaborate

functor K(S: sig type t and u end):

sig sharing type S.t = S.u end

= struct end

Next, at (P4) it is checked whether the body matches the result signature, i.e.
whether there exists a structure S ′′ such that Σ′ ≥ S ′′ ≺ S ′. Finally, at (P5), N ′

is taken to be the generative names of S ′′. Since S ′′ ≺ S ′, all names that occur in
S ′′ also occur in S ′.26

26The careful reader will have noticed that the definition of N ′ in (P5) differs slightly from
the one in rule 99. There is a small mistake in the latter, whose side-condition should have been
N ′ = namesS′〈′〉 \ ((N of B) ∪N). If one omits the optional prime, then (N ′)S′′ may fail to be
well-formed, since we do not necessarily have N ′ ⊆ namesS′′.

8.3 Functor application 81

In the conclusion, the crucial point is that it is S ′′, not S ′, which is used in
the functor signature, i.e. the result structure S ′ is “cut down” to the view given
by the result signature. In particular, S ′′ may have less components and less
polymorphism that S ′ but since S ′ enriches S ′′, the result signature does not hide
the identity of any type or structure that is not cut away by the result signature.

Exercise 8.2 Let us say that two phrases phrase1 and phrase2 are equivalent if
for all semantic objects A and A′,

A ` phrase1 ⇒ A′ iff A ` phrase2 ⇒ A′

Prove that fundec1 is equivalent to fundec2, where

fundec1 ≡ functor funid(strid :sigexp) :sigexp ′ = strexp
fundec2 ≡ functor funid(strid :sigexp) =

let structure strid ′ :sigexp ′ = strexp
in

strid ′

end

for all strid ′. In other words, functors with result signatures can be expressed
as a derived form of functors without result signatures.

8.3 Functor application

We shall now comment on the rule for functor application, rule 55 [p 37], which
more explicitly can be stated

(P1) B(funid) = (N1)(S1, (N
′
1)S ′1)

(P2) B ` strexp ⇒ S
(P3) S matches (N1)S1 via ϕ
(P4) (N ′)S ′ = ϕ((N ′1)S ′1) (N of B) ∩N ′ = ∅

B ` funid(strexp)⇒ S ′

First, at (P1), we look up the functor signature for funid in the basis. Then,
at (P2), we elaborate strexp to give S, the actual argument structure. Then,
at (P3), we check whether the actual argument matches the formal argument
signature (N1)S1 via some realisation ϕ. (As we saw in Section 7.7, in all normal
circumstances there is at most one such ϕ.)

There may be sharing between the argument and result in the functor signa-
ture; more precisely, there can be names in N1 that occur free in (N ′1)S ′1 besides
occurring free in S1. (An example is the functor J in the previous section.) Upon
applying the functor, we wish to carry the identity of the types and structures
from the actual argument through to the result of the application. For example,
after the application

structure A = J(struct type t = int end)

82 8 ELABORATION OF FUNCTORS

the constructor A.C has type int -> A.u.
This propagation of sharing is achieved by applying ϕ to (N ′1)S ′1, see (P4).

(Recall that ϕ is the instantiation of the flexible names (N) to the names in the
actual argument.)

By the second condition at (P4), in applying ϕ to (N ′1)S ′1 we must pick the
bound names (N ′) so that they are also disjoint from the names already in use in
the basis. It is this condition which ensures that generative structure expressions
and datatype declarations in the functor body are given fresh names upon each
application.

To sum up, a functor application does not hide the identity of structures or
types in the argument. However, note that the resulting structure S ′ has no
more components than were present in the result part of the functor signature.
In particular, components of the actual argument that were not specified in the
argument signature are not propagated through to the result of the application.
In the dynamic semantics, this is reflected by cutting down the actual argument
to the shape of the argument signature, before evaluating the functor body.

Looking at the rule for functor application, one naturally asks whether it really
has to be that complicated. One might have expected something like

B(funid) = (S, (N ′)S′) B ` strexp ⇒ S (N of B) ∩N ′ = ∅
B ` funid (strexp)⇒ S′

which looks more like the rule for ordinary function application. However, in
order to avoid re-elaboration of structure expressions, we want the result S of
the elaboration of strexp to be as specific as possible (see the discussion at the
end of Section 6.2). But then by the above rule, funid could only be applied
to S, and that is clearly not what is intended. Therefore, the functor signature
for funid is polymorphic, in the sense that it can be instantiated each time the
functor is applied. Hence the concept of functor signature instance [Sec 5.10,
p 34] used in rule 55.

Renaming of bound names always preserves attributes (i.e. equality and arity)
[Sec 5.1, p 31].27 In particular, the equality properties of datatypes occurring in a
functor body are determined once and for all at the time the functor is declared.
Thus, if such a datatype is found not to admit equality, it will not admit equality
in any application of that functor, no matter how much the types in the actual
argument admit equality. For example, A.u is the above example does not admit
equality.

One may be tempted to think of a functor as a kind of macro; is it perhaps
the case that applying a functor is the same as elaborating the functor body after
substitution of the actual argument for the formal parameter? Strictly speaking,
this question is not entirely meaningful as it stands, for by substituting a structure

27There is a small mistake on [p 31], line 12 from the bottom: delete “imperative,” — type
names do not have an imperative attribute.

8.3 Functor application 83

expression for a structure identifier one does not always obtain a grammatically
correct phrase. However, the following exercise states the question accurately.

Exercise 8.3 The question is whether the following phrases would be equivalent,
if we were to introduce local functor declarations:

strexp1 ≡ let structure strid :sigexp = strexp
in strexp ′

end

strexp2 ≡ let functor funid(strid :sigexp) = strexp ′

in funid(strexp)
end

assuming that funid does not occur free in strexp. Use the above observations
about equality to show that this equivalence does not hold in general. (There
are other reasons why the equivalence does not hold.)

Functor application is deterministic up to the choice of generative names. More
precisely, let (N1)(S1, (N

′
1)S ′1) be B(funid). Let us assume that the functor ap-

plication is part of an elaboration that starts out in the initial basis. Then
(N1)S1 is type-explicit; for there are no functor signatures in the initial basis
and whenever a functor signature is created, it is via rule 99 which in turn em-
ploys rule 65, which explicitly requires that the signature be type-explicit. Given
that B ` strexp ⇒ S, there is at most one ϕ such that S matches (N1)S1 via ϕ, by
Theorem 7.1. Hence there is at most one (S ′′, (N ′)S ′) such that (P2) is satisfied,
namely (ϕ(S1), ϕ((N ′1)S ′1)). Hence S ′ is fully determined by B(funid) and S, up
to the choice of the bound names in ϕ((N ′1)S ′1).

At the end of Section 3.4 on the dynamic semantics of functors, we noticed that
the evaluation effect of signature ascription “: sigexp” in a structure declaration (at
least at top-level) can be achieved just as well by applying a “curtailing” functor

functor F(X: sigexp) = X

This is also true for the elaboration effect; that is, after defining F as above, the
two declarations

structure A: sigexp = strexp

and
structure A = F(strexp)

either both fail or bind A to exactly the same structure.

Exercise 8.4 Prove this fact, as follows. Assume that elaboration begins in some
B, and that sigexp elaborates in B to the signature (N)S∗. What functor
signature gets bound to F? Suppose then that strexp elaborates to S. In

84 8 ELABORATION OF FUNCTORS

each structure declaration, what is the condition under which elaboration
will be successful, and then what S ′ gets bound to A? Show that the answers
are the same in each case.

With the notion of equivalence defined in Exercise 8.2, and with local functor
declarations as suggested in Exercise 8.3, we would then expect to prove the
following phrases equivalent:

structure strid: sigexp = strexp

and

structure strid = let functor F(X: sigexp)=X in F(strexp) end

provided that F does not occur in strexp. Thus all signature ascription can be
explained in terms of functor argument signatures.

8.4 Variations and extensions

In Section 3.5, and again in Section 7.5, we briefly explored an alternative mean-
ing for signature ascription, namely that it should have no curtailing effect, but
should act simply as a conformity test; in our current terminology, this means
just checking that a structure matches the signature. One thing we noticed was
that, if this meaning is adopted for the argument signature of a functor, then
there is difficulty with the present form of the open declaration. Let us now keep
the meaning of functor argument signatures unchanged, and look at variations in
the meaning of ascribing signatures in structure bindings, and to the results in
functor bindings. (In fact, these are the only places where a signature is ascribed
essentially to a structure expression.)

For the variation in which a matching check is done, without curtailment, let
us use “>:” in place of the colon (by “>” we are trying to suggest that the struc-
ture may be bigger than the signature). Thus we introduce two new binding forms
(multiple bindings omitted for brevity):

strbind ::= strid >: sigexp = strexp
funbind ::= funid (strid : sigexp) >: sigexp ′ = strexp

Exercise 8.5 Give modified forms of the rules 55, 62 and 99 for these non-
curtailing bindings.

In Section 3.5 we commented on another variation, which avoids curtailment ev-
erywhere, even on functor arguments; this indeed has some interest, despite the
difficulty with open, but in that case we have to reformulate the semantics in a

8.4 Variations and extensions 85

non-trivial way, even changing the notion of realisation, and this takes us beyond
the scope of our Commentary.28

A final variation is essentially the abstraction declaration offered by David
MacQueen in his original Modules proposal, as an alternative to the structure

declaration. Under the present semantics, a signature ascription may conceal
components of a structure, but it will never conceal sharing – and other properties
– of components that remain in view. This can even be misleading; consider the
following example:

functor F(X: sig type T .. end): sig type T .. end

= struct type T = X.T .. end

Perhaps the user expects that his result signature here conceals the nature of the
result type T – i.e. conceals the fact that it is the same type as X.T, and has
all the attributes that X.T enjoys. After all, within the functor body he knows
no attributes possessed by the T-component of any structure to which F may be
applied. But now suppose he applies the functor:

structure S2 = F(S1)

Then he will find that, if for example S1.T is a datatype with associated con-
structors, or admits equality, then he can take advantage of these attributes when
handling objects of the new type S2.T.

This does not imply that in ML one cannot hide the implementation of a spec-
ified type. If one adopts the style of writing modules in the form of functors, then
one can use the concealment provided by the argument signature of a functor. The
modular style suggested in [Sec 3.6, p 15] would provide the same sort of conceal-
ment. All the same, as a matter of convenience at least, it may be desirable to add
MacQueen’s notion of abstraction. MacQueen originally proposed it for structure
declarations only, using the keyword abstraction in place of structure; but, as
we saw above, one may also wish to conceal the nature of a functor result, and we
are therefore led to consider a third pair of binding forms. This time we use “<:”
in place of the colon (the “<” now suggests that the structure is diminished even
further than in the case of “:”; no doubt there are better notations!):

strbind ::= strid <: sigexp = strexp
funbind ::= funid (strid : sigexp) <: sigexp ′ = strexp

Exercise 8.6 Write down an inference rule which gives the semantics of the ab-
stract structure binding. Then similarly define the semantics of the abstract

28The interested reader can find details of this semantics in Mads Tofte’s PhD Thesis, Oper-
ational semantics and polymorphic type inference, CST-52-88, Computer Science Department,
Edinburgh University, 1988.

86 8 ELABORATION OF FUNCTORS

functor binding. Finally express the abstract functor binding as a derived
form of the normal functor binding and abstract structure binding.

Thus we have seen how to accommodate three very different meanings for signature
ascription within the existing semantic framework. The abstraction version is used
as the default in the specification system Extended ML of Sannella and Tarlecki29.

8.5 Higher-order functors

As remarked earlier, functors cannot take functors as arguments, nor can they
return functors as results. Now the question arises: is this limitation fundamental
to the semantic theory built so far, or is it possible to extend the theory smoothly
to cover the higher-order case?

If functors could be declared within structures (and specified in signatures),
then functors, being mappings from structures to structures, would essentially be
higher-order. The purpose of the present section is to outline a possible way to
admit functors inside structures. This raises many interesting questions, some of
which will be mentioned below. These questions have not yet been answered, so
this section is purely speculative; it is not a proposal of any kind.

First let us recall from the Definition [Sec 5.15, p 45] the notion of functor
signature matching, since matching a structure against a signature in the extended
scheme must involve matching functor signatures against functor signatures. For
reasons that will become apparent later on, we shall actually consider this concept
as belonging to enrichment rather than to matching. Assume that

Φ1 = (N1)(S1, (N
′
1)S ′1)

and
Φ2 = (N2)(S2, (N

′
2)S ′2)

(Φ1 can be thought of as the specified functor signature and Φ2 as the declared
functor signature). We then say that Φ2 enriches Φ1, written Φ2 � Φ1, if there
exists a realisation ϕ such that

1. (N1)S1 matches (N2)S2 via ϕ, and

2. ϕ((N ′2)S ′2) matches (N ′1)S ′1.

The first condition ensures that the declared functor signature Φ2 requires the
argument of any application to have no more sharing, and no more richness, than
was predicted by the specified signature Φ1. The second condition ensures that the

29D. Sannella and A. Tarlecki, Toward formal development of ML programs: foundations and
methodology. Report ECS-LFCS-89-71, LFCS, Dept. of Computer Science, Univ. of Edinburgh
(1989); extended abstract in Proc. Joint Conf. on Theory and Practice of Software Development
(TAPSOFT), Barcelona, Springer LNCS 352, 375–389 (1989)

8.5 Higher-order functors 87

declared functor signature Φ2, instantiated to (ϕS2, ϕ((N ′2)S ′2)), provides in the
result of the application no less sharing, and no less richness, than was predicted
by the specified signature Φ1.

Note the contravariance in the argument position; that is, notice that matching
goes the opposite way to the way it goes in the result position. Also note that
this definition of functor signature enrichment is in terms of what it means for
one signature to match another signature via a realisation [Sec 5.12, p 35]. In the
Definition, enrichment and instantiation are defined independently and matching
is then defined in terms of these. What is suggested now is to make all three
concepts mutually recursive. An environment E1 = (F1, SE1, TE1, VE1, EE1) then
enriches another environment E2 = (F2, SE2, TE2, VE2, EE2) if, in addition to the
requirements already listed in [Sec 5.11, p 34]

DomF1 ⊇ DomF2, and F1(funid) � F2(funid) for all funid ∈ DomF2

where F as usual ranges over functor environments.
Several notions generalise naturally to the extension. Since structures now

contain functor environments, we shall consider two structures equal if they are
identical up to the renaming of bound names. Assuming that one does not intro-
duce new sharing equations, it seems reasonable to keep the notion of consistency
exactly as it is. The definition of substructure [p 31] still applies; in particular,
an occurrence of a structure S ′ in the functor environment of a structure S is not
counted as a substructure of S. The definitions concerning admissibility [Sec 5.3
– Sec 5.5], signature instance and signature instantiation [Sec 5.9, p 34], functor
signature instantiation [Sec 5.10] and signature matching [Sec 5.12, p 35] are not
affected.

It is crucial that in all normal circumstances, for all signatures Σ and structures
S, there is at most one ϕ such that S matches Σ via ϕ. At present, type-explication
is sufficient to ensure this; but a stronger condition is necessary when signatures
can contain functor signatures due to the contravariance mentioned above.

Finally, something interesting happens to the definition of principality. Note
that in [Sec 5.13, p 35], principality is defined in terms of inferences of the form
B ` sigexp ⇒ S. None of the rules by which one proves B ` sigexp ⇒ S mentions
the concept of principality. But if sigexp can contain functor specifications then
some rules, for example rule 95 [p 43], will rely on rule 65, which does mention
principality. Thus the definition of principality becomes mutally recursive with the
definition of the inference rules. This will of course affect several of the theorems
stated in this Commentary and give rise to interesting problems which we have
not faced before.

Thus it appears that most of the theory scales well, but that some parts require
careful rethinking before functors can be introduced as components of structures.

88 9 ADMISSIBLE SEMANTIC OBJECTS AND PROOFS

9 Admissible Semantic Objects and Proofs

We are now ready to develop the theory of semantic objects on which the static
semantics of Modules relies.

Recall the relationship of elaboration between phrases and the semantic objects
that model them:

Structure expressions =⇒ Structures

Signature expressions =⇒ Signatures

While every valid phrase elaborates to (at least) one semantic object, there
are many semantic objects that we could call monsters, because they are useless
even though the elaboration rules may permit them. For example, by elaborating
a signature expression containing the sharing constraint sharing A = A.Loopy,
one can obtain the signature

{m} (m, {Loopy 7→ (m, {})})

which is a monster because it cannot be matched by any real structure (no real
structure can have itself as a proper substructure). One could argue that this
monster is harmless, because the mistake will be detected when an actual structure
is matched against the signature. However, this might happen very late in the
development process, especially if one uses functors extensively. A functor whose
structure parameter is specified with a monster signature can never be applied to
a real structure. To accept such functors as valid would be cruel, if we can think
of a tractable criterion for excluding them.

We therefore define a notion of admissibility of semantic objects (and in certain
cases of entire elaboration trees). We require that every object which occurs in
an elaboration tree be admissible, and this is crucial in the reading of the rules.
Technically, admissibility is a conjunction of three properties [p 33], namely con-
sistency, well-formedness and cycle-freedom. These are discussed in the following
sections.

In [Sec 5.5, p 32] it is stated that all semantic objects mentioned thereafter in
the Definition are assumed to be admissible. We do not make this assumption in
this Commentary, since we have to discuss the very question of when admissibility
is needed.

9.1 Consistency

The semantic theory must allow that two structures (m1, E1) and (m2, E2) can
share without being identical, i.e. m1 = m2 need not imply E1 = E2. The main
reason for this is that signature constraints are coercive and preserve sharing, see
Section 6.4. A signature constraint can restrict the view of a structure, but it
always preserves sharing.

9.1 Consistency 89

Structures that share need not be identical, neither statically, nor dynamically.
However, if two structures S1 and S2 share and both contain a value component
x say, then dynamically S1(x) and S2(x) are the same value, even if x denotes a
reference. Statically a similar, albeit weaker, notion of consistency applies [Sec 5.2,
p 32]:

First, an assembly A of type structures is said to be consistent if, for all
(θ1, CE1) and (θ2, CE2) in A that share (i.e. θ1 = θ2), we have

CE1 is empty or CE2 is empty or DomCE1 = DomCE2

(The reason we do not require CE1 = CE2 in this definition will be explained
below.)

Second, an assembly A of structures is consistent, if the set of all type structures
occurring in A is consistent, and also for all structures S1 and S2 that occur in A,
if S1 and S2 share then

(a) For any strid, if S1(strid) and S2(strid) both exist, then they share
(b) For any tycon, if S1(tycon) and S2(tycon) both exist, then they share

Exercise 9.1 Is the following structure environment consistent?{
A 7→

(
m, {tree 7→ (t, {L 7→ int→t, N 7→ int ∗ t ∗ t→t})},

{x 7→ t}
)
,

B 7→
(
m1, {A 7→ (m2, {tree 7→ (t2, {N 7→ t2 list→t2})}) ,

B 7→ (m, {tree 7→ (t, {})})}
) }

The ways in which structures are created preserve consistency. For example, start-
ing from the initial basis, there is no structure binding that elaborates to the
inconsistent structure environment{

A 7→
(
m, {C 7→ (m1, {})}

)
,

B 7→
(
m, {C 7→ (m2, {})}

) }
Hence one never has to check consistency of structures that result from elaborating
structure expressions.

However, the rules for signature expressions and specifications do not auto-
matically preserve consistency. For example, compare rule 53 [p 37] concerning
generative structure expressions

B ` strdec ⇒ E m /∈ (N of B) ∪ namesE

B ` struct strdec end⇒ (m,E)

90 9 ADMISSIBLE SEMANTIC OBJECTS AND PROOFS

with rule 63 concerning generative signature expressions

B ` spec ⇒ E

B ` sig spec end⇒ (m,E)

The first rule demands that m be chosen fresh, so that the new structure trivially
is consistent with any structure whose name is already used (i.e. in N of B or in
namesE), whereas the second rule apparently admits any choice of m. The second
rule is deliberately liberal, so that one is free to “guess” a name which will satisfy
sharing constraints in some enclosing specification. However, such a guess must
be made without violating consistency of the entire elaboration tree which proves
B ` sig spec end⇒ (m,E) [Sec 5.5, p 33].

Exercise 9.2 Guess the result of elaborating the following declaration:

signature SIG =

sig

structure A: sig structure C: sig end end

structure B: sig structure C: sig end end

sharing A = B

end

After doing this exercise, you may object that there are other solutions which may
be inconsistent, but which we should not regard as monster signatures because
they can indeed be matched by real structures. An example is

Σ = {m1, m2, m3, m4}
(
m1, { A 7→ (m2, {C 7→ (m3, {})}) },

B 7→ (m2, {C 7→ (m4, {})}) }
)

since, as will be clear in Chapter 7, Σ can be matched by any structure with A and
B components which share and which both possess a C component. So why reject
Σ? The reason is that Σ is a kind of relative monster; there is no real structure
which matches Σ unless it also matches the consistent structure which is given as
the answer to the above exercise. Thus consistency provides the user with more
information about what a signature actually specifies.

The next example emphasises that in an elaboration B ` sig spec end⇒ S ,
the result S must not only be self-consistent, but must also be consistent with the
basis B in which the elaboration occurs:

Example 9.1

structure A = struct type t = int type u = bool end

structure A1: sig type t end = A

signature SIG =

9.1 Consistency 91

sig

structure B: sig type t type u end

sharing B = A1

end

In the above declarations, B is specified to share with A1 and the signature
for B specifies u, which in fact is invisible in A1. Is the declaration of SIG
legal? Yes, in fact it elaborates to precisely

{m} (m, {B 7→ SA})

where SA is the structure bound to A in the basis. The point is that consis-
tency is required not just between B and A1, but between B and A as well.

Any intersection of consistent sets is consistent. However, the union of two con-
sistent sets need not be consistent. Indeed, there exist structures S1, S2, and S3

for which S1 and S2 are consistent, S2 and S3 are consistent but S1 and S3 are not
consistent.

Exercise 9.3 Give an example to show that consistency is not transitive.

Note that consistency places absolutely no demands on the types of constructors,
variables or exception constructors. For example, the following signature

signature SIG =

sig

datatype t = C of int

datatype u = C of bool

sharing type t = u

end

is perfectly legal although it cannot be matched by any real structure.

The reason consistency does not place demands on the types of constructors, vari-
ables and exceptions, thus admitting certain monster signatures, is that requiring
equality of type schemes would make it impossible to find a single principal sig-
nature for every valid signature expression (the definition of principal signature
[Sec 5.13, p 35] is discussed in Chapter 11). Consider for example the signature
expression

sig
structure A: sig type ’a t val x: int t end
structure B: sig val x: int * int end
sharing A = B

end

92 9 ADMISSIBLE SEMANTIC OBJECTS AND PROOFS

The problem now is to choose a type function θ for t such that θ applied to int is
int∗int. As it happens, there are four different solutions to this problem, namely
θ = Λ’a.’a ∗ ’a, θ = Λ’a.’a ∗ int, θ = Λ’a.int ∗ ’a, θ = Λ’a.int ∗ int. No
matter which one is chosen, it prevents perfectly good structures from matching
the signature. With the actual definition of consistency, we simply bind t to a
unary type name; the instantiation of t can then happen each time a structure
is matched against the signature.

9.2 Well-formed signatures

A free occurrence of a structure or type name n in a signature Σ = (N)S signifies
sharing with one or more real structures. It is therefore reasonable to require of
Σ that for every structure (m,E) which occurs in S, if m is free (i.e. m /∈ N)
then all the structure and type names occurring in E are free as well. Another
natural property is that N ⊆ namesS, i.e. that there are no spurious bound names.
Taken together, these properties make up the well-formedness property defined in
[Sec 5.3, p 32]. Although well-formedness is required of all signatures that partake
in elaboration, it suffices to check for well-formedness at one single point, namely
in rule 65, [p 39], where new signatures can be introduced. (See Examples 11.2
and 11.3 for signatures that will be caught by this check.)

There is also a notion of well-formed functor signature, see [Sec 5.3, p 32]. An
assembly A is well-formed if every type structure [Sec 4.9, p 21], signature and
functor signature occurring in A is well-formed [Sec 5.3, p 32].

Although well-formedness is explicitly required of all objects in an elaboration,
it is not clear how necessary this is; for to a considerable extent well-formedness
of a signature is ensured by other conditions which are imposed when it is built.
For example, consider

Σ = {m2}
(
m1, {A 7→ (m2, {})}

)
It is ill-formed because m1 is free but m2 bound. Now if Σ is the result of an

elaboration in basis B, and if B contains any structure S with name m1 which
has an A component, then Σ must be inconsistent with B (because the bound
name m2 differs from the free name of the A component of S, by the convention
about renaming in the definition of consistency [Sec 5.2, p 32]). Thus Σ can
only be consistent with B if B contains no structure named m1 and having an A
component. But then there is no way of ever building a real structure which can
match Σ! (Any structure withan A component will have to be newly generated,
and hence will possess a name different from m1.) In other words, Σ is a monster.
In fact, the requirement that a signature be covered by the basis in which it is
built [Sec 5.13, p 35] is designed to reject such monsters. Therefore consistency
and covering together ensure that a signature cannot be ill-formed in the sense
that Σ above is ill-formed.

9.3 Cycle-freedom 93

All the same, there is another sense in which well-formedness is not guar-
anteed by other required properties (this point is taken further in Chapter 11).
We are not sure whether this other kind of ill-formedness is harmful; for the
present, we prefer ML to wear both belt (consistency and covering) and braces
(well-formedness).

9.3 Cycle-freedom

The requirement of cycle-freedom [Sec 5.4, p 32] is imposed to bar cyclic monster
signatures, such as would result from the following declaration:

signature SIG =

sig

structure A: sig structure Loopy: sig end end

sharing A = A.Loopy

end

We discussed such monsters at the beginning of the chapter. Like consistency,
cycle-freedom is a property of an assembly of semantic objects rather than a
single object. The larger the assembly, the harder it is to satisfy consistency and
cycle-freedom. The check for cycle-freedom is a part of the admissification process
discussed ion the following section. One never has to check for cycle-freedom in
structures obtained from elaborating structure expressions.

9.4 Admissibility

An object or assembly A is admissible if it is consistent, well-formed and cycle-free
[Sec 5.5, p 33]. It is easy to prove that if some assembly A of objects is admissible
and A′ ⊆ A, then A′ is admissible. On the other hand, the union of admissible
sets need not be consistent, or cycle-free, although it will be well-formed.

It is important to note that realisation does not preserve admissibility; one can
easily find ϕ and admissible S such that ϕS is neither consistent, nor well-formed,
nor cycle-free. However, inverse realisation is better-behaved:

Theorem 9.1 (Inverse Realisation) Let ϕ be a realisation, and A be any as-
sembly. Then if ϕA is well-formed, so is A; and if ϕA is cycle-free, so is A.

We shall need this result in Section 10.4.
It is unnecessarily restrictive to require that the assembly of all semantic ob-

jects occurring in the elaboration tree of an entire program be admissible. We do,
however, impose this requirement on the elaboration tree for a signature expres-
sion which proves a sentence of the form B ` sigexp ⇒ S [Sec 5.5, p 33]. This is

94 9 ADMISSIBLE SEMANTIC OBJECTS AND PROOFS

stronger than merely requiring that the conclusion of the tree – i.e. the assembly
(B, S) – be admissible. Without the stronger assumption we are unable to prove
the existence of principal signatures (Chapter 11).

Readers who are interested in how and when one checks admissibility during
elaboration are referred to Section 10.5.

Exercise 9.4 Does the following signature declaration elaborate?

signature SIG =

sig

structure A: sig

structure B: sig

structure C: sig end end end

structure D: sig end sharing D = A

structure E: sig end sharing E = A.B.C

sharing D = E

end

95

10 Elaboration of Signature Expressions

In this chapter and the next we comment on the inference rules for signature ex-
pressions and specifications. We begin in Section 10.2 with a discussion of all the
rules except one, namely rule 65, the one which infers the principal signature for
a signature expression; this crucial rule is treated separately in Chapter 11. In
Section 10.3 we prove a theorem which states that, informally speaking, elabora-
tions which use the rules discussed in Section 10.2 are closed under realisation.
In Section 10.4 we prove a theorem that determines, for any sharing specification,
the most general realisation which meets the demands of that specification, as
long as they can be met without violating admissibility. Finally, in Section 10.5
we summarise exactly where admissibility must be checked during elaboration.

First, we review the notion of a basis.

10.1 The basis

Almost all Modules phrases are elaborated in a basis

B = (N,F,G,E)

where N as usual is a name set (M,T) [Fig 11, p 31], and E as usual is an envi-
ronment [Fig 10, p 17]. F is a functor environment, i.e. a finite map from functor
identifiers to functor signatures [Fig 11, p 31] and G is a signature environment,
i.e. a finite map from signature identifiers to signatures [Fig 11, p 31]. When the
elaboration of a Modules phrase involves the elaboration of a Core phrase, one
can extract a context, C of B, from B as follows:

C of B = (T of N, ∅, E)

i.e. one ignores M , F and G and inserts an empty set of explicit type variables
[Sec 5.1, p 31]. The structure name set M in a basis B plays a rôle in Modules
elaboration similar to that played by T in a context C in Core elaboration; M is
the set of rigid structure names, i.e. names of real structures, just as T is the set
of names of rigid type names.

The beginning of [Sec 5.14, p 37] states that it is “intended” that every basis
B in which a topdec is elaborated has the property that namesB ⊆ N of B.
Let us say that B is rigid if it has this property. In fact, we can easily prove
that this intention is satisfied for the execution of programs, assuming that this
starts in the initial basis B0 [App C,D]. For first note that B0 – now meaning the
initial static basis – is certainly rigid, by inspection of [App C]. Now suppose that
program0 = topdec ; program1 and that program0 is elaborated in B0. Then we
can see from rule 196 [p 64] that topdec is elaborated in (rigid) B0, yielding a basis
B say; then program1 is elaborated in B1 = B0 ⊕ B, which is in turn rigid due
to the use of ⊕. Hence, by iterating this argument, every topdec in a program is
elaborated in a rigid basis.

96 10 ELABORATION OF SIGNATURE EXPRESSIONS

10.2 The rules

In this section we shall treat rules 63, 64 and 70–90; together with rules 47–52
(for types) they constitute the set of rules – which we shall call Rsig – which are
involved in any elaboration concluding with a sentence of the form B ` sigexp ⇒
S . Actually, it is revealing to notice that these rules use neither N nor F ; that
is, the elaborations which are possible do not depend upon these components. (In
particular, there are no side-conditions which reject the choice of certain names
because they appear in N of B.) In fact – though it was not worth the trouble
– the rules could have been formulated in terms of a cut-down basis containing
only (G,E) of B, just as a context C is a cut-down basis containing all that is
needed for Core elaborations. By contrast however, N plays an important role in
the elaboration of principal signatures discussed in Chapter 11. Also common to
the rules Rsig is that the results of elaboration contain no bound structure names
or type names. For example, signature expressions elaborate to structures (!) and
specifications elaborate to environments.

The rules are liberal in the sense that when they prove B ` phrase ⇒ A ,
the semantic object A is often not uniquely determined by B and phrase. The
freedom lies only in the choice of names and type functions in A. We have already
seen that rule 63

B ` spec ⇒ E

B ` sig spec end⇒ (m,E)

allows any choice of m, within the limits of admissibility, of course. Similarly,
rule 64 for signature expressions

B(sigid) ≥ S

B ` sigid ⇒ S

allows freedom in choosing S, as long as S really is an instance of B(sigid) and
(B, S) is admissible. The three other rules that permit freedom of choice are rule 79
for include and rules 83 and 84 for type and datatype descriptions. This freedom
allows one to choose names and type functions that will satisfy sharing constraints
elsewhere in the signature. Thus, when elaborating signature expressions and
specifications, one has to guess structure names and type functions, much as one
has to guess types when elaborating phrases in the Core. As we shall see later,
there is a systematic way of finding structure names and type functions that satisfy
the sharing constraints in question, if the constraints can be satisfied at all, using a
particular kind of unification algorithm. However, for the purpose of the inference
rules, the guessing relieves us of the burden of spelling out the details of unification
and rules 88 and 89 for sharing equations [p 42] become remarkably simple:

m of B(longstrid1) = ··· = m of B(longstridn)

B ` longstrid1 = ··· = longstridn ⇒ {}
θ of B(longtycon1) = ··· = θ of B(longtyconn)

B ` type longtycon1 = ··· = longtyconn ⇒ {}

10.2 The rules 97

The side-conditions on these two rules, and on rules 72 and 83, are the only direct
constraints upon the freedom of choice which we have just discussed. However, the
requirement of admissibility is an indirect constraint; when two structures share,
it will force any structure components or type components which they have in
common to share as well. The fact that rule 88 only requires equality of names,
rather than equality of structures, allows different but consistent views to coexist.
Similarly, a type structure with an empty constructor environment can share with
a type structure with a non-empty constructor environment.

Notice that rule 72 forces the elaboration to choose equality type names for
type constructors that are specified with eqtype. The rules for datatype and
type specifications are not explicit about whether or not the chosen type functions
should admit equality; that can depend on sharing specifications present elsewhere
in the signature expression (see Chapter 11 for a more detailed discussion of the
equality attribute).

Exercise 10.1 Elaborate the signature expression below to a structure. Which
of the types t, u and v will admit equality?

sig

type t

eqtype u

datatype v = C | D

sharing type t = u = v

end

Exercise 10.2 The signature declaration

signature SIG =

sig

structure A: sig end

structure B: sig end

end

yields the signature

{m1, m2, m3}
(
m1, {A 7→ (m2, {}), B 7→ (m3, {})}

)
Does the expression below elaborate? (Hint: the semantics of include is
defined by rule 79 [p 41].)

sig

include SIG

sharing A = B

end

98 10 ELABORATION OF SIGNATURE EXPRESSIONS

Exercise 10.3 Given that Str is declared by

structure Str =

struct

structure A = struct end

structure B = struct end

end

does the signature expression below elaborate?

sig

open Str

sharing A = B

end

10.3 The realisation theorem

As mentioned earlier, there exists a systematic way of finding structure names
and type functions that satisfy sharing constraints. The basic idea is to choose
fresh names whenever possible and then identify different names when it is found
from sharing specifications that they ought to be identical. The reason one can
proceed in this manner is that elaboration of signature expressions is closed under
realisation; the remainder of this section is devoted to expressing this fact precisely
as a theorem, and proving the theorem.

From now on we shall use∇ to range over inference trees; recall from Section 1.1
that such a tree is built from rule instances whose side-conditions are satisfied.
This does not require anything to be admissible. We now define an admissible
inference tree to be one which satisfies the admissibility conditions in [Sec 5.5, p 33].
We shall refer to admissible inference trees also as proofs. Let A ` phrase ⇒ A′ be
the root sentence of a proof ∇ (and let R be a set of rules including all those used
in∇); then we say that∇ proves A ` phrase ⇒ A′ (fromR). We shall sometimes
write for example “Assume A ` phrase ⇒ A′ ” to mean “Assume that ∇ proves
A ` phrase ⇒ A′ for some ∇”. (R will be clear from the context.)

The first thing we have to do is to define how to apply a realisation ϕ to a
proof ∇. Recall from Section 7.2 that a realisation ϕ = (ϕTy, ϕStr) acts upon type
names and structure names. It is extended naturally to act upon other semantic
objects, for example ϕ(m,E) = (ϕm,ϕE), but two cases need special treatment.
For an object with bound names, such as a signature Σ = (N)S, the bound name
set N is first changed if necessary to become disjoint from Suppϕ∪Yieldϕ; then
ϕΣ = (N)(ϕS) [Sec 5.7, p 33]. Thus bound names are immune to ϕ. Also for the
typename set T in a context, and the name set N in a basis, we define

ϕT =
⋃
{names(ϕt) ; t ∈ T}

ϕN =
⋃
{names(ϕn) ; n ∈ N}

10.3 The realisation theorem 99

This ensures, for example, that ϕB = ϕN,ϕF, ϕG, ϕE is indeed a basis.
Now, to apply ϕ to a proof ∇, one simply applies ϕ to every semantic object

in ∇. While this does yield a tree ϕ∇, the tree may not be a proof. For one
thing, it may well contain inadmissible objects; see also the discussion preceding
Theorem 9.1. But even if it is admissible, it may still not be a proof. To see this,
consider any proof ∇ involving rule 53 [p 37] for generative structure expressions;
the side-condition requiring m to be new may be satisfied in ∇ but violated in
ϕ∇.

However, the following theorem shows that the latter phenomenon – that ϕ∇
is admissible but still not a proof – cannot arise in elaborating signatures. Such
elaboration only involves the rules in Rsig, and for these we can prove:

Theorem 10.1 (Realisation) Assume that ∇ proves A ` phrase ⇒ A′ from
Rsig, and let ϕ∇ be admissible. Then ϕ∇ proves ϕA ` phrase ⇒ ϕA′ from
Rsig.

To this end, we need the following lemma:

Lemma 10.2 For any signature Σ, structure S and realisation ϕ, if Σ ≥ S then
ϕΣ ≥ ϕS.

Proof Write Σ as (N)S ′, assuming w.l.o.g. that (Suppϕ ∪ Yieldϕ) ∩ N = ∅.
Then ϕΣ = ϕ((N)S ′) = (N)ϕS ′. So it suffices to find a realisation ψ such
that Suppψ ⊆ N and ψϕS ′ = ϕS.

Now since Σ ≥ S there exists ψ′ such that Suppψ′ ⊆ N and ψ′S ′ = S.
Define ψ to be the restriction of ϕ ◦ ψ′ to N , i.e. ψn = ϕ(ψ′n) if n ∈ N and
ψn = n if n /∈ N .

To prove ψϕS ′ = ϕS, it is enough to show that ψϕn = ϕψ′n for every
n ∈ namesS ′; this is now straightforward, considering the two cases n ∈ N
and n /∈ N separately.

Proof (of Theorem 10.1)
By induction on the depth of inference. Rules 47–52 are straightforward; the
only interesting case is rule 49 [p 29], where one uses that type realisation
and type function application commute, i.e. that ϕ(τ (k)θ) = (ϕτ (k))(ϕθ).

Rule 63 [p 39] is a trivial inductive case and the case for rule 64 follows
directly from Lemma 10.2.

In the case for rule 70 [p 40], we use that closure commutes with realisa-
tion: for any closed type scheme σ = ∀α(k).τ , we have ϕσ = ∀α(k).ϕτ , which
is equivalent to the closure of ϕτ although ∀α(k).ϕτ may contain spurious
bound type variables.

The case for rule 71 is a straightforward inductive case.
For rule 72, we need to note that if θ admits equality then ϕθ will admit

equality as well, by the definition of type realisation.
Rules 73–82 are easy, using Lemma 10.2 at rule 79. For rule 83 we need

100 10 ELABORATION OF SIGNATURE EXPRESSIONS

to note that the arity of ϕθ is the same as the arity of θ, since ϕ(Λα(k).τ) =
Λα(k).ϕτ , although not all the type variables in α(k) need occur in ϕτ .

Rule 84 is more interesting [p 42]. CE is non-empty, by rule 85. Moreover,
ϕ(t,ClosCE) = (ϕt,Clos(ϕCE)). Since ϕ∇ is admissible, (ϕt,Clos(ϕCE))
must be well-formed. Since Clos(ϕCE) is non-empty, this implies that ϕt
must be a type name, cf. [Sec 4.9, p 21]. Thus ϕ(C, α(k)t) is of the form
(ϕC, α(k)t′), for some t′, and the result follows by induction.

Rule 85 is straightforward. For rule 86 we need to note that tyvars(ϕτ) ⊆
tyvars τ . The remaining rules, 87–90, offer no resistance.

It is instructive to compare this theorem with Theorem 5.1, which states that Core
elaboration is closed under substitution for type variables.

10.4 Admissification

The topic of this section is a process called admissification, which is a kind of
unification of structures and type structures. The existence of so-called principal
admissifiers is crucial to the existence of principal signatures, so implementers need
to know what they are and how to compute them. We shall not give any program
that computes principal admissifiers, but we give a constructive mathematical
proof that they exist under certain natural conditions.

The need for admissification arises in elaborating sharing specifications. For
example, consider the signature expression

sig

structure A: sig structure C: sig end

structure D: sig end

end

structure B: sig structure D: sig end

structure E: sig end

end

sharing A = B

end

Having elaborated the specifications of A and B, just before dealing with the sharing
specification, we have obtained the following structure environment:

{ A 7→ (m1, {C 7→ (m2, {}), D 7→ (m3, {})}),
B 7→ (m4, {D 7→ (m5, {}), E 7→ (m6, {})}) }

Because of the sharing specification, we now wish to identify m1 and m4. However,
in order to do that without violating consistency, we must also identify m3 and m5.
By admissification one can obtain the realisation ϕ∗ = {m1 7→m4, m3 7→m5} which,

10.4 Admissification 101

when applied to the structure environment yields

{ A 7→ (m4, {C 7→ (m2, {}), D 7→ (m5, {})}),
B 7→ (m4, {D 7→ (m5, {}), E 7→ (m6, {})}) }

The above example might give the false impression that in order to check a sharing
constraint, one simply looks up the structure (or type) identifiers in question and
unifies them by recursive descent along common paths. The reason this impression
is false is that the unification also has to take into account every structure (or type
structure) in the entire elaboration tree that shares with one of the structures (or
type structures) mentioned in the sharing constraint. Indeed, admissification is
an operation on an entire assembly of objects, where one attempts to turn a
inadmissible assembly into an admissible assembly by applying realisations. In
the above example, we would start out from the inadmissible assembly

(B,A, (m4, {C 7→ (m2, {}), D 7→ (m3, {}),
(m4, {D 7→ (m5, {}), E 7→ (m6, {}))

where B is the basis, and A is an assembly containing all the semantic objects
present in the elaboration tree so far. In this example, the above ϕ∗ is an ad-
missifier (assuming that (B,A) is already admissible), because there is no sharing
between (B,A) and the other two components. An example of admissification in-
volving objects in the basis other than the ones referred to directly in the sharing
equations was given in Section 9.1, Example 9.1.

In seeking to admissify an assembly when computing a signature in a basis B,
one seeks an admissifier ϕ whose support is disjoint from N of B, since the names
in B are to be kept fixed. In general, for any name set N we say that ϕ is fixed
on N if Suppϕ ∩N = ∅.

Now let A be an assembly, not necessarily admissible. A realisation ϕ is said
to be an admissifier for A under N if ϕA is admissible and ϕ is fixed on N . An
admissifier ϕ∗ for A under N is said to be most general or principal if, for every
admissifier ϕ for A under N , there exists a realisation ϕ′ fixed on N such that
ϕA = ϕ′ϕ∗A. (Henceforward we shall write e.g. ϕ′ϕ∗A for ϕ′(ϕ∗(A)) to avoid
too many parentheses.) Intuitively, a realisation is principal if it identifies as few
structure names and type functions as necessary.

For given A and N , although there may be an admissifier for A under N , there
may not be a principal one. Take for example

A =
{ (

m, {T 7→ (int, {})}
)
,
(
m, {T 7→ (int t, {})}

) }
(where t has arity 1) and N = ∅. There are essentially only two admissifiers:
{t 7→Λ’a.’a} and {t 7→Λ’a.int}, and neither is principal. (This embarrassment
can arise if we allow a richer class of sharing equations, as we discussed at the
end of Section 6.3.) The problem is that A contains a type structure (θ, CE) =
(int t, {}) in which θ is not simply a type name, but contains a type name not

102 10 ELABORATION OF SIGNATURE EXPRESSIONS

in N . Motivated by such examples, we say that A is grounded in N if (after
disjoining the bound names in A from N) for every occurrence of a type structure
(θ, CE) in A not within a functor signature30, either θ is simply a type name or
tynames(θ) ⊆ N . Further, we say that a basis B is grounded if it is grounded in
N of B.

The following theorem ensures that, if an assembly is indeed grounded in some
N , and has an admissifier, then it will have a principal one. The language is such
that elaboration need only involve grounded semantic objects,31 and hence the
groundedness condition of the theorem will always be satisfied when required in
the proof of the principality theorem, Theorem A.2 in Appendix A.

Theorem 10.3 (Admissification) Let A be grounded in N , and let ϕA be ad-
missible for some ϕ fixed on N . Then there exists a principal admissifier ϕ∗ for
A under N . Moreover, ϕ∗A is grounded in N .

Proof Let A,N and ϕ satisfy the assumptions. In the proof we shall refer to
names in N as rigid, and other names as flexible. We are going to define ϕ∗ by
first defining an equivalence relation ∼ on strnamesA∪ tyfunsA, partitioned
into equivalence relations ∼Str on strnamesA and ∼Ty on tyfunsA. Here
tyfunsA means the set of type functions that occur free in A (the meaning
of this should be clear, given that A is grounded in N). Then we make ϕ∗

map each name to a suitable member of its equivalence class.
We obtain ∼ as a limit, by iterating a function F over such partitioned

equivalences. F is defined as follows: F (≡) is the least equivalence ≡′ such
that, whenever A contains two structures (m1, E1) and (m2, E2) such that
m1≡m2, then

(i) If strid ∈ Dom(E1) ∩Dom(E2), then m of E1(strid) ≡′ m of E2(strid)
(ii) If tycon ∈ Dom(E1) ∩Dom(E2), then θ of E1(tycon) ≡′ θ of E2(tycon)

It is easy to see that F is monotonic, in fact continuous, with respect to
inclusion of relations.

Let ∼ be the least fixed point of F . (It is also the least post fixed point,
i.e. least such that F (∼) ⊆ ∼.) Starting from the identity equivalence Id, it
can be computed as the least upper bound of the chain

Id ⊆ F (Id) ⊆ ··· ⊆ F n(Id) ⊆ ···

Now define the partitioned equivalence ≡ϕ as follows:

m ≡ϕ m′ ⇔ ϕm = ϕm′ and θ ≡ϕ θ′ ⇔ ϕθ = ϕθ′

30No constraint is necessary upon functor signatures.
31This is partly because type-sharing equations are confined to type constructors, and partly

because consistency places no constraint upon variable and exception environments.

10.4 Admissification 103

Since ϕA is consistent, we have F (≡ϕ) ⊆ ≡ϕ, i.e. ≡ϕ is a post fixed point
for F . But ∼ is the least post fixed point, so we have ∼ ⊆ ≡ϕ. That is,

m ∼ m′ ⇒ ϕm = ϕm′ and θ ∼ θ′ ⇒ ϕθ = ϕθ′

To define ϕ∗Str, consider any equivalence class [m] of ∼Str. We claim that
there is at most one m0 ∈ [m] which is not flexible. For if there are two such,
say m0 ∼ m1, then we have ϕm0 = ϕm1. But ϕm0 = m0 and ϕm1 = m1

since ϕ is fixed on N ; hence m0 = m1.
Take this m0 if it exists; otherwise let m0 be any member of [m]. Set

ϕ∗Str(m
′) = m0 for all m′ ∈ [m]. Then ϕ∗Str is fixed on N as required.

For ϕ∗Ty, take any equivalence class [θ] of ∼Ty. Because ∼ ⊆ ≡ϕ and
because ϕA is admissible, all members of [θ] have the same arity. We claim
that there is at most one θ0 ∈ [θ] such that θ0 is not both a type name and
flexible. For if there are two such, say θ0 ∼ θ1, then we have ϕθ0 = ϕθ1; but
also tynames θi ⊆ N (i= 0, 1) because A is grounded in N ; hence ϕθ0 = θ0

and ϕθ1 = θ1 since ϕ is fixed on N ; hence θ0 = θ1.
Assume such a θ0 exists. If θ0 does not admit equality then, since

ϕθ0 = θ0, no member of [θ0] admits equality. Now set ϕ∗t = θ0 for all
t ∈ [θ0] \ {θ0}; this makes sense, because all members of [θ0] except θ0 are
flexible type names. Thus ϕ∗θ′ = θ0, for all θ′ ∈ [θ0].

Otherwise, i.e. if no such θ0 exists, every member of [θ] is a flexible type-
name. Let t0 be a member which admits equality, if one exists; otherwise,
let t0 be any member. Set ϕ∗t = t0, for all t ∈ [θ].

Clearly, ϕ∗Ty is a type realisation, fixed on N (and incidentally idempo-
tent). Moreover ϕ∗ is clearly independent of ϕ, and we can define ϕ′ such
that ϕ′ϕ∗A = ϕA simply by setting ϕ′ = ϕ; for it is easy to verify that
ϕϕ∗n = ϕn for all n ∈ namesA.

We now wish to prove that ϕ∗A is admissible. First, it is well-formed
and cycle-free by Theorem 9.1. Moreover, ϕ∗A is consistent: conditions 1
and 2 of the definition of consistency [Sec 5.2, p 32] are satisfied because ∼
is a post fixed point of F ; condition 3, that the set of type structures in ϕ∗A
is consistent, follows from the fact that ϕA is consistent and ∼ v ≡ϕ. This
proves that ϕ∗A is admissible, as required.

Finally tyfuns(ϕ∗A) ⊆ tyfunsA, so ϕ∗A is grounded in N as desired.

For implementation purposes, one is also interested in discovering that no admissi-
fier exists, in order that an error may be reported. The following exercise concerns
failing admissifications.

Exercise 10.4 Assume that A is grounded inN , but that it is not known whether
an admissifier for A under N exists. By a careful inspection of the proof of
Theorem 10.3, find all the places where explicit checks are necessary to ensure
that ϕ∗ is well defined and is an admissifier.

104 10 ELABORATION OF SIGNATURE EXPRESSIONS

10.5 Checking admissibility

We shall now summarise in terms of the inference rules precisely where in prac-
tice one needs to check admissibility in order to satisfy the global admissibility
requirements [Sec 5.5, p 33].

We claim without proof that all rules that are not in Rsig∪{rule 65} preserve
admissibility and therefore require no check for admissibility.

Let us therefore consider rule 65 and the members of Rsig. Well-formedness
must be checked at rule 65, see Section 11.3. It suffices to check consistency, cycle-
freedom and well-formedness of type structures once for each sharing specification.
It is not in general true to the Definition to delay the checking of consistency, cycle-
freedom and well-formedness of type structures till the entire signature has been
elaborated, since inadmissibility can be introduced locally, as in

sig local spec in end end

where spec specifies an inconsistent structure. (Recall from the end of Section 9.4
that we require the assembly of all semantic objects in a signature elaboration to
be admissible.)

Exercise 10.4 is concerned with exactly how admissibility is checked during
admissification.

105

11 Principal Signatures

We shall now motivate and analyse the definitions in [Sec 5.13, p 35–36] concerning
principal and equality-principal signatures. The proofs of Theorems 11.1 and 11.2,
the key theorems leading to the existence of principal signatures, are deferred to
Appendix A.

We saw in Chapter 10 that the rules for inferring sentences of the form B `
sigexp ⇒ S allow one to guess names that will satisfy sharing constraints later in
the elaboration. Yet, whenever we wish to infer a signature (N)S for sigexp, we
would like the sharing in S to be just enough to satisfy the sharing specified in
sigexp, without identifying names unnecessarily, so that (N)S really is matched
by any structure which satisfies the sharing specified in sigexp. Informally, (N)S
is principal for sigexp in B, if S is the result of elaborating sigexp in B choosing
names in such a way that two name-occurrences in the signature are identical only
if they have to be, and every name is flexible if it can be.

Recall from the beginning of Chapter 9 that in this Commentary we depart
from the convention introduced in [Sec 5.5, p 33] that all semantic objects which
are mentioned are admissible. In particular, we allow the notation (N)S for a
signature which is not necessarily admissible. The admissibility conditions on
proofs (Section 10.3) still apply, however.

11.1 Bare principality

We shall begin with a slightly simpler notion than principality, which we shall
call bare principality. A signature (not necessarily admissible) (N)S is barely
principal for sigexp in B if, choosing N so that (N of B) ∩N = ∅,

1. B ` sigexp ⇒ S

2. Whenever B ` sigexp ⇒ S ′, then (N)S ≥ S ′

As for the converse of the implication in condition 2, suppose that (N)S ≥ S ′ via ϕ
and namesB∩N = ∅. Then ϕB = B and ϕS = S ′, so if ∇ proves B ` sigexp ⇒ S
and ϕ∇ is admissible then ϕ∇ proves B ` sigexp ⇒ S ′, by Theorem 10.1.

Note that condition 1 ensures that (N)S will be both consistent and cycle-free,
but not necessarily well-formed.

Example 11.1 The signature expression

sig structure A: sig end; structure B: sig end end

elaborates to the structure S =(
m1, {A 7→ (m2, {}), B 7→ (m2, {})}

)

106 11 PRINCIPAL SIGNATURES

but {m1, m2}S is not barely principal for sigexp since it does not generalise
S ′ = (

m1, {A 7→ (m2, {}), B 7→ (m3, {})}
)

which also is a possible result of the elaboration. However, {m1, m2, m3}S ′ is
barely principal.

It easily follows from the definition that for given B and sigexp there can be
at most one barely principal signature for sigexp in B.32 Far more important
is the following theorem, which states that if any signature can be found then
a barely principal signature exists. This property, simple to state and perhaps
not surprising, has been one of the main goals of the design and definition of
ML Modules. The difficulty has been to ensure that none of the rich variety of
ML’s features has deprived it of the property, since it is crucial to both intuitive
understanding and tractable implementation of the Modules.

We now state two theorems, both of which follow from the principality theorem,
Theorem A.2 in Appendix A. The first theorem asserts that barely principal
signatures exist, under a certain condition upon the basis. The second theorem
asserts that the top-level basis will always satisfy this condition; it can then be
shown that the condition will always be satisfied when principality is required.
The theorems are deduced quite briefly as Corollaries A.6 and A.7 in Appendix A.

Theorem 11.1 (Barely Principal Signatures) Let B be rigid and grounded,
and let B ` sigexp ⇒ S for some S. Then there exists a barely principal signature
for sigexp in B.

Theorem 11.2 (Bases) Let B ` topdec ⇒ B′ occur in the elaboration of some
program in the initial basis B0. Then B is rigid and grounded.

11.2 Defective signatures

All signatures we have seen in previous chapters have been barely principal, and
they have always been well-formed and type-explicit. They have even been prin-
cipal in the full sense; see Section 11.3 below. In general, however, several things
can be wrong with a barely principal signature which should disqualify it from
entering the elaboration tree. In particular, it may not be well-formed; it may
not be type-explicit; it may not respect equality; it may not maximise equality;
it may have all these virtues but still be an unsatisfiable monster. The following
examples illustrate these various pathologies.

Example 11.2 A barely principal signature which is not well-formed.

32As pointed out at the end of Section 7.3, two signatures are considered to be identical if
they can be made so by renaming their bound names and removing any unused bound names
from their prefixes.

11.2 Defective signatures 107

structure Empty = struct end

signature SIG =

sig

structure E: sig type T end

sharing E = Empty

end

The barely principal signature for SIG is

{m, t}
(
m, {E 7→ (m0, {T 7→ (t, {})})}

)
which is not well-formed because the bound typename t of a type structure
occurs in a structure with the free name m0, the name of Empty.

Example 11.3 Another barely principal signature which is not well-formed.

Assume Empty is as above. Here the ill-formedness arises from a bound
typename in the type scheme of a value component of a structure whose
name is free:

sig

type T

structure E: sig val x: T end

sharing E = Empty

end

The barely principal signature is

{m, t}
(
m, {E 7→ (m0, {x 7→ t})},
{T 7→ (t, {})}

)

Example 11.4 A barely principal signature which is not type-explicit.

sig type T val x: T type T end

The barely principal signature is

{m, t1, t2}
(
m, {T 7→ (t2, {})},
{x 7→ t1}

)
which is not type-explicit, since the typename t1 ascribed to x occurs in no
type structure in the signature.

Example 11.5 A barely principal signature which does not respect equality.

108 11 PRINCIPAL SIGNATURES

sig

datatype T = C of int -> int

eqtype U

sharing type T = U

end

The barely principal signature is

{m, t}
(
m, { T 7→ (t, {C 7→ (int→int)→t}),

U 7→ (t, {}) },
{ C 7→ (int→int)→t }

)
where t possesses the equality attribute; the type environment fails to respect
equality [Sec 4.9, p 21] because the type int→int does not admit equality.
(It is the eqtype specification that forces t to admit equality.)

Example 11.6 A barely principal signature which does not maximise equality.

sig

datatype T = C

end

The barely principal signature is

{m, t}
(
m, { T 7→ (t, {C 7→ t}) },

{ C 7→ t }
)

where t does not possess the equality attribute; the type environment fails
to maximise equality [Sec 4.9, p 21] because the signature would still respect
equality if the typename t were awarded the equality attribute.

Example 11.7 A barely principal signature which is unmatchable.

structure C1 = struct end

structure C2 = struct end

signature SIG =

sig

structure A: sig structure B: sig end end

sharing A = C1 and A.B = C2

end

The barely principal signature for the large signature expression is

{m0}
(
m0, {A 7→ (m1, {B 7→ (m2, {})})}

)

11.3 Covering and principality 109

where the free names m1 and m2 are those of the structures C1 and C2. The
signature has all the virtues lacked by the preceding examples; in particular it
is well-formed (in contrast to Example 11.2). But it can never be matched,
because the only real structure with name m1 which will ever exist is the
empty structure, and this fails to satisfy the signature’s demand for a B

component named m2.

We shall now embark upon remedying the defects in the above signatures in various
ways. First, Examples 11.2, 11.3 and 11.4 are excluded by the simple device of
requiring that all signatures in proofs be both well-formed and type-explicit; the
first is a condition of admissibility (see Sections 9.2 and 9.4), while the second is
a side-condition of rule 65 [p 39] (see Section 7.7). Second, the notion of cover is
introduced in the next section to exclude such monsters as Example 11.7. Then
in Section 11.4 we deal with equality in such a way that Example 11.5 will be
rejected, while that of Example 11.6 will undergo slight transformation.

11.3 Covering and principality

We claimed in Example 11.7 that no structure will ever exist with name m1 and
with a B component. In fact the following theorem can be proved:

Theorem 11.3 Let the sentence B ` strexp ⇒ S occur in the elaboration of a
program in the initial basis B0. Then if (m,E) is a substructure of S such that
m ∈ N of B, and id is a structure identifier or type constructor such that E
has an id component, then some structure (m,E ′) occurring in B also has an id
component.

In other words, every structure component or type component of a substructure of
S with a rigid name stems from the basis. So clearly no structure will ever match
SIG in Example 11.7.

A similar theorem does not hold for signature expressions, as indeed Exam-
ple 11.7 illustrates. The concept of covering [Sec 5.13, p 35] is concerned with
imposing the same property on sentences of the form B ` sigexp ⇒ S, to rule out
some unmatchable signatures. B covers S means that if (m,E) is a substructure
of S such that m ∈ N ofB, and id is a structure identifier or type constructor such
that E has an id component, then some structure (m,E ′) occurring in B must
also have an id component. (This structure may occur in any of the parts of B,
for example in F of B or G of B.)

Before turning to principality, we prove a simple property of covering which
we shall need.

Theorem 11.4 (Covering) Let B cover S, and ϕS ′ = S where Suppϕ∩namesB =
∅. Then B covers S ′.

110 11 PRINCIPAL SIGNATURES

Proof Suppose that S ′ contains some (m,E ′) with m ∈ N of B, and E ′ has an
id component. Now ϕ(m,E ′) = (m,ϕE ′) since ϕm = m, and ϕE ′ has an id
component; but B covers S, so B must contain a structure (m,E) with an
id component; hence B covers S ′.

Now, to define principality, we simply add covering to bare principality. Precisely,
(N)S is principal for sigexp in B if it is barely principal and also B covers S –
having chosen N so that (N of B) ∩N = ∅. Now we justify the unqualified term
“principal” as follows. Given B and S, among all those S such that B ` sigexp ⇒
S we are only concerned with the ones covered by B, since only these can yield
matchable signatures; and in fact the principal signature will possess every such
S as instance. We can derive this now as a sharpened form of Theorem 11.1:

Theorem 11.5 (Principal Signatures) Let B be rigid and grounded, and let
B ` sigexp ⇒ S for some S covered by B. Then there exists a principal signature
for sigexp in B.

Proof From Theorem 11.1 we have a unique signature Σ = (N)S ′ barely principal
for sigexp in B. Hence Σ ≥ S, i.e. ϕS ′ = S with Suppϕ ⊆ N . But
(N of B) ∩ N = ∅, so Suppϕ ∩ namesB = ∅ since B is fixed. Hence B
covers S ′ by Theorem 11.4, so Σ is principal.

Note that the principal signature, when it exists, is also the barely principal sig-
nature. Were one to replace the notion of principality in the Definition by bare
principality, the sole result would be to admit certain unmatchable signatures;
if a tree is a proof according to the present definition it would also be a proof
according to the modified definition.

Cover was introduced not only to ban unmatchable signatures, but also in an
attempt to ensure that a signature which is principal is automatically well-formed.
It almost achieves this, but not quite. To see that the covering condition rejects
certain kinds of ill-formedness, look again at Example 11.2. The signature there
is not covered by the basis, since the only structure named m0 in the basis is
the empty structure and has no T component. But the ill-formed signature in
Example 11.3 does not violate the covering condition, because the latter places no
constraint upon type names occurring in the VE or EE components of a structure.

In fact the claim in the penultimate paragraph of [p 35], although it simply
asserts that principal signatures exist (and Theorem 11.5 proves the claim!), is
not fully accurate in the terms of the Definition, simply because the principal
signature may not be well-formed (and in [Sec 5.5, p 33] it was assumed that all
semantic objects mentioned thereafter would be admissible). We now see that
it remains necessary, in applying rule 65 [p 39], to check that the signature is
well-formed.

11.4 Equality-principal signatures 111

Perhaps the definition of well-formedness is unnecessarily strong. Taking the
hint from consistency and cover – neither of which places any constraint on the
VE or EE components of a structure – we might try replacing the definition
in [Sec 5.3, p 32] with the following weaker definition: (N)S is well-formed if
N ⊆ namesS and also, whenever (m,E) is a substructure of S and m /∈ N , then
for every structure (m′, E′) in E we have m′ /∈ N and for every type structure
(θ, CE) in E we have tynames θ ∩N = ∅. In this case it is not hard to see that
if Σ is principal for sigexp in B then (due to consistency and cover together) Σ
is well-formed.

However, we do not fully understand the consequences of weakening well-
formedness in this way.

There are also stronger forms of covering which could be imposed (although
they would still not ensure well-formedness of signatures). For example, one
could demand the covering condition for every component id, not just for struc-
ture identifiers and type constructors. Even more strongly, one could adopt the
following definition: B strongly covers S means that if (m,E) is a substructure
of S such that m ∈ N of B, then there is a structure (m,E′) in B such that
DomE′ ⊇ DomE. It is likely that the signatures excluded by these stronger
form of covering are also unmatchable.

11.4 Equality-principal signatures

Even if the principal signature is well-formed and type-explicit, it may still be
defective in its treatment of the equality attribute, as illustrated by Examples 11.5
and 11.6. If (as in Example 11.5) it fails to respect equality then it makes a
contradictory claim that some datatype admits equality.33

Signatures like the one in Example 11.6, however,

{m, t}
(
m, { T 7→ (t, {C 7→ t}) },

{ C 7→ t }
)

(where t does not admit equality) are uninformative rather than contradictory;
they fail to express the fact that a certain datatype in every matching structure
will indeed admit equality. Let us see why t does not admit equality in the above
(principal) signature. Recall that a type realisation can map a non-equality type
name to an equality type name, but not the other way around. Therefore, since
we are free to choose a non-equality type name for T during the elaboration of the
signature expression, the principal signature must use a non-equality type name.
This is no problem if the signature is simply used to constrain an existing structure,
for the signature constraint will not affect the fact that the real datatype T admits
equality. However, if the signature is used as a specification of an unknown

33Example 11.5 will be rejected, because rule 65 of the Definition will be inapplicable. In gen-
eral, the equality-principal signature as defined in [Sec 5.13, p 36] may exist even if the principal
signature does not respect equality; but this is not the case for Example 11.5.

112 11 PRINCIPAL SIGNATURES

structure, it would be intolerable if T were not to admit equality, given that any
actual datatype which matches the specification will admit equality. The critical
case is when the signature represents the formal parameter of a functor, for then it
would prevent valid uses of the equality predicate within the body of the functor.
This is a case where, if we retain a signature which is a relative monster (in the
sense of Section 9.1, meaning that there exists a more specific signature which is
matched by exactly the same real structures), then we exclude useful programs.

We therefore define what it means for a signature Σ = (N)S to maximise
equality, by analogy with the concept for type environments [Sec 4.9, p 21]. First,
let T be the set of type names t ∈ N such that (t, CE) occurs in S for some
CE 6= {}; we call these the bound datatype names of Σ. Then we say that Σ
maximises equality if (a) Σ respects equality, and also (b) if any larger subset of T
were to admit equality (without any change in the equality attribute of any type
names not in T) then Σ would cease to respect equality.34

Now let Σ0 = (N0)S0 be principal for sigexp in B, and let T0 be its bound
datatype names. Then Σ is equality-principal for sigexp in B if it maximises
equality, and is obtained from Σ0 merely by possibly making more members of T0

admit equality. (This is equivalent to the definition given in [Sec 5.13, p 36].)
If Σ0 respects equality then such a Σ certainly exists; it may exist in any

case. Also, Σ is uniquely determined by Σ0, when Σ exists. (With modifications,
one can reuse the argument from Section 5.2 where we proved that, for any type
environment TE, the side-condition “TE maximises equality” uniquely determines
the equality attributes of every type structure in TE.)

Now assume that Σ0 is well-formed and type-explicit. Then Σ, if it exists,
is also well-formed and type-explicit. Also, since B ` sigexp ⇒ S0 and N0 ∩
namesB = ∅ we get B ` sigexp ⇒ S , by Theorem 10.1, the realisation theorem.35

Thus if Σ exists all the premises of rule 65,

B ` sigexp ⇒ S (N)S equality-principal for sigexp in B
(N)S type-explicit

B ` sigexp ⇒ (N)S

are met. (There is no need for the rule to require well-formedness of (N)S explic-
itly, since it is required implicitly by the fact that (N)S occurs in the rule.)

34This definition is almost word-for-word the same as for type environments. But it is not
quite true that Σ maximises equality iff all type environments in Σ maximise equality. The
reason is to do with possible sharing between two datatypes; see Exercise 11.8. The exercise also
explains why maximising equality is separated from principality.

35Strictly speaking, the terminology “to change the equality attribute of a type name” is a
bit loose, since every type name from the outset has an unchangeable equality attribute. What
is meant is, of course, that one can pick fresh type names all of which do admit equality and
are disjoint from the names in the proof of B ` sigexp ⇒ S0, and this amounts to creating a
bijective type realisation ϕ from the type names one wishes to change to the fresh type names;
such a ϕ cannot destroy the admissibility of a proof, so one can indeed apply Theorem 10.1.

11.4 Equality-principal signatures 113

Conversely, if Σ0 is not well-formed or not type-explicit then rule 65 cannot be
applied, for either Σ does not exist, or else it exists but is not well-formed or not
type-explicit. Therefore it is valid to check that a principal signature has these
properties, before attempting to transform it into an equality-principal signature.

Thus, rule 65 can be implemented by the following steps:

Step 1 Find a barely principal signature Σ0 = (N0)S0 for sigexp in B; FAIL,
if none exists

Step 2 Check that B covers S0, so that Σ0 is principal; otherwise FAIL
Step 3 Check that Σ0 is well-formed and type-explicit; otherwise FAIL
Step 4 Compute and return the equality-principal signature Σ; FAIL, if none

exists

During step 1, one might have to choose type names that admit equality in order
to satisfy sharing constraints (with eqtypes or external types). In step 4 as many
further bound datatype names as possible are made to admit equality; failure only
occurs when it is impossible to make Σ respect equality. (This eliminates examples
like 11.5 above.) During step 1, one should not attempt to determine the final
equality attribute while processing a datatype specification in isolation, for it can
depend on specifications elsewhere in the signature. By contrast, when elaborat-
ing datatype or abstype declarations, the equality attributes can be determined
separately for each declaration.

The reader may wonder why type explication is not part of admissibility, so
that no explicit check for type explication would be needed in rule 65. There is
no strong reason; the definition could probably be reformulated to include type
explication in admissibility. As it stands, however, type explication must not
be imposed everywhere; in particular, in a functor signature (N)(S, (N ′)S ′), the
signature (N ′)S ′ need not be type-explicit. For example, in

functor F(S: sig end) =

local datatype T = C in val x = C end

(N ′)S ′ is {t}({x 7→ t}), which is not type-explicit.

Exercise 11.1 Does rule 65 apply successfully to the signature expression below?
If so, what is the result of the elaboration?

sig datatype T = C; type U sharing type T = U end

Exercise 11.2 Same question, for

sig type T; datatype U = C end

Exercise 11.3 Same question, for

114 11 PRINCIPAL SIGNATURES

sig type T; datatype U = C of T end

Exercise 11.4 Same question, for

sig eqtype T; datatype U = C of T end

Exercise 11.5 Same question, for

sig

datatype T = C

datatype U = C of int -> int

sharing type T = U

end

Exercise 11.6 Same question, for

sig

eqtype T

datatype U = C of int -> int

sharing type T = U

end

The next exercise is concerned with introducing type abbreviations in signatures,
an idea which was discussed in the small print at the end of Section 6.3.

Exercise 11.7 (For specialists) In Section 6.3 we suggested a syntactic condition
under which type abbreviations in signatures might be introduced, namely
that a non-atomic type expression be permitted in a sharing equation only on
condition that it contains no flexible type constructors. This side-condition
is intended to avoid problems with second-order unification, see Section 10.4.
Instead one might consider the following natural inference rule, to allow a
type abbreviation in a specification, imposing a semantic rather than a syn-
tactic side-condition:

B ` ty ⇒ τ (Λα(k).τ, {}) grounded in N of B tyvarseq = α(k)

B ` type tyvarseq tycon = ty⇒ {tycon ⇒ (Λα(k).τ, {})}

This rule would be much more permissive than the syntactic condition.
Prove that if one introduces the above rule, the principality theorem (The-
orem 11.1) no longer holds!

Exercise 11.8 (For specialists) The reader might expect that, if we were able
to confine our attention to signatures which maximise equality, then among
them we could find one which possesses all the others as instances, and which

11.4 Equality-principal signatures 115

could therefore be called equality-principal. In fact this is false. To see why,
consider all the signatures to which the following signature expression could
elaborate and which maximise equality. (For this purpose, relax rule 65 by
removing the principality requirement.) Show that none of them is principal
in the new sense.

signature datatype T = A datatype U = A of int->int end

116 A APPENDIX: PROOF OF PRINCIPALITY

A Appendix: Proof of Principality

The purpose of this appendix is to prove the central theorem in the static se-
mantics of Modules, implying the existence of principal signatures (referred to as
the principality theorem, for short). It states that, roughly speaking, if a signa-
ture sigexp elaborates at all in some basis B, then it elaborates to a signature Σ
in B such that the structures to which sigexp elaborates in B are precisely the
structures that are instances of Σ.

This property is crucial for several reasons. First, it is the reason why we never
have to elaborate any signature expression more than once. If, for example, we
declare SIG by

signature SIG = sigexp

then sigexp can be elaborated to a principal signature Σ, if it can be elaborated at
all; whenever we subsequently want to find out whether some structure S matches
SIG, it suffices to check whether S matches Σ in the sense of [Sec 5.12, p 35].

Second, the principality theorem is the reason why the body of a functor
can be elaborated once when the functor is declared, and never has to be re-
elaborated when the functor is applied. Recall that in the rule for functor bindings
[rule 99, p 44], the signature (N)S obtained from the functor parameter signature
expression sigexp is principal36 and hence unique up to the choice of the names in
N . Thus, the structure S which we bind to strid, the functor parameter, before
elaborating the functor body, is uniquely determined by B and sigexp. Were there
distinct (maximal) signatures, which structure would one bind to strid? Also, S
has precisely as much sharing as any structure which satisfies sigexp must have.
It can be proved that as a consequence, for any actual structure S ′ which matches
(N)S, the functor body would elaborate, were one to bind S ′, rather than S, to
strid.

Thus principality is not merely a property of theoretical interest but also one
which very much affects how the language can be implemented. Indeed, our proof
of the principality theorem demonstrates the existence of principal signatures by
actually constructing them. This construction will hopefully be of use to imple-
menters, not least because the proof indicates that one can write a single function
which will handle 18 out of the 26 inference rules involved.

In Section A.1 we shall define structural contractions which are used in the
principality proof. Then, in Section A.2 we state and prove the principality the-
orem. Finally, in Section A.3 we deduce Theorem 11.1 about the existence of
barely principal signatures, from which the existence of principal signatures, The-
orem 11.5, is deduced in Chapter 11.

36Actually it is equality-principal, but that is not important for the present discussion.

A.1 Structural contractions 117

A.1 Structural contractions

Let E be a map over semantics objects, with domain Dom E . (A typical example
is E = + : Env× Env→Env; then Dom E = Env× Env.)

We say that E is structural if, for all realisations ϕ and objects P ∈ Dom E ,

ϕ(E(P)) = E(ϕ(P))

For any admissible assembly A and structure (m,E), we can say an occurrence
of (m,E) in A is free if m is free. Moreover, we say that an occurrence of a type
structure (θ, CE) is free in A if every type name in θ is free. Note that if A is
grounded in N , and (θ, CE) occurs in A but not within a functor signature, then
either this is a free occurrence and tynames(θ) ⊆ N , or else θ is simply a type
name – free or bound.

We now say that E is a contraction if, for all P ∈ Dom E , if P is admissible
and grounded in N then

1. (P, E(P)) is admissible and grounded in N

2. For every structure (m,E ′) occurring free in E(P), there exists an E such that
(m,E) occurs free in P and DomSEofE ′ ⊆ DomSEofE and DomTEofE ′ ⊆
DomTE of E

3. For every type structure (θ, CE ′) which occurs free in E(P), there exists a CE
such that (θ, CE) occurs free in P

Intuitively, (2) and (3) just express that, as far as consistency is concerned [Sec 5.2,
p 32], E produces nothing which does not stem from the argument.

The reason that it is most useful to know about some E that it is a contraction
is that one then knows that it preserves admissibility, not just with respect to the
argument P but also with respect to any assembly:

Lemma A.1 Let E be a contraction, N a name set and A an assembly. Then
for all P ∈ Dom E, if (P,A) is admissible and grounded in N then (E(P), P, A) is
admissible and grounded in N .

Proof Immediate from the definition of admissibility [Sec 5.5, p 33].

The point of the above definitions is that many inference the rules are (ignoring
side-conditions) of the form

E1(P) ` phrase1 ⇒ Q1 ··· Ek(P,Q1, . . . , Qk−1) ` phrasek ⇒ Qk

P ` phrase ⇒ E(P,Q1, . . . , Qk)

for k ≥ 0, where E1, . . . , Ek and E are structural contractions and every premise is
inferred by one of the rules listed above. For brevity, we shall refer to such a rule

118 A APPENDIX: PROOF OF PRINCIPALITY

as a structural contraction, provided also that its side-conditions depend only on
phrase. (Rule 86 provides an example of such a side-condition.)

Some rules contain side-conditions purely for notational convenience and are
equivalent to structural contractions without side-conditions. This applies to rules
47, 49, 74 and 78.

We now assert that the eighteen rules 47–52, 70, 74–78, 80–82, 86, 87 and 90
are all structural contractions. (In rule 49, use that realisation commutes with
type function application; in rule 70, use that realisation commutes with closure.)

A.2 The principality theorem

The principality theorem is only concerned with proofs ∇ that prove sentences
of the form B ` sigexp ⇒ S, i.e. proofs from Rsig. For such proofs, recalling
Section 9.4, admissibility of ∇ means that the assembly of all semantic objects
occurring in ∇ is admissible. Similarly, if ∇ is a proof from Rsig and A is an
assembly, we say that the pair (∇, A) is admissible if the assembly of all objects
occurring in ∇ or in A is admissible.

The principality theorem is

Theorem A.2 (Principal Elaborations) Let phrase be one of sigexp, spec, ty,
tyrow, valdesc, exdesc, strdesc or shareq. Further, let P and Q be semantic objects,
A an assembly, N a name set, ϕ a realisation fixed on N , and ∇ a proof such that

(P,A) is admissible and grounded in N
(∇, ϕA) is admissible
∇ proves ϕP ` phrase ⇒ Q from Rsig

Then there exist ϕ∗, ∇∗, Q∗ depending only on P , A, N and phrase, such that ϕ∗

is fixed on N and

(∇∗, ϕ∗A) is admissible and grounded in N
∇∗ proves ϕ∗P ` phrase ⇒ Q∗

Moreover, for some ψ fixed on N ,

ψ(∇∗, ϕ∗A) = (∇, ϕA)

A few informal comments may be in order. Let us take sentences of the form
B ` sigexp ⇒ S as an example. One of the assumptions is that for some ∇ and
ϕ, ∇ proves ϕB ` sigexp ⇒ S. One of the conclusions is that there exist ϕ∗, ∇∗
and S∗ such that ∇∗ proves ϕ∗B ` sigexp ⇒ S∗. Here ϕ∗, ∇∗ and S∗ depend only
on B, N , A and sigexp; one can think of ϕ∗, ∇∗ and S∗ as being the results of
running a “modules elaborator” (or “signature checker”) on the input B, N , A
and sigexp.

It may be the case that sigexp does not elaborate to any S in B, but that
it elaborates to some S in ϕB, for some realisation ϕ. This is the case if sigexp
fails to elaborate because some sharing constraint in sigexp is not met in B, but

A.2 The principality theorem 119

is met in ϕB because ϕ has identified the offending names or type functions. The
theorem therefore answers a question not just about the elaborations of sigexp in
B, but about the elaborations of sigexp in ϕB, for any ϕ. The reader may now
object that this is not the question we want answered, since we do not want the
elaboration of signature expressions to identify different rigid names, i.e. names
of “real” structures and types. But this is the point of the parameter N of the
theorem; by taking N = namesB we ensure that ϕB = B. This is how we
specialise the theorem in Section A.3.

Another conclusion of the theorem is that ϕ∗, ∇∗ and S∗ are most general
(or universal) in the sense that for any ϕ, ∇ and S satisfying that ∇ proves
ϕB ` sigexp ⇒ S, there exists a realisation ψ such that ψ(∇∗) = ∇; in particular,
ψ(ϕ∗B) = ϕ(B) and ψS∗ = S.

It turns out that the only phrases that contribute to the construction of ϕ∗ are
sharing equations. In particular, if sigexp contains no sharing equations, ϕ∗ will
be Id.

As we have seen earlier, admissibility is not a transitive property. This is
why the theorem is concerned with the admissibility not of a single object or
proof but with the admissibility of that object or proof together with a whole
assembly. One can think of A at the beginning of the elaboration as just being B;
as elaboration progresses, A is “knocked down” by the realisations that result from
the elaboration of sharing equations; moreover, structures and type structures that
are chosen to have fresh names during the elaboration are accumulated in A.

Finally, the requirements that (P,A) be grounded in N and that ϕ be fixed on
N are needed to avoid dealing with second-order unification of type functions, as
explained in Section 10.4. This concludes our comments on the statement of the
theorem.

In the proof of the principality theorem we shall use the following lemmas,
which are easily proved by induction on the structure of ty . First, realisation and
inverse realisation preserve the elaboration of type expressions:

Lemma A.3 Let C and ϕC be admissible. Then

(1) If ∇ proves C ` ty ⇒ τ then ϕ∇ proves ϕC ` ty ⇒ ϕτ

(2) If ∇′ proves ϕC ` ty ⇒ τ ′, then there exist ∇ and τ such that
∇′ = ϕ(∇) and ∇ proves C ` ty ⇒ τ .

Second, the elaboration of type expressions is uniquely determined by the context:

Lemma A.4 For every C and ty, there exists at most one (∇, τ) such that ∇
proves C ` ty ⇒ τ . Moreover, whenever ∇ proves C ` ty ⇒ τ and C ′ is an
admissible context such that

(1) Dom(TE) = Dom(TE ′)

120 A APPENDIX: PROOF OF PRINCIPALITY

(2) θ of TE(tycon) = θ of TE ′(tycon), for all tycon ∈ DomTE,

where TE = TE of C and TE ′ = TE of C ′, then there exists a ∇′ which proves
C ′ ` ty ⇒ τ .

Third, in elaborating a type expression in C, no semantic object outside C is
encoutered:

Lemma A.5 For every C, ty, τ and ∇, if ∇ proves C ` ty ⇒ τ then for all
assemblies A and name sets N , (∇, A) is admissible and grounded in N if and
only if (C,A) is admissible and grounded in N .

We now proceed to the proof of the principality theorem.

Proof We prove the theorem by induction on the depth of ∇. The proof ∇
concludes with one of the rules 47–52, 63, 64, 70–81, 82, 86, 87, 88–90. Thus our
inductive proof potentially has twenty-six cases to consider. However, we have seen
that eighteen of these are structural contractions, and this dramatically shortens
the proof. A further rule, namely rule 79 for include, may also be ignored; for
one can show that the form include sigid elaborates to exactly the same results
as

local structure S: sigid in open S end

in any basis, and this translation generalises easily to the case of several signature
identifiers.

We now assume the hypotheses of the theorem, and proceed by case analysis
of the final rule used in the proof ∇. Note in particular that ϕ is assumed to be
grounded in N . In each case it is easy to demonstrate that the ϕ∗ and ψ con-
structed are also grounded in N , and we shall not usually mention this explicitly.

First we treat the general case of a structural contraction rule; then we treat
the remaining seven cases individually.

Structural Contractions Without loss of generality it will be sufficient to deal

with the structural contraction rules just in the case k = 2. Therefore, consider
the case in which ∇ concludes with an instance

E1(ϕP) ` phrase1 ⇒ Q1 E2(ϕP,Q1) ` phrase2 ⇒ Q2

ϕP ` phrase ⇒ E(ϕP,Q1, Q2)
(1)

where E1, E2 and E are structural contractions, ϕ is fixed onN , andQ = E(ϕP,Q1, Q2).

A.2 The principality theorem 121

Then by assumption

(P,A) is admissible and grounded in N (2)

(∇, ϕA) is admissible (3)

∇ proves ϕP ` phrase ⇒ Q (4)

By (4) there exist ∇1 and ∇2 such that

∇ =
∇1 ∇2

ϕP ` phrase ⇒ Q
(5)

and

∇1 proves E1(ϕP) ` phrase1 ⇒ Q1 (6)

∇2 proves E2(ϕP,Q1) ` phrase2 ⇒ Q2 (7)

Using induction, first time: We now wish to use induction on ∇1. Let P1 =
E1(P), ϕ1 = ϕ and A1 = (P,A). Since E1 is a contraction and (P,A) is admissible
and grounded in N we get

(P1, A1) is admissible and grounded in N

by Lemma A.1. Also, (∇1, ϕ1A1) = (∇1, (ϕ1P, ϕ1A)) so by (3),

(∇1, ϕ1A1) is admissible

Also, from (6) and the fact that E1 is structural, we get

∇1 proves ϕ1P1 ` phrase1 ⇒ Q1

Thus, by induction there exist ϕ∗1, ∇∗1 and Q∗1, depending only on P1, A1, N and
phrase1, such that

(∇∗1, ϕ∗1A1) is admissible and grounded in N (8)

∇∗1 proves ϕ∗1P1 ` phrase1 ⇒ Q∗1 (9)

Moreover, for some ϕ2 fixed on N

ϕ2(∇∗1, ϕ∗1A1) = (∇1, ϕ1A1) (10)

Using induction, second time: We now wish to apply induction to ∇2. Let
P2 = E2(ϕ∗1P,Q

∗
1) and let A2 = (∇∗1, ϕ∗1A1). Then

A2 = (∇∗1, ϕ∗1(P,A)) = (∇∗1, (ϕ∗1P, ϕ∗1A)) (11)

so ((ϕ∗1P,Q
∗
1), A2) is admissible and grounded in N by (8), noting that Q∗1 occurs

in ∇∗1. Since E2 is a contraction, we therefore have

(P2, A2) is admissible and grounded in N

122 A APPENDIX: PROOF OF PRINCIPALITY

using Lemma A.1. Moreover

(∇2, ϕ2A2) = (∇2, (∇1, ϕ1A1)) by (10)

= (∇2, (∇1, (ϕP, ϕA)))

so by (3) and (5),

(∇2, ϕ2A2) is admissible

Also,

E2(ϕP,Q1) = E2(ϕ2ϕ
∗
1P, ϕ2Q

∗
1) by (10)

= ϕ2(E2(ϕ∗1P,Q
∗
1)) as E2 is structural

= ϕ2P2

so by (7),

∇2 proves ϕ2P2 ` phrase2 ⇒ Q2

Thus, by induction there exist ϕ∗2, ∇∗2 and Q∗2, depending only on P2, A2, N and
phrase2, such that

(∇∗2, ϕ∗2A2) is admissible and grounded in N (12)

∇∗2 proves ϕ∗2P2 ` phrase2 ⇒ Q∗2 (13)

Moreover, for some ψ,

ψ(∇∗2, ϕ∗2A2) = (∇2, ϕ2A2) (14)

Collecting the results: We shall now prove that if we define ϕ∗ = ϕ∗2 ◦ ϕ∗1,
Q∗ = E(ϕ∗P, ϕ∗2Q

∗
1, Q

∗
2) and

∇∗ =
ϕ∗2∇∗1 ∇∗2

ϕ∗P ` phrase ⇒ Q∗

then ϕ∗, ∇∗ and Q∗ have the desired properties.
Note that ϕ∗, ∇∗ and Q∗ only depend on P , A, N and phrase. Moreover,

written out in full, the assembly from (12) – let us call it A3 – is

A3 = (∇∗2, ϕ∗2A2)

= (∇∗2, (ϕ∗2∇∗1, (ϕ∗2ϕ∗1P, ϕ∗2ϕ∗1A))) by (11)

i.e.

A3 = (∇∗2, (ϕ∗2∇∗1, (ϕ∗P, ϕ∗A))) (15)

Hence ((ϕ∗P, ϕ∗2Q
∗
1, Q

∗
2), A3) is admissible and grounded inN . Thus, by Lemma A.1,

(E(ϕ∗P, ϕ∗2Q
∗
1, Q

∗
2), A3), i.e. (Q∗, A3), is admissible and grounded in N . But then,

by (12), (15) and the definition of ∇∗,

A.2 The principality theorem 123

(∇∗, ϕ∗A) is admissible and grounded in N

as required.
We now have to check that∇∗ really proves its conclusion, ϕ∗P ` phrase ⇒ Q∗.

We have already established that ∇∗ is admissible. Also, the side-conditions on
the last step of ∇∗, if present, are satisfied because they depend on phrase only
and were satisfied at (4). But is the conclusion of ∇∗ obtained by an instance of
the same rule as yielded (1)?

To see that it is, first note that by (9), ∇∗1 proves ϕ∗1P1 ` phrase1 ⇒ Q∗1 and
since we know that the tree ϕ∗2∇∗1 really is admissible, we get that

ϕ∗2∇∗1 proves ϕ∗P1 ` phrase1 ⇒ ϕ∗2Q
∗
1

by Theorem 10.1. Since E1 is structural and P1 = E1(P), this is equivalent to

ϕ∗2∇∗1 proves E1(ϕ∗P) ` phrase1 ⇒ ϕ∗2Q
∗
1 (16)

Similarly, because E2 is structural and P2 = E2(ϕ∗1P,Q
∗
1), (13) is equivalent to

∇∗2 proves E2(ϕ∗P, ϕ∗2Q
∗
1) ` phrase2 ⇒ Q∗2 (17)

But from (16) and (17) we see that ∇∗ really does conclude with an instance of
the structural contraction rule under consideration, so ∇∗ is a proof, as required.

It remains to exhibit a ψ with the desired properties. Take any ψ satisfying
(14). Let us expand the left- and right-hand sides of the equation in (14):

ψ(A3) = (ψ∇∗2, (ψϕ∗2∇∗1, (ψϕ∗P, ψϕ∗A))) by (15)

and

(∇2, ϕ2A2) = (∇2, (∇1, ϕ1A1)) by (10)

= (∇2, (∇1, (ϕP, ϕA)))

so (15) gives ψ∇∗2 = ∇2, ψϕ∗2∇∗1 = ∇1, ψϕ∗P = ϕP and ψϕ∗A = ϕA. But then

ψQ∗ = ψ(E(ϕ∗P, ϕ∗2Q
∗
1, Q

∗
2))

= E(ψϕ∗P, ψϕ∗2Q
∗
1, ψQ

∗
2)

= E(ϕP,Q1, Q2)

= Q

so that

ψ(∇∗, ϕ∗A) =
(ψϕ∗2∇∗1 ψ∇∗2
ψϕ∗P ` phrase ⇒ ψQ∗

, ψϕ∗A
)

=
(∇1 ∇2

ϕP ` phrase ⇒ ψQ∗
, ϕA

)
= (∇, ϕA)

as required.

124 A APPENDIX: PROOF OF PRINCIPALITY

Rule 63, sigexp ≡ sig spec end This rule is not a structural contraction, due

to the structure name m in the conclusion. By assumption (with P = B, Q = S)

(B,A) is admissible and grounded in N (1)

(∇, ϕA) is admissible (2)

∇ proves ϕB ` sigexp ⇒ S (3)

Then there exist ∇1, m and E such that

∇ =
∇1

ϕB ` sig spec end⇒ (m,E)
(4)

(∇1, ϕA) is admissible (5)

∇1 proves ϕB ` spec ⇒ E (6)

By induction on (1), (5) and (6) there exist ϕ∗1, ∇∗1 and E∗ depending only on B,
A, N and spec, such that

(∇∗1, ϕ∗1A) is admissible and grounded in N (7)

∇∗1 proves ϕ∗1B ` spec ⇒ E∗ (8)

Moreover, for some ψ1,

ψ1(∇∗1, ϕ∗1A) = (∇1, ϕA) (9)

Let m∗ be a structure name such that

m∗ /∈ names(∇∗1, ϕ∗1A) (10)

Let ϕ∗ = ϕ∗1, S∗ = (m∗, E∗) and let

∇∗ =
∇∗1

ϕ∗B ` sigexp ⇒ S∗
(11)

These depend only on B, A, N and sigexp. Now (∇∗, ϕ∗A) is admissible and
grounded in N by (7) and (10). Since also ∇∗ is an instance of rule 63, ∇∗ proves
ϕ∗B ` sigexp ⇒ S∗. Let ψ = ψ1 + {m∗ 7→ m}. Then

ψ(∇∗, ϕ∗A) =
(ψ∇∗1
ψϕ∗B ` sigexp ⇒ ψS∗

, ψϕ∗A
)

=
(ψ1∇∗1
ψ1ϕ∗1B ` sigexp ⇒ (m,ψ1E∗)

, ψ1ϕ
∗
1A
)
by (10)

=
(∇1

ϕB ` sigexp ⇒ (m,E)
, ϕA

)
by (9)

= (∇, ϕA)

as required.

A.2 The principality theorem 125

Rule 64, sigexp ≡ sigid By assumption (with P = B, Q = S) conditions (1)–(3)

hold as in rule 63, but in this case sigexp ≡ sigid and ∇∗ consists of a single step
with ϕ(B(sigid)) ≥ S. Write B(sigid) in the form (N∗)S∗, where N∗ is disjoint
from names(B,A) ∪N . Let ϕ∗ = Id, and let

∇∗ =
B ` sigid ⇒ S∗

These depend only on B, A, N and sigid, as required. Since (B,A) by assumption
is admissible and grounded in N and S∗ is drawn from B, (∇∗, ϕ∗A) – i.e. (∇∗, A)
– is admissible and grounded in N as required. Also B(sigid) ≥ S∗, so ∇∗ really
proves it conclusion, as required.

To exhibit ψ, we note that ϕ′S∗ = S for some ϕ′ such that Suppϕ′ ⊆ N∗, and
it is enough to take ψ = ϕ+ ϕ′.

Rule 71, spec ≡ type typdesc Rule 71 is a structural contraction, but notice

that its premise involves a typdesc, so is not inferred by one of the rules we consider
in the inductive proof. We wished to avoid proving the theorem for the non-
contractive rule 83 for type descriptions – not that this is difficult (the case is
very similar to that of rule 63) but simply because we wish to keep the size of the
proof to a minimum. The case for rule 71 is easier to deal with by adapting the
treatment of rule 72 below, simply by omitting (6) and replacing (10) by

t∗i does not admit equality, for all i = 1..n.

Rule 72, spec ≡ eqtype typdesc Due to its side-condition, rule 72 is not a struc-

tural contraction. By assumption (with P = B,Q = E)

(B,A) is admissible and grounded in N (1)

(∇, ϕA) is admissible (2)

∇ proves ϕB ` spec ⇒ E (3)

Then for some TE and ∇1

∇ =
∇1

ϕB ` spec ⇒ TE in Env
(4)

∇1 proves C of ϕB ` typdesc ⇒ TE (5)

∀(θ, CE) ∈ RanTE, θ admits equality (6)

Write typdesc in the form

α(k1)tycon1 and ··· and α(kn)tyconn, (n ≥ 1)

where tycon1, . . . , tyconn are distinct by the syntactic constraint in [Sec 3.5, p 12].
By rule 83, there exist θ1, . . . , θn such that

TE = {tycon1 7→ (θ1, {}), . . . , tyconn 7→ (θn, {})} (7)

arity(θi) = ki, for all i = 1..n (8)

126 A APPENDIX: PROOF OF PRINCIPALITY

Let t∗1, . . . t
∗
n be distinct type names such that

arity(t∗i) = ki, for all i = 1..n (9)

t∗i admits equality, for all i = 1..n (10)

{t∗1, . . . , t∗n} ∩ (names(B,A) ∪ T) = ∅ (11)

Let ϕ∗ = Id, TE∗ = {tycon1 7→ (t∗1, {}), . . . , tyconn 7→ (t∗n, {})} and E∗ = TE∗ in
Env. By rule 83 there exists a ∇∗1 such that

∇∗1 proves C of B ` typdesc ⇒ TE∗ (12)

(∇∗1, B,A) is admissible and grounded in N (13)

using (1) and (11). Let

∇∗ =
∇∗1

B ` spec ⇒ E∗

By (10) and (13), (∇∗, A) is admissible and grounded in N and ∇∗ proves B `
spec ⇒ E∗. Clearly, ∇∗ depends only on B, A, N and spec. Finally, let

ψ = ϕ+ {t∗1 7→ θ1, . . . , t
∗
n 7→ θn}

which really is a realisation because of (8), (9) and (10). Then

ψ(C of B ` typdesc ⇒ TE∗) = C of ϕB ` typdesc ⇒ TE

For every C, typdesc, and TE there can at most be one proof proving C `
typdesc ⇒ TE. We therefore have ψ(∇∗1) = ∇1. Thus ψ(∇∗) = ∇. Also,
ψ(ϕ∗A) = ψ(A) = ϕ(A) by (11) showing ψ(∇∗, ϕ∗A) = (∇, ϕA) as required.

Rule 73, spec ≡ datatype datdesc Rule 73 [p 40] is not a structural contraction,

because of the TE occurring on the left in the premise.
Without loss of generality, assume that

datdesc ≡ α(k)tycon = condesc

condesc ≡ con of ty

(the general case of several type constructors and several value constructors presents
no extra difficulty, and neither does the case where “of ty” is absent).

By assumption (with P = B, Q = E)

(B,A) is admissible and grounded in N (1)

(∇, ϕA) is admissible (2)

∇ proves ϕB ` spec ⇒ E (3)

Then ∇ is of the form

A.2 The principality theorem 127

∇1

(85)

C of ϕB + TE, α(k)t ` con of ty ⇒ {con 7→ τ→α(k)t}︸ ︷︷ ︸
CE

(84)

C of ϕB + TE ` α(k) tycon = condesc ⇒ VE, TE

(73)

ϕB ` datatype α(k) tycon = condesc ⇒ (VE, TE) in Env

where VE = ClosCE, TE = {tycon ⇒ (t,ClosCE)} and

∇1 proves C of ϕB + TE ` ty ⇒ τ (4)

Now choose t∗ /∈ names(B,A) ∪ T , with arity k, not admitting equality. Let
TE∗0 = {tycon 7→ (t∗, {})}. (Note the empty constructor environment; we shall
shortly obtain TE∗ by “filling out” the constructor environment of TE∗0.) Let
ψ = ϕ+ {t∗ 7→ t}.

Let TE0 = {tycon 7→ (t, {})}. Note that C of ϕB + TE0 is admissible. Thus
we can apply Lemma A.4 (second half) to (4). Hence there exists a ∇0 which
proves C of ϕB + TE0 ` ty ⇒ τ . Note that C of B + TE∗0 is admissible and that
ψ(C of B + TE∗0) = C of ϕB + TE0. Then, by Lemma A.3(2), there exist ∇∗0 and
τ ∗ such that

ψ∇∗0 = ∇0 (5)

∇∗0 proves C of B + TE∗0 ` ty ⇒ τ ∗ (6)

Now let TE∗ = {tycon 7→ (t∗,ClosCE∗)}, where CE∗ = {con 7→ τ ∗→α(k)t∗}.
Note that C of B+TE∗ is admissible, since t∗ /∈ names(B,A). Thus we can apply
Lemma A.4 (second half) to (6), so there exists a ∇∗1 such that

∇∗1 proves C of B + TE∗ ` ty ⇒ τ ∗ (7)

Using that ψτ ∗ = τ we get

ψ(C of B + TE∗) = C of ϕB + TE (8)

which is admissible. Thus we can apply Lemma A.3(1) to (7); hence

ψ∇∗1 proves C of ϕB + TE ` ty ⇒ τ (9)

By Lemma A.4 (first half) on (9) and (4) we therefore have

ψ∇∗1 = ∇1 (10)

128 A APPENDIX: PROOF OF PRINCIPALITY

Now let ϕ∗ = Id and ∇∗ =

∇∗1

(85)

C of B + TE∗, α(k)t∗ ` con of ty ⇒ {con 7→ τ ∗→α(k)t∗}︸ ︷︷ ︸
CE∗

(84)

C of B + TE∗ ` α(k) tycon = condesc ⇒ VE∗, TE∗

(73)

B ` datatype α(k) tycon = condesc ⇒ E∗

where VE∗ = ClosCE∗ and E∗ = (VE∗, TE∗) in Env (CE∗ and TE∗ have already
been defined). By Lemma A.4 (first half) on (6), τ ∗ is uniquely determined by
C of B + TE∗0 and ty . But then, by Lemma A.4 (first half) on (7), ∇∗1 depends
only on C of B+TE∗0 and ty. It follows that ϕ∗, E∗ and ∇∗ depend only on B, A,
N and spec, as required.

Note that (C of B + TE∗, A′) is admissible and grounded in N , where A′ =
(B,A). Thus, by Lemma A.5 on (7), (∇∗1, A′) is admissible and grounded in N .
It follows that (∇∗, A) is admissible and grounded in N , as required. Then, given
(7), one easily checks that ∇ proves ϕ∗B ` spec ⇒ E∗, using rules 73, 84 and 85.

Finally

ψ(∇∗, ϕ∗A) = (ψ∇∗, ϕA) as t∗ /∈ namesA

= (∇, ϕA)

since t∗ /∈ names(B,A), ψ(t∗, τ ∗) = (t, τ) and (10).
The way ∇∗1 was achieved is summarised in the diagram below, which in the

proof is traversed clockwise, starting from ∇1.

∇∗0 proves C of B + TE∗0 ` ty ⇒ τ ∗ ∇∗1 proves C of B + TE∗ ` ty ⇒ τ ∗yψ yψ
∇0 proves C of ϕB + TE0 ` ty ⇒ τ ∇1 proves C of ϕB + TE ` ty ⇒ τ

Rule 88, Structure Sharing Here phrase is a sharing equation

shareq ≡ longstrid1 = ··· = longstridk

for some k ≥ 2. By assumption (with P = B, Q = {})

A.2 The principality theorem 129

(B,A) is admissible and grounded in N (1)

(∇, ϕA) is admissible (2)

∇ proves ϕB ` shareq ⇒ {} (3)

Now by the side-condition on rule 88,

m of (ϕB)(longstrid1) = ··· = m of (ϕB)(longstridk) (4)

but the problem is that we do not necessarily have

m of B(longstrid1) = ··· = m of B(longstridk)

(One reason is that whenever we choose names in the proof, e.g. in the cases for
rules 64 and 79, we always choose them to be suitably “new”. Also, the top-level
B may fail to satisfy the sharing equations.) However, let X be any structure
identifier, let m be a structure name such that m /∈ names(B,A) and consider the
assembly

A′ =
(
B,A, (m, {X 7→ B(longstrid1)}), . . . , (m, {X 7→ B(longstridk)})

)
Although A′ need not be consistent, it is grounded in N . Moreover, letting ϕ′ =
ϕ + {m 7→ m′}, where m′ /∈ names(ϕB,ϕA), we have that ϕ′A′ is admissible,
using (2) and (4). Note that ϕ′ is fixed on N .

We can therefore apply the admissification theorem (Theorem 10.3) to A′ and
ϕ′. Hence there exists a realisation ϕ∗, depending only on N and A′, such that
ϕ∗(A′) is admissible and grounded in N , and there exists a realisation ψ fixed on
N such that

ψ(ϕ∗A′) = ϕ′A′ (5)

Let Q∗ = {} and ∇∗ =
ϕ∗B ` shareq ⇒ {}

. Note that ϕ∗, Q∗ and ∇∗ depend

on B, A, N and phrase only. Since ϕ∗A′ is admissible and grounded in N , we
have that (∇∗, ϕ∗A) is admissible and grounded in N as required. Moreover, since
ϕ∗A′ is consistent, we have

m of (ϕ∗B)(longstrid1) = ··· = m of (ϕ∗B)(longstridk)

so ∇∗ really proves ϕ∗B ` shareq ⇒ {} as required. Finally,

ψ(∇∗, ϕ∗A) = (∇, ϕ′A) by (5)

= (∇, ϕA) sincem /∈ names(B,A)

as required.

130 A APPENDIX: PROOF OF PRINCIPALITY

Rule 89, Type Sharing Here phrase is a sharing equation

shareq ≡ type longtycon1 = ··· = longtyconk

for some k ≥ 2. The proof is the same as for rule 88, with the following modifica-
tions

(a) Replace longstrid by longtycon throughout
(b) Replace “m of ” by “θ of ” throughout
(c) X is now a type constructor, not a structure identifier

This concludes the proof of the principality theorem.

A.3 Principal signatures

We are now in a position to prove as corollaries Theorem 11.1 which asserts the
existence of barely principal signatures, and Theorem 11.2 which ensures that the
conditions for their existence will always be met if we start in the initial basis B0.

Corollary A.6 (Barely Principal Signatures) Let B be rigid and grounded,
and let B ` sigexp ⇒ S for some S. Then there exists a barely principal signature
for sigexp in B.

Proof By Theorem A.2, setting ϕ = Id and N = N of B, we deduce that there
exist ϕ∗ fixed on N , ∇∗ and S∗ depending only on B and sigexp, such that

(∇∗, ϕ∗B) is admissible and grounded in N (1)

∇∗ proves ϕ∗B ` sigexp ⇒ S∗ (2)

Moreover, for some ψ fixed on N

ψ(∇∗, ϕ∗B) = (∇, B) (3)

But ϕ∗B = B since B is rigid, so from (2) we get

∇∗ proves B ` sigexp ⇒ S∗

Now pick N∗ = namesS∗\N . To complete the proof we need to show that
(N∗)S∗ ≥ S, i.e. that ψ′S∗ = S for some ψ′ for which Suppψ′ ⊆ N∗. It is
enough to take ψ′ to be ψ restricted to namesS∗; for we have ψ′S∗ = ψS∗ = S
from (3), and Suppψ′ ⊆ N∗ since N∗ = namesS∗\N and ψ′ is fixed on N .

Corollary A.7 (Bases) Let B ` topdec ⇒ B′ occur in the elaboration of some
program in the initial basis B0. Then B is rigid and grounded.

A.3 Principal signatures 131

Proof (outline) It is easy to check that B0 is rigid and grounded. We outlined
the argument for the rigidity of B in Section 10.1. For groundedness, since
a program is just a sequence of top-level declarations, it is enough – com-
bined with a simple induction – to show that if B is rigid and grounded and
B ` topdec ⇒ B′ then B′ is grounded. Now such an elaboration must con-
clude with rule 100, 101 or 102. In rules 100 and 102 the result is a rigid basis
containing respectively an environment E and a functor environment F , and
these are trivially grounded. (Recall that E contains no bound names, and
that groundedness imposes no constraint upon functor signatures.)

Therefore we need only deal with rule 101, in which a signature environ-
ment G is created. Now let N = N of B. The question then reduces to: If
B ` sigdec ⇒ G, is G grounded in N? Tracing back through the elabora-
tion tree, this can be reduced further to: If B ` sigexp ⇒ S∗, with (N∗)S∗

principal for sigexp in B, then is S∗ grounded in N? But S∗ here is just
the S∗ found in Corollary A.6, and from the application of the principality
theorem we see that S∗ – part of ∇∗ – is indeed grounded in N = N of B as
we require.

132 B APPENDIX: IDENTIFIER STATUS

B Appendix: Identifier Status

In this appendix we give rules which determine the status of each occurrence of a
long identifier longid.

There are nine classes of identifier [Sec 2.4, p 4; Sec 3.2, p 10]. Here we only treat
the distinction between value variables Var, value constructors Con and exception
constructors ExCon, since there is no problem in assigning an identifier occurrence
to any other class. So for this appendix, when we consider an occurrence of longid,
we assume that it can only be a longvar , a longcon or an longexcon. Also, we ignore
derived forms.

We define a status map so be a finite map from LongId to {v, c, e}, and we shall
use s to range over these three status values. Then, for example, the declaration

datatype T = A val B = A

will normally yield the status map which we write {A :c, B :v}; this means that,
in the scope of this declaration, A and B will be treated respectively as a value
constructor and as a variable (until something else changes their status). But if B
already possesses c or e status, then the declaration will instead yield the status
map {A :c} with no entry for B, because in that case val no longer declares B but
treats it as a pattern (leading in this case to a failure of elaboration).

We say that a phrase assigns longid :s if it yields a status map M such that
M(longid) = s. We assume that status maps compose by modification (+, [p 18])
and that normal scoping rules apply. Thus, if declarations dec1 and dec2 yield
status maps M1 and M2, then the declaration dec1;dec2 will yield M1+M2, while
local dec1 in dec2 end will yield just M2. Also, abstype datbind with . . . is
treated like local datatype datbind in Other phrases that are not men-
tioned in the rules below yield the empty status map.

Declarations and Specifications

1. A datatype declaration or specification assigns id :c for each id which it
introduces as a value constructor.

2. An exception declaration or specification assigns id :e for each id which it
introduces as an exception constructor.

3. A val declaration yields the union of the status-maps yielded by its patterns.
This must be a well-defined map, because it can only assign v status to any
id. On the other hand, a val specification assigns id :v for every id which it
contains (ignoring type expressions) [Sec 3.2, p 10].

4. A pattern pat assigns id :v for every id which does not already have c or e

status and occurs in pat (ignoring type expressions).

133

5. A structure declaration containing the binding strid = strexp assigns the
status strid .longid :s, whenever longid :s is assigned by strexp.
Similarly a structure declaration containing the binding strid:sigexp = strexp,
or a structure specification containing the description strid:sigexp, assigns
the status strid .longid :s, whenever longid :s is assigned by sigexp.

6. An open declaration or specification containing the structure identifier strid
assigns the status longid :s, whenever strid .longid :s is assigned by the dec-
laration or specification of strid.

7. An include specification accumulates the status maps yielded by the signa-
ture identifiers it contains.

Rules 5–7 depend on how a structure expression strexp or a signature expression
sigexp yields a status map; this will be defined by rules 8–10 below.

Example B.1 Here are some examples of status maps yielded by declarations
and specifications, assuming an initially empty status map in each case:

(a) datatype T=A val B=A {A :c, B :v}
(b) datatype T=A val A=A {A :c}
(c) datatype T=A|B datatype T=B|C {A :c, B :c, C :c}
(d) local val (A,B)=(2,3) in exception A end {A :e}
(e) datatype T=A val A:T {A :v}

In (c), which may be either a declaration or a specification, note that A remains
a constructor of the hidden type T. In (d), note that local localises B’s status,
and also that the status e can supersede the status v. Contrast particularly the
declaration (b) with the specification (e); a val declaration is sensitive to previous
constructor status, but a val specification is not.

Note that rule 4 above, for patterns, deals with variables bound in a match.

Example B.2 Assume the signature declaration

signature SIG = sig type T val A:T end

Then the structure declaration

structure S:SIG = struct datatype T=A|B end

will yield {S.A :v}. Without “:SIG” it would yield {S.A :c, S.B :c}. There-
after, the declaration

datatype U=A|C; open S

will yield {A :v, C :c}. Note how open can override constructor status.

134 B APPENDIX: IDENTIFIER STATUS

Structure and signature expressions

8. The structure expression struct dec end yields the same status map as
dec. Similarly the signature expression sig spec end yields the same status
map as spec.

9. The structure expression strid1.···.stridk.strid, if strid was declared by
strid 〈:sigexp〉 = strexp or specified by strid:sigexp , yields the same status
map as was yielded by sigexp if present, else as strexp. Similarly, the signa-
ture expression sigid , if sigid was declared by sigid = sigexp , yields the
same status map as sigexp.

10. The structure expression funid(strexp) , if funid was declared or specified
by funid(strid: sigexp) 〈: sigexp ′〉 〈〈= strexp ′〉〉 yields the same status map
as was yielded by sigexp ′ if present, else as strexp ′.

In rule 10, note that strexp as a functor argument has no effect on status. Note
also that functor and signature declarations have no immediate effect on status;
they only take effect via subsequent use of the declared functor identifiers and
signature identifiers.

Example B.3 To illustrate some of these points, consider the artificial program

exception A and B ; (*1*)

signature SIG = sig type T val A:T end ; (*2*)

functor F(S: SIG) (*3*)

= struct val C = B open S end ; (*4*)

structure R = F(struct datatype T=A end) ; (*5*)

The exception declaration yields the status map M = {A :e, B :e}, and M
applies at all the points 1, 2 and 4 because signature and functor declarations
don’t affect status directly. But the signature expression SIG yields MSIG =
{A :v}, so at 3 the status map M+S.MSIG = {A :e, B :e, S.A :v} applies (here
S:SIG is treated as a specification). Then the functor body yields MF =
{A :v, C :v}, the structure expression F(..) also yields MF, the structure
declaration yields R.MF = {R.A :v, R.C :v}, and finally at 5 the status map
M+R.MF = {A :e, B :e, R.A :v, R.C :v} applies.

This concludes our rules for assigning identifier status. They are complete; in a
program with no unbound identifiers they determine the status of every occurrence
of a longid. The rules could be formalised, and indeed the status map could even
have been combined with the static environment, so that elaboration could be
given the task of assigning status. We resisted this in the Definition, to avoid too
much complexity at once.

135

C Appendix: Solutions to Exercises

This Appendix contains the solutions to all the exercises.

1.1 See Figure 12

C1⊕TE1 ` NAT ⇒ tNAT

C1⊕TE1, tNAT ` Succ of NAT ⇒ {Succ 7→ tNAT→tNAT}︸ ︷︷ ︸
CE2

C1⊕TE1, tNAT ` Zero | Succ of NAT ⇒ {Zero 7→ tNAT}+ CE2︸ ︷︷ ︸
CE1

C1⊕TE1 ` NAT = Zero | Succ of NAT ⇒ ClosCE1︸ ︷︷ ︸
VE1

, {NAT 7→ (tNAT,ClosCE1)}︸ ︷︷ ︸
TE1

C1︷ ︸︸ ︷
C of B1 ` datatype NAT = ··· ⇒ (VE1, TE1) in Env︸ ︷︷ ︸

E1

?
(49)

?
(30)

?
(30)

?
(29)

?
(19)

Figure 12: Elaborating a datatype declaration

1.2 See Figure 13

3.1 E = ({}, {A 7→ A, B 7→ B}, {}). (Without the new rule, E would be empty.)
I = ({}, {A}, ∅). E ↓ I = ({}, {A 7→ A}, {}) is bound to S.

3.2 Let IB(sigid i) = Ii, 1 ≤ i ≤ n. (If any is undefined then it is easy to show
that neither phrase evaluates.) Then by rule 181

IB ` include sigid1 ··· sigidn ⇒ I1 + ··· + In

136 C APPENDIX: SOLUTIONS TO EXERCISES

C3 ` Zero ⇒ {}, tNAT

C3+{} ` Zero ⇒ tNAT

C3+{} ` Zero ⇒ tNAT

C3 ` Zero => Zero ⇒ tNAT→tNAT

C3 ` twice ⇒ (VE2, tNAT→tNAT)

C3 ` Zero => ··· | Succ x ··· ⇒ tNAT→tNAT

C3 ` twice ⇒ (VE2, tNAT→tNAT)

C3 ` fn Zero => ··· | ··· ⇒ tNAT→tNAT

C3︷ ︸︸ ︷
C2 + VE2 ` twice = ··· ⇒ {twice 7→ tNAT→tNAT}︸ ︷︷ ︸

VE2

C2 ` rec twice = ··· ⇒ VE2

C2︷ ︸︸ ︷
C of (B1⊕E1) ` val rec twice = ··· ⇒ VE2 in Env︸ ︷︷ ︸

E2

?
(3)

?
(36)

?
(9)

@
@R

�
�	(16)

............

............

............

............

?
(35)

@
@R

�
�
�
�	(15)

?
(42)

?
(14)

@
@@R

�
�
�
�

�
�	

(61)

?
(27)

?
(17)

Figure 13: Elaborating a fun declaration

137

(1)
(9)

C0 ` "Elisabeth"⇒ string

(1)
(9)

C0 ` 27⇒ int

(8)

C0 ` age = 27⇒ {age 7→ int}

(8)

C0 ` mother = "Elisabeth", age = 27⇒ {mother 7→ string, age 7→ int}

(5)

C0 ` {mother = "Elisabeth", age = 27}⇒ {mother 7→ string, age 7→ int}

Figure 14: Elaborating a record expression

On the other hand, let strdesc = strid1:sigid1 and ··· and stridn:sigidn.
Then by rules 171 and 186

IB ` strdesc ⇒ {strid1 7→ I1, . . . , stridn 7→ In}

Hence by rules 178–180 we deduce that

local structure strdesc in open strid1 ··· stridn end ⇒ I1 + ··· + In

3.3 The functor closure is (X : I, X, B). The structure is E ↓ I in each case.

3.4 First, all signatures in structure bindings and result signatures in functor
bindings could be deleted (ignored). Second, the result interface in a func-
tor closure would be removed, so a functor closure becomes just (strid :
I, strexp, B). Third, rules 169 for structure bindings, 187 for functor bind-
ings and 162 for functor application would all be modified by omitting their
first option 〈 〉.

4.1 See Figure 14

4.2 (1) elaborates to all types of the form (τ list→int) ∗ τ list ∗ int→int,
for all types τ . (2) elaborates, but only to the type (int list→ int) ∗
int list→int. (3) does not elaborate; by the theorem, length has a simple
type scheme and no simple type scheme generalises both int list→ int

and

138 C APPENDIX: SOLUTIONS TO EXERCISES

bool list→ int. (4) does not elaborate; a case expression is a derived form,
here for

(fn x as [] => 0::x::x | other => [0]::other) s

so x must have a simple type scheme according to the theorem, but no simple type
scheme generalises both int list and int list list.

4.3 (1) elaborates, (2) elaborates to int list→int, and (3) does not elaborate
because k must have a simple type scheme.

4.4 The wrong inference is the one marked (not 17) in Figure 15. Notice that ’a
occurs free in C1, namely in the type of x. The quantification on ’a destroys
the link between the types of x and y.

4.5 In both cases the declaration will then elaborate. In the first case because
it becomes possible to give Id a general type scheme, provided we avoid the
explicit type variable when we elaborate fn z => z. In the second case,
the scoping of the explicit type variable moves inwards to the inner value
declaration, so again we can make Id polymorphic.

4.6 He realised that his function can elaborate to the type scheme ∀().τ list→
τ list for all imperative types τ , but not to ∀’ a.’ a list→ ’ a list,
since the outer let expression is expansive. Thus Reno cannot use his func-
tion first on an int list and then on a bool list, say.

Reno’s function illustrates just how subtle typing side-effects can be. You
might expect that Reno’s function should get the type ∀’ a.’ a list →
’ a list, or even ∀’a.’a list→ ’a list. But notice that if Reno had
forgotten the “inner” initialisation res:= [] these type schemes would
no longer be valid (consider what happens the second time this function is
called).

5.1 Let C be a context and assume t /∈ T of C. The resulting type environment
consists of the following bindings

tree 7→ (t, {LEAF 7→ ∀’a.’a→’a t,
TIP 7→ ∀’a.’a*’a t*’a t→’a t})

heap 7→ (t,{})
intheap 7→ (Λ().int t, {})

Notice that tree and heap share with each other but not with intheap.

5.2 To the environment (SE, TE, VE,EE), where SE and EE are empty, and

TE = {options 7→ (t3, {MAYBE 7→ t3}),
positive 7→ (t2, {YES 7→ t2})}

139

(35)
(42)

C1 ` y⇒ ({y 7→ ’a}, ’a)

C1(x) = ’a
(2)
(9)

C1 ` x⇒ ’a

(26)

C1 ` y=x⇒ {y 7→ ’a}

(not 17)

C1 ` val y=x⇒ {y 7→ ∀’a.’a}

C2(y) � int→’b
(2)
(9)

C2 ` y⇒ int→’b

(1)

C2 ` 5⇒ int

(10)

C2︷ ︸︸ ︷
C1 + {y 7→ ∀’a.’a} ` y 5⇒ ’b

(35)
(42)

C ` f⇒ ({f 7→ ’a→’b}, ’a→’b)

(35)
(42)

C ` x⇒ ({x 7→ ’a}, ’a)

(6)
(9)

C1︷ ︸︸ ︷
C + {x 7→ ’a} ` e1 ⇒ ’b

(16)

C ` x=> e1 ⇒ ’a→’b
(15)
(14)

C ` fn x => e1 ⇒ ’a→’b

(26)

C ` f = ··· ⇒ {f 7→ ’a→’b}

(17)

C ` val f = ··· ⇒ {f 7→ ∀ ’a ’b.’a→’b}

C3(f) � int→τ
(2)
(9)

C3 ` f⇒ int→τ

(1)

C3 ` 3⇒ int

(10)

C3︷ ︸︸ ︷
C + {f 7→ ∀’a ’b.’a→’b} ` f 3⇒ τ

(6)
(9)

C ` e0 ⇒ τ

Figure 15: Unsound quantification

140 C APPENDIX: SOLUTIONS TO EXERCISES

and VE = {YES 7→ t2, NO 7→ t1, MAYBE 7→ t3}. Since VE(YES) 6= VE(NO), (a)
elaborates to t2; (b) elaborates to t1, even though the first binding of options is
overwritten by the later declaration; (c) does not elaborate.

5.3 No, see [App C, p 74].

5.4 (1) and (3) are legal; they both evaluate to false.

5.5 The type functions bound to pair and intmap store admit equality, al-
though the type function bound to intmap does not.

5.6 None whatsoever. The equality and imperative attributes of the bound type
variables of a type function have no significance [Sec 4.4, p 19].

5.7 No; T will possess the equality attribute after the whole local declaration, but
not after the whole abstype declaration. Otherwise the effect is identical.

6.1 Analogous to the solution of Exercise 3.2. In this case, show that each
phrase elaborates to E1 + ··· +En if and only if there exist structure names
m1, . . . ,mn such that the condition B(sigid i) ≥ (mi, Ei) is satisfied for all i.

6.2{
A 7→

(
m,{t 7→ (t, {BLUE 7→ t, RED 7→ t})},
{BLUE 7→ t, RED 7→ t, x 7→ t, y 7→ t, p 7→ t ∗ t}

)
,

A1 7→
(
m,{t 7→ (t, {})},
{x 7→ t, y 7→ t}

)
,

A2 7→
(
m,{t 7→ (t, {})}
{p 7→ t ∗ t}

)}
6.3

(b) struct end

(c) struct type t = bool end

(d) struct type t = bool val x = false end

(e) struct type t = bool val x = 3 end

7.1 VIEW1 elaborates to
(N1)S1 = {m1, t1}(m1, {t 7→ (t1, {})}, {x 7→ t1, y 7→ t1})

and A to S =

(m2,{t 7→ (t2, {BLUE 7→, t2, RED 7→ t2}}),
{BLUE 7→ t2, RED 7→ t2, x 7→ t2, y 7→ t2, p 7→ t2 ∗ t2})

141

Let S− be (m2, {t 7→ (t2, {})}, {x 7→ t2, y 7→ t2}). Then S− is an instance
of (N1)S1 via the realisation which maps m1 to m2 and t1 to t2. Incidently,
S− is precisely the structure to which A1 is bound; it shares with S although
it has fewer components.

7.2 We have µ(τ1→ (’a, ’b)t1) = τ2→ (’a, ’b)t2 for some substitution µ, so first
we have t1 = t2, µ(’a) = ’a and µ(’b) = ’b. Hence, because τ1 contains no
other type variables, τ2 = µ(τ1) = τ1.

7.3 Pair matches PAIR via the realisation ({m 7→ m1}, {t 7→ Λ’a.’a ∗ ’a}).
Complex matches COMPLEX via the realisation ({m 7→ m1, m’ 7→ m2}, {t 7→
Λ’a.’a ∗ ’a, t’ 7→ Λ().real ∗ real}). The type schemes for fst, snd,
mk pair and mk complex are less polymorphic in the signature instance than
in the actual structure. The realisations are uniquely determined. For types,
the point is that for every flexible type name t in the signature there is a
type constructor tycon bound to (t, CE) for some CE. Thus t must be
instantiated to the corresponding type function in the actual structure. Once
the realisation has been done, it simply remains to check that the type
schemes of the values of the instance are generalised by the type schemes in
the actual structure.

7.4 A does not match SIG, for a type name of arity 1 cannot be realised by a
nullary type function. B does not match SIG either, for after instantiation
of the type name in SIG, one must get precisely the type structure of A,
cf. the definition of the enrichment relation (θ1, CE1) � (θ2, CE2) [Sec 5.11,
p 34]. In general, a datatype specification can only be matched by a datatype
declaration if the latter has the same constructors as the former and every
constructors is specified and declared with the same type.

8.1 The functor signature is

{m1, t1}
(

(m1, {t 7→ t1}),
{m2, t2}(m2, {u 7→ (t2, CE)}, CE)

)
where CE = {C 7→ t1→t2, D 7→ t2} and neither t1 nor t2 admits equality.
(If t had been specified as an eqtype then both t1 and t2 would admit
equality.)

8.2 An admissible inference tree proves B ` fundec2 ⇒ F if and only if it is of
the form shown in Figure 16, where Σ′ ≥ S ′′ ≺ S ′ (by the side condition
on rule 62 [p 39]), B1 = B ⊕ {strid 7→ S}, B2 = B1 ⊕ {strid ′ 7→ S ′′} and
N ′ = namesS ′′ \ names((N of B) ∪ N). The desired result follows directly
from a comparison with rule 99.

142 C APPENDIX: SOLUTIONS TO EXERCISES

............

B ` sigexp ⇒ (N)S

............

B1 ` strexp ⇒ S ′

............

B1 ` sigexp ′ ⇒ Σ′

(62)
(58)

B1 ` structure ··· ⇒ {strid ′ 7→ S ′′}

(54)

B2 ` strid ′ ⇒ S ′′

(56)

B1 ` let ··· end ⇒ S ′′

(99)
(96)

B ` fundec2 ⇒ {funid 7→ (N)(S, (N ′)S ′′)}︸ ︷︷ ︸
F

Figure 16: Regarding the result signature of functor as a derived form

8.3 Consider
strexp1 ≡ let structure A: sig type t end =

struct type t = int end

in struct datatype u = C of A.t | D end

end

strexp2 ≡ let functor F(A: sig type t end) =

struct datatype u = C of A.t | D end

in F(struct type t = int end)

end

In the result of elaborating strexp1, u admits equality, but in the result of
elaborating strexp2, u does not admit equality.

8.4 The functor signature for F is (N)(S∗, (∅)S∗). In the first declaration, the
condition is that (N)S∗ ≥ S ′ ≺ S, and the result is the unique (by type-
explication) such structure S ′. In the second declaration, one requires a
functor-instance (S ′′, (N ′)S ′) ≤ (N)(S∗, (∅)S∗) for which S ′′ ≺ S, and then
the result is S ′. But any such functor instance must have N ′ = ∅ and
S ′ = S ′′, so the condition and result are the same in the two cases.

143

8.5 Rule 55 remains unchanged (this was a trap). In rule 62, replace S〈′〉 by
S. In rule 99, replace S ′〈′〉 by S ′ (in two places, after taking account of the
correction in Appendix D).

8.6 The following modified version of rule 62 expresses the desired concept:

B ` strexp ⇒ S B ` sigexp ⇒ (N ′)S ′

S matches (N ′)S ′ N ′ ∩N of B = ∅
B ` strid <: sigexp = strexp ⇒ {strid 7→ S ′}

Note that the names N ′ are chosen to be fresh with respect to the basis.
Similarly, one could use the following variant of rule 99

B ` sigexp ⇒ (N)S B ⊕ {strid 7→ S} ` strexp ⇒ S ′

B ⊕ {strid 7→ S} ` sigexp ′ ⇒ Σ′

S ′ matches Σ′

B ` funid (strid : sigexp) <: sigexp ′ = strexp ⇒
{funid 7→ (N)(S,Σ′)}

Alternatively, funid (strid : sigexp) <: sigexp ′ = strexp could be
defined as a derived form, namely

funid (strid : sigexp) =

let structure strid ′ <:sigexp ′ = strexp
in

strid ′

end

9.1 Yes. The set of all type structures is consistent; note that A.tree and
B.B.tree are consistent and that even A.tree and B.A.tree are consistent,
since t 6= t2. As for structure name consistency, A and B.B have the same
name and A.tree and B.B.tree share as required. Were we to replace m2

by m, consistency would be violated, even if we also replaced t2 by t, for
{L, N} 6= {N}.

9.2 The declaration elaborates to{
SIG 7→ {m1, m2, m3}

(
m1, {A 7→(m2, {C 7→ (m3, {})}),

B 7→(m2, {C 7→ (m3, {})})}
)}

Notice that the sharing of A and B implies sharing of A.C and B.C in order
to maintain consistency.

9.3 One example is S1 = (m, {A 7→ (m1, {})}), S2 = (m, {}), and S3 = (m, {A 7→
(m2, {})}).

144 C APPENDIX: SOLUTIONS TO EXERCISES

9.4 No. The problem is that in order to satisfy the last sharing constraint, D
and E must have the same name and hence, because of previous sharing
constraints, A and A.B.C must have the same name, and this would give a
cycle. We see the “global” nature of admissibility in this example: one might
mistakingly think that it is trivial for D and E to share, since they are both
specified using empty specifications.

10.1 The result of the elaboration is(
m,{t 7→ (t, {}),

u 7→ (t, {}),
v 7→ (t, {C 7→ t, D 7→ t})},
{C 7→ t, D 7→ t}

)
where the type name t must admit equality. In fact this is the only structure
possible up to the choice of m and t. Note that the type function of t, u and
v must be a type name, because of the datatype specification. Hence t, u
and v all admit equality. The point is that equality is an attribute of the
type function and so must be identical for all types that share. Constructor
environments, on the other hand, can vary within the limits of consistency
[Sec 5.2, p 32].

10.2 Yes, for example to (m1, {A 7→ (m2, {}), B 7→ (m2, {})}). Rule 79 [p 41] for
include gives the necessary freedom to realise the bound names m2 and m3

by the same name (compare with the next exercise).

10.3 No; rule 78 [p 41] for open forces us to open Str precisely as it is (recall
that real structures have rigid names), and certainly the names of A and B

are different.

10.4 Interestingly, the construction of ∼ does not rely on the existence of an
admissifier for A. However, there are the following places where checks are
required to ensure that the definition of ϕ∗ makes sense:

1. It is not necessarily the case that there is at most one m0 ∈ [m] ∩ N . An
attempt to unify two different rigid structure names must be faulted.

2. It is not necessarily the case that there is at most one θ0 ∈ [θ] such that
θ0 is not both a type name and flexible. However, if θ0 and θ1 are such
type functions, we still have tynames θi ⊆ N (i = 0, 1) since A is assumed
grounded in N . Hence it is easy to check whether θ0 and θ1 are identical.
Also, it must be checked that all members of [θ] have the same arity. Finally,
in case θ0 exists, it must be checked that if θ0 does not admit equality, then
no other member of the equivalence class admits equality.

145

Subject to the checks in (1) and (2), ϕ∗ is well-defined and it is a realisation
fixed on N . However, it may still not be an admissifier for A, for the following
reasons:

1. In the absence of ϕ, we can no longer apply Theorem 9.1 to conclude that
ϕ∗A is well-formed and cycle-free. Indeed, it must be checked that ϕ∗ nei-
ther destroys type structure well-formedness [Sec 4.9, p 21] nor introduces
cycles. In particular, one must fault any attempt to unify two type struc-
tures (θ1, CE1) and (θ2, CE2) if θ1 is not a type name and DomCE2 is not
empty.

2. The assembly ϕ∗A will satisfy conditions 1 and 2 of consistency [Sec 5.2,
p 32], but not necessarily condition 3. Any attempt to unify two type
structures with different non-empty constructor environment domains must
be faulted.

11.1 Yes. The equality-principal signature is

{m, t}(m, {T 7→ (t, {C 7→ t}),
U 7→ (t, {})}, {C 7→ t})

where t admits equality. The principal signature is identical to the above,
except that t does not admit equality.

11.2 Yes, the equality-principal signature is

{m, t, t’}(m, {T 7→ (t’, {}),
U 7→ (t, {C 7→ t})}, {C 7→ t})

where t admits equality and t’ does not admit equality.

11.3 Yes, the equality-principal signature is

{m, t, t’}(m, {T 7→ (t’, {}),
U 7→ (t, {C 7→ t’→t})}, {C 7→ t’→t})

where neither t nor t’ admits equality. In step 1, t’ and t are taken not to
admit equality; the only type name which is candidate for change in step 3
is t, but since t’ does not admit equality, t cannot admit equality.

11.4 Yes, the equality-principal signature is

{m, t, t’}(m, {T 7→ (t’, {}),
U 7→ (t, {C 7→ t’→t})}, {C 7→ t’→t})

where both t and t’ admit equality. In step 1, t’ is found to admit equality;
in the principal signature, t does not admit equality, but in the equality-
principal signature, t can be allowed to admit equality.

11.5 Yes. The equality-principal signature is

146 C APPENDIX: SOLUTIONS TO EXERCISES

{m, t}
(m,{T 7→ (t, {C 7→ t}), U 7→ (t, {C 7→ (int→int)→t})},
{C 7→ (int→int)→t})

where t does not admit equality. This is one of the few examples of a legal
signature which cannot be matched by any real structure.

11.6 No, the principal signature exists, but it does not respect equality.

11.7 Consider the signature expression

sig

type t

type u = t * t

end

This elaborates to all structures of the form
(m, {t 7→ (Λ().τ, {}),

u 7→ (Λ().τ ∗ τ, {})})

for which tynames τ ⊆ N of B. The only candidate for a principal signature,
namely

{m, t}(m, {t 7→ ((t, {}),
u 7→ (Λ().t ∗ t, {})})

is not reachable by elaboration, since the type structure for u is not grounded
in N of B.

11.8 In the two possible closed signatures, there will be in one case two distinct
bound datatype names t and u, where t admits equality but not u, and in
the other case a single bound datatype name which does not admit equality
(corresponding to both T and U). Neither signature is an instance of the
other.

147

D Appendix: Mistakes and Ambiguities

The following mistakes and ambiguities have been found in the Definition. Some
are minor errors of wording and presentation. Others are technical points; for the
more important of these we refer to the place in this Commentary where they are
discussed.

The symbol 7−→ is used to signify replacement. ‘Line -3’ means the third line
from bottom.

page

4 No space is allowed between the two characters which make up a comment
bracket (* or *). Even an unmatched *) should be detected by the compiler.
Thus the expression (op *) is illegal. But (op *) is legal; so is op* .

5 Lines 14–17: The rule given for determining the status of an identifier is
not sufficient. The same applies to [Sec 3.2,p 10]. Full rules are given in
Appendix B.

12 At end of Sec 3.5 add:

• In the tyvarseq tycon in any typdesc or datdesc, tyvarseq must not
contain the same tyvar twice. Any tyvar occurring on the right side of
the datdesc must occur in tyvarseq .

30 Lines 9–10 of [Sec 4.11]: principal type schemes 7−→ principal environments.
Line -5: E � E ′ 7−→ ClosCE � E ′ (see end of Section 5.3).
Line -3: delete “and imperative type variables” (see previous erratum).

31 Line -12: delete “imperative,”.

35 Lines -5,-4: the claim that a principal signature exists must be slightly qual-
ified, since it may be ill-formed in a mild sense. This is discussed at the end
of Section 11.3.

42 Rule 86: tyvars(τ) = ∅ 7−→ tyvars(ty) = ∅. This is needed to ensure that
rule 86 is a structural contraction; see Section A.1.

44 Rule 99: namesS ′\((N of B)∪N) 7−→ namesS ′〈′〉\((N of B)∪N)

46 [Sec 6.1], first bullet: exception bindings 7−→ constructor and exception
bindings.
[Sec 6.1], second bullet: delete “or “datatype datbind” ” (see Section 2.7).
[Sec 6.1], fourth bullet: delete “DatBind, ConBind,”.

53 Add a new rule for datatype declarations after rule 129, and change rule 130
for exception declarations, as indicated in Section 2.7.

148 D APPENDIX: MISTAKES AND AMBIGUITIES

56 Rule 158 deals incorrectly with the case in which a program redeclares ref as
a value constructor, since it will always interpret ref as a memory reference.
Rule 114 [p 51] is similarly at fault in this case. For this reason, compilers
may wish to issue a warning if ref is redeclared or specified as a value
constructor.

67 Some of the derived forms of expressions [Fig 15], such as (), must be parsed
as atomic expressions; they can be found under atexp in the full grammar
[App B, Fig 19, p 71]. Similarly, the derived forms of patterns [Fig 16] must
be parsed as atomic patterns; they all appear under atpat in [Fig 21, p 73].

Note that the meanings of certain derived forms [Fig 15 and 16] change if
certain parts of the initial basis are overwritten. For example, the meaning of
an if ··· then ··· else expression is affected by a rebinding of true or false;
similarly, giving it constructor status changes the meaning of the derived
form of expressions at top-level [Fig 18]. For this reason, compilers may wish
to issue a warning if true, false, nil or :: is redeclared or specified as a
value constructor, exception constructor or variable, or if it is declared at
top-level as a value constructor or exception constructor.

74 Line -7: (true,false,nil,::) 7−→ (true,false,nil,::,ref)

77 [App D], fifth bullet; this should read

• VE ′0 = {id 7→ id ; id ∈ BasVal} ∪ {:= 7→ :=} ∪ EE ′0
∪ {true 7→ true, false 7→ false, nil 7→ nil, :: 7→ ::, ref 7→

ref}

80 Line 13: after “initially empty.” add

Any existing contents of the file s are lost. The exception packet

[(Io,"Cannot open s")]

is returned if write access to the file s is not provided.

